第四章 习题课
- 格式:pdf
- 大小:392.55 KB
- 文档页数:22
第四章存储器管理1.选择题1.存储保护的工作通常由实现。
A.软件B.硬件C.文件D.硬件和软件配合2.段页式存储管理中,访问快表失败时,每访问一条指令或存取一个操作数都要次访问主存。
A.1 B.2 C.3 D.43.在虚拟存储系统中,若进程在内存中占3块(开始时为空)采用先进先出页面淘汰算法,当执行访问页号序列为1、2、3、4、1、2、5、1、2、3、4、5、6时,将产生次缺页中断。
A.7 B.8 C.9 D.104.采用段页式存储管理,在CPU中应设置寄存器。
A.段表和页表控制B.段表控制C.页表控制D.界地址5.采用段页式存储管理时,内存地址分成段号、段内页号和页内地址三部分,地址。
A.但仍是线性B.但仍是二维C.故是三维D.从而成为四维6.用户程序的逻辑地址可以不连续的存储管理方式是。
A.固定分区B.可变分区C.页式D.段页7.在可变分区分配方案中,为了实现主存的空间分配,采用进行管理。
A.页表B.段表C.段表+页表D.分区分配表+空闲区表8.动态重定位是在完成的。
A.作业执行前集中一次B.作业执行过程中集中一次C.作业执行过程中D.作业执行过程中由用户9.在以下的存储管理方案中,能扩充主存容量的是。
A.固定式分区分配B.可变式分区分配C.页式存储管理D.分页虚拟存储管理10.在可变分区分配方案中,在空闲区表中以空闲区长度按递减顺序排列适合于________算法。
A.最坏适应算法B.最先适应算法C.最优适应算法D.首次循环适应算法11.在页式虚拟存储管理中,为实现地址变换,应建立。
A.空闲区表B.分区分配表C.页表D.段表12.在下述存储管理方案中,管理方式要求作业的逻辑地址与占有主存的存储区域都是连续的。
A.段页式B.页式C.段式D.可变分区13.将主存空闲区按地址顺序从小到大登记在空闲区表中,每次分配时总是顺序查找空闲区表,此种分配算法称为分配算法。
A.最先适应B.最优适应C.最坏适应D.随机适应14.页式存储管理中,每次从主存中取指令或取操作数,当读快表失败时,要读次主存。
第四章习题课线性代数第四章向量组的线性相关性6.设21,a a 线性无关, b a b a ++21,线性相关,求向量b 用21,a a 线性表示的表示式.解由于b a b a ++21,线性相关, 所以存在不全为零的数21,k k ,使得2211212211)(0)()(a k a k b k k b a k b a k --=+?=+++.由于21,a a 线性无关,故021≠+k k ,否则由上式得, 00212211==?=+k k a k a k , 这与21,k k 不全为零矛盾.所以由221121)(a k a k b k k --=+得,.0,,,212122121211≠+∈+-+-=k k R k k a k k k a k k k b8.举例说明下列各命题是错误的:(1) 若向量组m a a a ,,,21 是线性相关的,则1a 可由m a a ,2线性表示.解设Te a )0,,0,0,1(11 ==, 032====m a a a满足m a a a ,,,21 线性相关, 但1a 不能由m a a ,,2 线性表示.(2) 若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立, 则m a a ,,1 线性相关, m b b ,,1 亦线性相关.解有不全为零的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 ,其中m e e ,,1 为单位坐标向量,则上式成立,而m a a ,,1 ,m b b ,,1均线性无关.(3) 若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.解由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )得0)()(111=++++m m m b a b a λλ (仅当01===m λλ ) m m ba b a b a +++?,,,2211 线性无关.取021====m a a a ,取m b b ,,1 为线性无关组(例如单位坐标向量m e e ,,1 ),满足以上条件,但不能说m a a a ,,,21 线性无关.(4) 若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立.解 T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2= ?-=?=+-=?=+21221121221134020λλλλλλλλb b a a 021==?λλ与题设矛盾.9.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明设有4321,,,x x x x 使得044332211=+++b x b x b x b x则0)()()()(144433322211=+++++++a a x a a x a a x a a x0)()()()(443332221141=+++++++?a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,使得044332211=+++a k a k a k a k .取141k x x =+;221k x x =+;332k x x =+;443k x x =+; 由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,又044332211=+++b x b x b x b x 所以4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则=+=+=+=+000043322141x x x x x x x x 011000110001110014321=??x x x x 由01100011000111001=知, 此齐次方程存在非零解, 所以有不全为零的4321,,,x x x x 使得044332211=+++b x b x b x b x ,则4321,,,b b b b 线性相关. 综合得证.10.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组 r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故==++=+++000221r r r k k k k k k=??????? ????????? ??0001001101121 r k k k因为0110011011≠= ,故方程组只有零解.则021====r k k k , 所以r b b b ,,,21 线性无关.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组表示.(2)---140113130********211.解---==14011313021512012211),,,,(54321a a a a a A 14132~r r r r --??????? ??------222001512015120122114323~r r r r ?+?---00000222001512012211,所以第1、2、3列321,,a a a 构成一个最大无关组.把A 化成行最简形矩阵),,,,(54321b b b b b B =.~A ??---00000222001512012211--=00000111001301001001~B 由于方程0=Ax 与0=Bx 同解,所以向量54321,,,,a a a a a 之间与向量54321,,,,b b b b b 之间有相同的线性关系.由于3214301000010300010131b b b b -+=-??????? ??+??????? ??=??????? ??-= 325010000100110b b b +-=+??????? ??-=??????-= 所以32143a a a a -+=,325a a a +-=.13.设向量组=131a a ,????? ??=322b a ,????? ??=1213a ,????=1324a的秩为2,求b a ,.解由于43,a a 的对应分量不成比例,所以43,a a 线性无关,其秩为2. 从而4321,,,a a a a 的秩为2?21,a a 可由43,a a 线性表示0),,det(431=a a a 且0),,det(432=a a a . 因为a a a a -=2),,det(431,b a a a -=5),,det(432,所以4321,,,a a a a 的秩为2?2=a ,5=b .14.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能由它们线性表示,证明n a a a ,,,21 线性无关.证明由于n 维单位坐标向量n e e e ,,,21 能由n a a a ,,,21 线性表示,不妨设:n nn n n n nn n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ()()=nn n n n n n n k k kk k k k k k a a a e e e 2122212121112121两边取行列式,得()()==nn nn n n n n k k kk k k k k k a a a e e e E2122212121112121||,由=1||E ()021≠n a a a ,即n 维向量组n a a a ,,,21 所构成矩阵的秩为n ,故n a a a ,,,21 线性无关.15.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表示.证明必要性: 设b 为任一n 维向量, 则n 维向量组b a a a n ,,,,21 线性相关(其所含向量个数大于向量维数).因为n a a a ,,,21 线性无关,所以b 能n a a a ,,,21 线性表示.充分性: 因为任一n 维向量可由n a a a ,,,21 线性表示,所以单位坐标向量组n e e e ,,,21 能由n a a a ,,,21 线性表示.则na a a R n a a a R e e e R n n n n =?≤≤=),,,(),,,(),,,(212121 ,所以n a a a ,,,21 线性无关.16. 设向量组m a a a ,,,21 线性相关,且01≠a ,证明存在某个向量)2(m k a k ≤≤,使得k a可由121,,,-k a a a 线性表示.证明反证法,假设结论不成立.设02211=+++m m a k a k a k , )(* 因为m a 不能由121,,,-m a a a 线性表示,所以0=m k .)(*式变为0112211=+++--m m a k a k a k .因为1-m a 不能由221,,,-m a a a 线性表示,所以01=-m k .……同理可得, 0232====--k k k m m .所以)(*式变为011=a k . 由于01≠a ,所以01=k .综上可知, 021====m k k k ,所以m a a a ,,,21 线性无关,这与题设矛盾!从而假设不成立,原命题成立.17.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ?矩阵,且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩r K R =)(.证明令),,(),,(11s r a a A b b B ==, 则有AK B =.必要性: 若B 组线性无关,则r B R =)(.由)()}(),(min{)()(K R K R A R AK R B R ≤≤=,故r K R ≥)(. 又K 为r s ?阶矩阵,则r K R ≤)(. 综上知,r K R =)(.充分性: 设r K R =)(.令02211=+++r r b x b x b x ,其中i x 为实数,r i ,,2,1 =.则有0),,,(121=r r x x b b b ,即00=?=AKx Bx .由于s a a a ,,,21 线性无关,所以s A R =)(,从而方程0=Ay 只有零解,故0=Kx .由于r K R =)(,则方程0=Kz 只有零解,所以0=x . 从而021====r x x x . 所以r b b b ,,,21 线性无关.20.求下列齐次线性方程组的基础解系: (3)02)1(121=++-+-n n x x x n nx .解系数矩阵为)1,2,),1(,( -n n ,秩是1,未知数个数是n ,所以基础解系应含有1-n 个解向量. 原方程组即为1212)1(------=n n x x n nx x 取121,,,-n x x x 为自由未知量,令=??????? ??-100,,010,001121 n x x x 得n x n -=,1+-n , ,2-.所以基础解系为-+--=-21100010001),,,(121n n n ξξξ.21.设--=82593122A ,求一个24?矩阵B,使O AB =,且2)(=B R .解由于A 有2阶非零子式,故2)(=A R ,所以齐次线性方程组0=Ax 的基础解系中应含有2个向量.设24?矩阵B 为),(21ξξ=B ,其中21,ξξ是4维列向量.O AB =,且2)(=B R01=ξA ,02=ξA ,且21,ξξ线性无关21,ξξ是齐次线性方程组0=Ax 的基础解系.对A 实施初等行变换化为行最简形矩阵:--=82593122A ~?---8118510818101令=???? ??10,0143x x ,得-?????? ??=???81181,858121x x .所以-=???????? ??=1081181,01858121ξξ.故所求矩阵-=1001811858181B .22.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解显然原方程组的通解为+??????? ??=?01233210214321k k x x x x ,(R k k ∈21,) 即=+=+==1 4213212213223k x k k x k k x k x ,代入3,31241x k x k ==, 消去21,k k 得 ??=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.26.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(2)-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解对增广矩阵实施初等行变换化为行最简形矩阵.--------=00000221711012179016124211635113251~初等行变换B 由于2)()(==B R A R ,所以方程组有解.原方程组等价于??--=++-=2217112179432431x x x x x x . 取43,x x 为自由未知数,令???? ??=???? ??0043x x ,得原方程组的一个解.0021??-=η对应的齐次线性方程组等价于??-=+-=43243121712179x x x x x x . 令,20,0743???? ??????=???? ??x x 得其基础解系.2011,071921??-=??????? ??-=ξξ27.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量.且=54321η,=+432132ηη 求该方程组的通解.解由于系数矩阵的秩为3=r ,134=-=-r n .故其对应的齐次线性方程组的基础解系含有一个向量.由于321,,ηηη均为方程组的解,由非齐次线性方程组解的结构性质得齐次解齐次解齐次解=??=-+-=+-6543)()()()()(23121321ηηηηηηη 为其基础解系向量,故此方程组的通解:+??????? ??=54326543k x ,)(R k ∈.30.设矩阵),,,(4321a a a a A =,其中432,,a a a 线性无关, 3212a a a -=,向量4321a a a a b +++=,求方程b Ax =的通解.解由于432,,a a a 线性无关,所以3)(≥A R .由3212a a a -=知321,,a a a 线性相关,故4321,,,a a a a 线性相关,从而3)(≤A R .综上可知, 3)(=A R .所以齐次方程0=Ax 的基础解系含有4-3=1个向量.022321321=+-?-=a a a a a a ,所以-=0121ξ是0=Ax 的一个非零解,从而构成其基础解系.又4321a a a a b +++=,故=1111η是b Ax =的一个解.所以方程b Ax =的通解是.,11110121R c c c x ∈+??????? ??-=+=ηξ31.设*η是非齐次线性方程组b Ax =的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1) r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关. 证明(1) 设有关系式:0110=+++--*r n r n C C C ξξη (1)由于*η为特解,r n -ξξ,,1 为基础解系,故得C A C C C C A r n r n 00110)(==+++*--*ηξξη而由(1)式可得0)(110=+++--*r n r n C C C A ξξη ,故00=b C .而该方程组为非齐次线性方程组,得0≠b ,所以00=C . 代入(1)式得.011=++--r n r n C C ξξ由于r n -ξξ,,1 是基础解系从而线性无关,故.01===-r n C C 所以010====-r n C C C , 故r n -*ξξη,,,1 线性无关.(2) 设有关系式:0)()(110=+++++-*-**r n r n C C C ξηξηη (2)即0)(1110=++++++--*-r n r n r n C C C C C ξξη .由题(1)知, r n -*ξξη,,,1 线性无关,故2110=====+++--r n r n C C C C C C 0210=====?-r n C C C C ,所以r n -***++ξηξηη,,,1 线性无关.32. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .证明s s k k k x ηηη+++= 2211也是它的解.证明由于s ηη,,1 是非齐次线性方程组b Ax =的s 个解. 故有 ),,1(s i b A i ==η 而s s s s A k A k A k k k k A ηηηηηη+++=+++ 22112211)(b k k b s =++=)(1所以s s k k k x ηηη+++= 2211也是方程b Ax =的解.33.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题31知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n kk ).证明设x 为b Ax =的任一解.由题设知:121,,,+-r n ηηη 线性无关且均为b Ax =的解.取11132121,,,ηηξηηξηηξ-=-=-=+--r n r n ,则它们均为0=Ax 的解.用反证法证明:r n -ξξξ,,,21 线性无关.假设它们线性相关,则存在不全为零的数r n l l l -,,,21 ,使得02211=+++--r n r n l l l ξξξ .即0)()()(11132121=-++-+-+--ηηηηηηr n r n l l l0)(13221121=+++++++-+---r n r n r n l l l l l l ηηηη由121,,,+-r n ηηη 线性无关知0)(2121=====+++---r n r n l l l l l l与r n l l l -,,,21 不全为零矛盾! 故假设不成立. r n -∴ξξξ,,,21 线性无关.由于b Ax =的系数矩阵的秩为r ,故齐次方程0=Ax 的基础解系应含有r n -个向量.r n -∴ξξξ,,,21 构成0=Ax 的基础解系.由于1,ηx 均为b Ax =的解,所以1η-x 为0=Ax 的解1η-?x 可由r n -ξξξ,,,21 线性表示.r n r n k k k x ---+++=-ξξξη123121)()()(111133122ηηηηηη-++-+-=+-+-r n r n k k k1133221321)1(+-+-+-++++----=r n r n r n k k k k k k x ηηηη令13211+-----=r n k k k k ,则11321=+++++-r n k k k k ,且112211+-+-+++=r n r n k k k x ηηη .34.设}0,,),,,({211211=+++∈==n n T n x x x R x x x x x x V 满足}1,,),,,({211212=+++∈==n n T n x x x R x x x x x x V 满足问21,V V 是不是向量空间?为什么?证明非空向量集V 成为向量空间只需满足条件:若V V ∈∈βα,,则V ∈+βα; 若R V ∈∈λα,,则V ∈λα.1V 是向量空间.由1)0,,0,0(V T∈ 知1V 非空.设121),,,(V T n ∈=αααα ,121),,,(V Tn ∈=ββββ ,R ∈λ. 则021=+++n ααα ,021=+++n βββ .由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++ 0)()(2121=+++++++=n n βββααα故1V ∈+βα.又T n ),,,(21λαλαλαλα =且00)(2121=?=+++=+++λαααλλαλαλαn n故1V ∈λα.2V 不是向量空间.若221),,,(V T n ∈=αααα ,221),,,(V Tn ∈=ββββ , 则121=+++n ααα ,121=+++n βββ . 由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++211)()(2121=+=+++++++=n n βββααα 故2V ?+βα. 又T n ),,,(21λαλαλαλα =且λλαααλλαλαλα=?=+++=+++1)(2121n n故当1≠λ时,2V ?λα.35.试证:由T T T a a a )0,1,1(,)1,0,1(,)1,1,0(321===所生成的向量空间就是3R .证明设),,(321a a a A =.11101110,,321==a a a A 02≠=于是3)(=A R ,故321,,a a a 线性无关.由于321,,a a a 均为三维向量,且秩为3,所以321,,a a a 是三维向量空间3R 的一组基, 故由321,,a a a 所生成的向量空间就是3R .36.由T T a a )1,1,0,1(,)0,0,1,1(21==所生成的向量空间记作1L ,由T T b b )1,1,1,0(,)3,3,1,2(21--=-=所生成的向量空间记作2L ,试证21L L =.证明因为21,a a 的对应分量不成比例,所以21,a a 线性无关,故2),(21=a a R .因为21,b b 的对应分量不成比例,所以21,b b 线性无关,故2),(21=b b R .---=1310131011010211),,,(2121b b a a ~--0000000013100211 所以2),,,(2121=b b a a R ,从而),,,(),(),(21212121b b a a R b b R a a R ==. 所以21,a a 与21,b b 等价,因此21L L =.37.验证T T T a a a )2,1,3(,)3,1,2(,)0,1,1(321==-=为3R 的一个基,并把T T v v )13,8,9(,)7,0,5(21---==用这个基线性表示.解设),,(321a a a A =,),(21v v V =.对),(V A 实施初等行变换化为行最简形矩阵.----=1372308011195321),(V A ~---211003301032001由于A ~E ,所以3),,(321=a a a R ,故321,,a a a 线性无关,则321,,a a a 为3R 的一个基. 因为---==-213332),,(),,(),(321132121a a a V A a a a v v所以321132a a a v -+=, 3212233a a a v --=.38.已知3R 的两个基为=1111a ,-=1012a , ??=1013a 及 ????? ??=1211b , ????? ??=4322b , ????? ??=3433b , 求由基321,,a a a 到基321,,b b b 的过度矩阵P .解设),,(321a a a A =, ),,(321b b b B =.因为321,,a a a 与321,,b b b 是3R 的基,所以B A ,是3阶可逆矩阵.B A P P a a a b b b 1321321),,(),,(-=?=.对),(B A 实施初等行变换化为行最简形矩阵.-=341111432001321111),(B A ~---101100010010432001 所以---==-1010104321B A P .。
第四章中学生学习心理课后习题及答案一、理论测试题(一)单项选择题1.当人从黑暗走入亮处后,视网膜的光感受阈限会迅速提高,这个过程是()。
A.适应B.对比C. 明适应D.暗适应2.人的视觉、听觉、味觉等都属于( )。
A.外部感觉B.内部感觉C.本体感觉D.机体感觉3.在热闹的聚会上或逛自由市场时,如果你与朋友聊天,朋友说话时的某个字可能被周围的噪音覆盖,但你还是知道你的朋友在说什么,这是知觉的()在起作用。
A、选择性B、整体性C、恒常性D、理解性4. 知觉的条件在一定范围改变时,知觉映像却保持相对稳定,这是知觉的()。
A.选择性B.整体性C.恒常性D.理解性5.大教室上课,教师借用扩音设备让全体学生清晰感知,这依据感知规律的()。
A.差异率B.强度率C.活动率D.组合率6.“万绿丛中一点红”容易引起人们的无意注意,这主要是由于刺激物具有()。
A.强度的特点B.新异性的特点C.变化的特点D.对比的特点7.小学低年级学生注意了写字的间架结构,就忽略了字的笔画,注意了写字而忘了正确的坐姿,原因是这个年龄阶段的学生()发展水平较低。
A.注意的广度B.注意的稳定性C.注意的分配D.注意的转移8.“视而不见,听而不闻”的现象,典型地表现了()。
A.注意的指向性B.注意的集中性C.注意的稳定性D.注意的分配性9.一种记忆特点是信息的保存是形象的,保存的时间短、保存量大,编码是以事物的物理特性直接编码,这种记忆是()。
A.短时记忆B.感觉记忆C.长时记忆D.动作记忆10.我们常常有这样的经验,明明知道对方的名字,但想不起来,这印证了遗忘的()。
A.干扰说B.消退说C.提取失败说D.压抑说11.学习后立即睡觉,保持的效果往往比学习后继续活动保持的效果要好,这是由于()。
A.过度学习B.记忆的恢复现象C.无倒摄抑制的影响D.无前摄抑制的影响12.遇见小时候的同伴,虽然叫不出他(她)的姓名,但确定是认识的,此时的心理活动是()。
市场营销第四章课后习题及参考答案习题一:市场细分1.什么是市场细分?为什么市场细分对市场营销策略很重要?市场细分是将整个市场划分为若干个相对独立的子市场,每个子市场具有一定的特征和需求。
市场细分对市场营销策略很重要,因为:–市场细分可以帮助企业了解不同子市场和消费者的需求、偏好和行为习惯,从而更好地满足他们的需求。
–市场细分可以帮助企业更精准地定位自己的产品和品牌,提供有针对性的市场营销方案。
–市场细分可以帮助企业避免资源浪费,将有限的市场营销资源集中在最有潜力的子市场上,提高市场营销效率和效果。
2.市场细分的基本原则是什么?市场细分的基本原则包括:–可区分性原则:不同子市场之间必须有明显的差异和区分特征,以便企业可以根据特定需求来满足不同子市场的消费者。
–可到达性原则:企业必须能够有效地接触到不同子市场的消费者,以便进行针对性的市场营销活动。
–可行性原则:不同子市场的规模和潜力必须足够大,使得企业能够通过市场细分获得可持续的竞争优势和利润。
3.列举常见的市场细分方法。
常见的市场细分方法包括:–按地理位置细分:根据消费者所在地区划分市场,例如按城市、地区、国家等。
–按人口特征细分:根据人口特征进行市场细分,例如按年龄、性别、收入、教育程度等。
–按行为特征细分:根据消费者的购买行为和习惯进行市场细分,例如购买频率、购买偏好、品牌意识等。
–按产品特性细分:根据产品的特性和功能进行市场细分,例如高端产品市场、低价产品市场等。
习题二:市场定位1.什么是市场定位?为什么市场定位对市场营销策略很重要?市场定位是通过确定产品或品牌在目标市场中占据的位置和差异化特点,从而满足特定市场需求并赢得竞争优势的过程。
市场定位对市场营销策略很重要,因为:–市场定位可以帮助企业确定目标市场,并针对目标市场进行有针对性的市场营销活动,提高营销效率和效果。
–市场定位可以帮助企业找到自身与竞争对手之间的差异化优势,从而在市场竞争中脱颖而出。
第四章课后习题与答案:1.发展中国家人口剧增对其经济及整个世界经济产生了哪些影响?人口增长过快给发展中国家造成的消极影响是多方面的。
第一,经济发展负担沉重。
为了解决数量日益庞大的人口的衣食住行和教育等基本生存和发展权利问题,国家不得不将本来并不多的国民收入的大部分用于国民的基本生活消费,致使消费基金占国民收入的比例过大,用于投资的积累基金所占比例过小,其结果是经济增长乏力,其经济发展受到严重束缚和制约;第二,加剧发展中国家的贫困问题。
由于发展中国家人口基数过于庞大,必然导致其个人在生活资料和资源的获取与占有上出现严重短缺,从而导致严重的社会贫困问题;第三,两极分化问题日益突出。
由于发展中国家的个人之间在获取和占有社会经济资源的机会和能力的差别,再加上其他各种不合理现象的存在,必然导致社会分配不公的出现并加剧。
人口过快增长对世界经济发展的影响。
第一,地球资源的消耗加快,并造成生态失衡和环境污染。
世界各国尤其是发展中国家为了养活更多的人口,不得不向自然界索取更多的资源,导致全球性资源危机;第二,南北经济差距加大。
发展中国家人口过快增长,而发达国家人口增长缓慢甚至负增长。
这种人口增长方面的巨大反差无疑会加大南北经济差距,富国愈富、贫国愈贫的局面还将长期存在下去;第三,发展中国家人口的过快增长不仅影响世界经济的发展,而且不利于世界的和平与稳定。
发展中国家人口的急剧增长和经济贫困,必然拖住世界经济增长的后腿,世界经济不可能保持长期的增长和稳定。
战后,世界上不时发生的移民潮、难民潮、偷渡潮以及其他各种社会经济问题,与发展中国家人口的过快增长密不可分。
2.人口老龄化给各有关国家带来哪些社会经济问题?(1)劳动力的年龄结构老化。
45岁以上的雇员、工人所占的比例越来越大。
虽然他们拥有丰富的工作经验,但由于不可抗拒的自然规律,他们的体力、耐力和承受力都已经下降,不再胜任那些需要重体力和耐力的工作;同时,由于他们与年轻人相比,智力减弱,反应迟钝,学习和掌握新技术相当吃力,不能胜任某些高技术作业。