3.对于任意正整数n,定义“n的双阶乘n!!”如下: 当n为偶数时,n!!=n·(n 2)(n 4)……6·4·2, 当n为奇数时,n!!=n·(n 2)(n 4)……5·3·1, 现有四个结论:①(2018!!)·(2019!!)=2019!, ②(2n)!!=2n (n!),③2018!!的个位数字是8,
2.各二项式系数的和 (1)(a+b)n的展开式的各个二项式系数和等于2n,即 C0n+C1n+Cn2 …+Cnn 2n. (2)(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和, 都等于2n-1,即 C0n+Cn2+Cn4+…=C1n+C3n+C5n +…=2n-1.
【知识点辨析】(正确的打“√”,错误的打“×”)
【解析】展开式的通项为Tr+1=C7r (ax)r, 因为x5与x6系数相等,所以C57a5= C67a6,解得a=3. 答案:3
5.(选修2-3P12例6改编)由1,2,3,4,5,6,7,8八个数字,组成无重复数字
的两位数的个数为_________.(用数字作答)
【解析】问题转化为求从8个不同元素中选取2个元素的排列数,
小于43 521的数共有 ( )
A.56个
B.57个
C.58个
D.60个
3.八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共
有________种安排办法.
4.(2018·浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一 共可以组成________个没有重复数字的四位数.(用数字作答) 世纪金榜导学 号
【解析】1.选C.因为A参加时参赛方案有 C34A12=A433 8(种);A不参加时参赛方案