第8章_工程材料强化与韧化的主要途径
- 格式:ppt
- 大小:3.60 MB
- 文档页数:34
机械零件的选材在机械零件的设计与制造过程中,如何合理地选择材料是一项十分重要的工作。
机械零件的设计不单是结构设计,还应包括材料和工艺的设计,故从事机械设计与制造的工程技术人员,必须掌握各种材料的特性,会正确选择和使用,并能初步分析机器及零件使用过程中出现的各种材料问题。
1、工程材料的强化方式:固溶强化、加工硬化、细化组织强化、第二相强化、相变强化、复合强化。
2、工程材料的韧化途径:细化晶粒、调整化学成分、形变热处理、低碳马氏体强韧化。
一、选材的基本原则*满足机件的使用性能要求*较好的加工工艺性*较好的经济性1、材料的使用性能应能满足使用要求使用性能与选材材料的使用性能是选材时考虑的最主要根据——首先要准确地判断零件所要求的主要使用性能。
(1)从工作条件及失效形式的分析提出使用性能要求①承受载荷的类型及大小——如承受持久作用的静载荷,对弹性或塑性变形的抗力是最主要的使用性能;承受交变载荷,则疲劳抗力是重要的使用性能。
②工作环境——温度、介质的性质等③特殊要求的性能——电、热、磁、比重、外观等失效分析为正确选材提供了重要依据,其目的是找出零件损坏的原因。
如失效分析证明零件损坏确系选材不当所致,则可通过选择合适的材料来防止失效。
(2)从使用性能要求提出机械、物理、化学等性能要求使用性能要求→可测的实验室性能指标→初选一般根据设计手册的数据选材,应注意:﹡材料的性能与加工、处理条件有密切的关系。
﹡材料的性能与加工处理时试样毛坯的尺寸有很大关系。
﹡材料的化学成分、加工处理的工艺参数、性能都有一个允许的波动范围只要零件的尺寸、处理条件与手册所给的相同,按手册性能选材是偏安全的手册一般给出:σs 、σb 、δ、ψ、ak目前工程上往往用硬度来作为零件的质量检验标准(简单、非破坏性、硬度与其他性能之间有大致固定的关系),此时还须对处理工艺(主要是热处理工艺)作出明确规定。
2、材料的工艺性应满足加工要求材料的工艺性能,即加工成零件的难易程度,自然是选材时必须考虑的重要问题。
强化韧化机理
强化韧化是一种通过改变材料的微观结构和化学成分,提高材料的强度和韧性的方法。
它涉及到一系列的力学和物理机制,以下是一些常见的强化韧化机理:
1.晶粒细化:通过控制材料的热处理或变形加工条件,可以
使晶粒变得更加细小。
细小的晶粒能够阻碍位错和裂纹的运动,从而提高材料的抗拉强度和韧性。
2.相界增多:通过形成更多的相界面,例如晶界、相界以及
位错堆垛等,可以阻碍位错和裂纹扩展。
相界增多提供了额外的韧性机制,从而提高材料的韧性。
3.增强相分散:在基体材料中加入第二相颗粒或纳米颗粒,
可以形成复相结构。
这种复相结构能够阻碍位错运动和裂纹扩展,提供更高的强度和韧性。
4.锁定位错:通过在材料中引入位错锁定机制,可以阻止位
错的移动和滑移,从而提高材料的强度和韧性。
5.固溶强化:通过向基体材料中加入合金元素,调整其晶格
结构,形成的固溶体能够在晶内形成固溶强化效应,提高材料的强度和韧性。
6.相互作用增强:通过精细调控材料的化学成分和结构,使
不同相之间发生特定的相互作用,例如化学键的形成、界面的相容性等,从而提高材料的抗拉强度和韧性。
通过利用上述强化韧化机制,材料科学家和工程师能够设计和
制造出具有优异综合性能的材料,满足不同领域对材料性能的需求。
每种机制的适用性取决于材料的类型和应用要求。
韧化的主要机理有应力诱导相变增韧,相变诱发微裂纹增韧,残余应力增韧等。
几种增韧机理并不互相排斥,但在不同条件下有一种或几种机理起主要作用。
相变增韧:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。
例如,利用的马氏体相变来改善陶瓷材料的力学性能,是目前引人注目的研究领域。
研究了多种?的相变增韧,由四方相转变成单斜相,体积增大3% 5%,如部分稳定,四方多晶陶瓷(TZP), 增韧陶瓷(ZTA), 增韧莫来石陶瓷(ZTM), 增韧尖晶石陶瓷, 增韧钛酸铝陶瓷, 增韧陶瓷,增韧以及增韧等。
其中PSZ陶瓷较为成熟,TZP,ZTA,ZTM研究得也较多,PSZ,TZP,ZTA等的新裂韧性已达,有的高达,但温度升高时,相变增韧失效。
当部分稳定陶瓷烧结致密后,四方相颗粒弥散分布于其他陶瓷基体中(包括本身),冷却时亚稳四方相颗粒受到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。
材料在外力作用下所产生的裂纹尖端附近由于应力集中的作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力的诱发作用下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料强度和新裂韧性大幅度提高。
因此,这种微结构会产生三种不同的增韧机理。
在氧化锆中具有亚稳态四方相的盘状沉淀的微粒,如图1-55所示。
首先,随着裂纹发展导致的应力增加。
会使四方结构的沉淀相通过马氏体相变转变为单斜结构,这一相变吸收了能量并导致体积膨胀产生张应力。
这种微区的形变在裂纹附近尤为明显。
其次,相变的粒子周围的应力场会吸收额外的能量,并形成许多微裂纹。
这些微结构的变化有效地降低了裂纹尖端附近的有效应力强度。
第三,由于沉淀颗粒对裂纹的阻滞作用和局域残余应力场的效应,会引起裂纹的偏转。
裂纹偏转又引起裂纹的表面积和有效表面能增加,从而增加材料的韧性。
简述材料的主要强化方法和工艺实现的途径随着科学技术的发展,材料的性能也在不断进化,从最开始的原始状态发展到现在的高性能材料。
这里的强化是指对材料进行改性,使其具有更高的强度、耐磨性、耐腐蚀性和耐久性等特性,以满足应用要求。
强化材料可以广泛应用于汽车制造、家具制造、工程机械制造等多个领域,也可以用于生产飞机、舰船、机器人等先进科技装备,具有广泛的应用前景。
在材料强化方面,有多种方法可供选择,比如热处理、渗碳、表面涂层等。
其中,热处理是目前使用最广泛的方法,既可以改变材料的组织形态,也可以改善材料的抗拉强度、抗划伤、韧性和强度等特性。
渗碳是用于材料强化的一种技术,可以改变材料的组织结构,增强材料的韧性、适应性、抗磨损性和耐腐蚀性等特性。
表面涂层是采用合金涂层的方法,以改善材料的耐磨性、耐腐蚀性或抗静电性等特性。
材料的强化不仅需要科学方法,还需要合理的工艺实现。
通常来说,工艺实现的主要途径有几种:第一,热处理工艺。
热处理的主要原理是通过适当的温度和时间,改变金属材料的组织结构,从而改善材料的性能和物理力学性能。
一般情况下,热处理可以分为淬火、回火和正火三种方法,其中淬火是最常用的。
第二,表面涂层工艺。
表面涂层是在特定表面上涂覆高硬度合金涂层,使之具有更不易损坏的特性,可以改善材料的耐磨性和耐腐蚀性。
表面涂层的工艺一般是采用电解渗漏、化学和物理氧化、激光表面等方法制作。
第三,渗碳工艺。
渗碳工艺是一种特殊的热处理工艺,主要是将钢制件经过连续的加热和冷却,在用炭气充满的环境中进行处理,以达到改变金属材料组织结构的目的。
以上就是关于材料的主要强化方法和工艺实现的途径。
可以看出,材料强化需要合理的方法,同时也需要正确的实施工艺,以获得更高的性能。
此外,实现材料强化还需要充分的科学研究,以改善材料的表面状态,实现其最佳的性能和使用效果。
钢的韧化方法钢的韧化方法包括:(1)细化晶粒法;(2)合金化法;(3)纯净化法;(4)位错板条马氏体韧化;(5)高温形变热处理;(6)利用稳定奥氏体使钢韧化;(7)利用介稳奥氏体使钢韧化;(8)回火和其他方法。
(1)细化晶粒法常温或低温下,在利用细化晶粒提高钢的强度的同时,还可改善钢的韧性,特别是低温韧性。
这是细化晶粒方法的突出优点。
因为细化晶粒不仅增大钢的屈服强度(@),而且增大钢的断裂强度O b)。
这样,随着晶粒的不断细化,钢从脆性断裂过渡到韧性断裂(沪os),如图3所示。
晶粒尺寸]/ ■图3新裂强度s和屈服强度6与晶粒尺寸M的关糸(2)合金化法合金元素锰和镍能使钢的韧性提高。
锰因为能减少晶界碳化物,细化珠光体,相应也细化铁素体晶粒,从而提高铁素体一珠光体钢的韧性。
镍是提高钢的韧性最有效的元素,这是因为镍能提高铁素体基体的韧性,并使晶粒细化的缘故。
(3)纯净化法除去钢中夹杂、气体及有害元素,尽可能降低钢的碳含量是提高钢韧性的有效方法。
钢中非金属夹杂物是断裂的裂纹源。
在冶炼上采用真空除气,电渣重熔、真空白耗重熔和各种炉外精炼技术,提高钢的纯净度,可显著改善钢的韧性。
钢中磷、硫、砷、锑等有害元素的去除,也能改善钢的韧性。
钢中的碳,虽然在很多情况下是不可缺少的元素,但碳却使钢的韧性显著恶化,因此,在可能的条件下,应尽量降低钢的碳含量。
(4)位错板条马氏体韧化铁碳合金中,碳含量<0. 30%时,淬火马氏体的形态主要为位错板条马氏体;碳含量>0. 6%时,主要为内孪晶马氏体。
一般认为,化学成分相同,位错马氏体与内孪晶马氏体的强化效果相当,而位错马氏体具有较好的韧性。
原因可能是位错马氏体的板条尺寸很小,类似于非常细的晶粒,可阻止裂纹的传播;而孪晶片状马氏体,厚度较大,且内部孪晶取向相同,类似于粗大的晶粒,从而韧性较差。
另外,位错马氏体板条之间的残留奥氏体塑性良好,使得钢的韧性改善。
(5)高温形变热处理将钢在高于临界点A C3以上的较高温度(如在奥氏体的再结晶温度以上)奥氏体化,然后预冷到稍高于A。