题型最全的递推数列求通项公式的习题.

  • 格式:doc
  • 大小:486.00 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考递推数列题型分类归纳解析

各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。 类型1 )(1n f a a n n +=+

解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1. 已知数列{}n a 满足211=

a ,n

n a a n n ++=+211,求n a 。 变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….

(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1

n f a a n

n =+,利用累乘法(逐商相乘法)求解。 例1:已知数列{}n a 满足321=a ,n n a n n

a 11+=

+,求n a 。 例2:已知31=a ,n n a n n a 2

3131

+-=+ )1(≥n ,求n a 。 变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1

___n a ⎧=⎨⎩

12n n =≥

类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p

q

t -=1,再利用换元法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14)

在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足121

11

*444(1)(),n n b b b b n a n N ---=+∈ 证明:数列{b n }是等差数列;

(Ⅲ)证明:

*122311...().232

n n a a a n n

n N a a a +-<+++<∈ 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 解法:一般地,要先在原递推公式两边同除以1

+n q ,得:

q q a q p q a n n n n 111+∙=++引入辅助数列{}n

b (其中n

n n q a b =),得:q b q p b n n 1

1+=+再待定系数法解决。

例:已知数列{}n a 中,651=

a ,1

1)2

1(31+++=n n n a a ,求n a 。 变式:(2006,全国I,理22,本小题满分12分) 设数列{}n a 的前n 项的和1412

2333

n n n S a +=

-⨯+,1,2,3,n = (Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2n

n n T S =,1,2,3,n =

,证明:1

32n

i i T =<∑

类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨

⎧-==+q

st p

t s

解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1

211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

解法一(待定系数——迭加法):

数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

1

3212+=++,求n a 。 变式:

1.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈

(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式; (III )若数列{}n b 满足121

11

*44...4(1)(),n

n b b b b n a n N ---=+∈证明{}n b 是等差数列

2.已知数列{}n a 中,11=a ,22=a ,n n n a a a 3

13

212+=++,求n a

3.已知数列

{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+== ,

⑴设数列),2,1(21 =-=+n a a b n n n

,求证:数列{}n b 是等比数列;

⑵设数列),2,1(,2

==

n a c n n

n

,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。 类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)

2()

1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消

去n a 进行求解。

例:已知数列{}n a 前n 项和2

214--

-=n n n a S .

(1)求1+n a 与n a 的关系;(2)求通项公式n a .

(2)应用类型4(n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ))的方法,上式两边同乘以1

2+n 得:222

11

+=++n n n n a a

由1214121111=⇒-

-==-a a S a .于是数列{}

n

n

a 2是以2为首项,2为公差的等差数列,所以n n a n n 2)1(222=-+=1

2-=⇒n n n a 变式:(2006,陕西,理,20本小题满分12分)

已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n 变式: (2005,江西,文,22.本小题满分14分)

已知数列{a n }的前n 项和S n 满足S n -S n -2=3,2

3

,1),3()

2

1(211

-==≥--S S n n 且求数列{a n }的通项公式.

类型7 b an pa a n n ++=+1)001

(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为

{}y xn a n ++是公比为p 的等比数列。