立体的截面(动态).
- 格式:ppt
- 大小:9.64 MB
- 文档页数:33
立体几何的动态问题立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨 迹问题。
基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。
解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。
动点轨迹问题空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。
很少有题目会脱离这三个方向。
(注意:阿波罗尼斯圆,圆锥曲线第二定义)1.(2015·浙江卷8)如图1110,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支式题 如图,平面α的斜线AB 交α于B 点,且与α所成的角为θ,平面α内有一动点C 满足∠BAC =π6,若动点C的轨迹为椭圆,则θ的取值范围为________.3.(2015春•龙泉驿区校级期中)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持P A ⊥BD 1,则动点P 的轨迹所在的曲线是直线; ②若点P 到点A 的距离为,则动点P 的轨迹所在的曲线是圆;③若P 满足∠MAP =∠MAC 1,则动点P 的轨迹所在的曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为2:1,则动点P 的轨迹所在的曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在的曲线是抛物线. 其中真命题的个数为( )A .4B .3C .2D .14.(2018•温州模拟)已知线段AB垂直于定圆所在的平面,B,C是圆上的两点,H是点B在AC上的射影,当C 运动,点H运动的轨迹()A.是圆B.是椭圆C.是抛物线D.不是平面图形5.(2013•铁岭模拟)如图所示,△P AB所在的平面α和四边形ABCD所在的平面β互相垂直,且AD⊥α,BC⊥α,AD=4,BC=8,AB=6.若tan∠ADP﹣2tan∠BCP=1,则动点P在平面α内的轨迹是()A.椭圆的一部分B.线段C.双曲线的一部分D.以上都不是6.(2013•嘉兴二模)设m是平面α内的一条定直线,P是平面α外的一个定点,动直线n经过点P且与m成30°角,则直线n与平面α的交点Q的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7.(2008•浙江)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线8.(2015春•台州校级月考)AB是平面α的斜线段,长度为2,点A是斜足,若点P在平面α内运动,当△ABP的面积等于3 时,点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线9.(2016•浙江二模)在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,AB=AA1=2.若点M在△ABC所在平面上运动,且使得△AC1M的面积为1,则动点M的轨迹为()A.圆B.椭圆C.双曲线D.抛物线10.(2016•武汉校级模拟)如图,AB是平面α外的固定斜线段,B为斜足,若点C在平面α内运动,且∠CAB等于直线AB与平面α所成的角,则动点C的轨迹为()A.圆B.椭圆C.双曲线D.抛物线11.(2008年浙江·理10)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线12.(2014年金华高二十校联考·文10)圆柱的轴截面ABCD是边长为2的正方形,M为正方形ABCD对角线的交点,动点P在圆柱下底面内(包括圆周),若直线BM与直线MP所成角为45°,则点P形成的轨迹为( ) A.椭圆的一部分B.抛物线的一部分C.双曲线的一部分D.圆的一部分13.(2014•杭州二模)在等腰梯形ABCD中,E,F分别是底边AB,BC的中点,把四边形AEFD沿直线EF折起后所在的平面记为α,p∈α,设PB,PC与α所成的角分别为θ1,θ2(θ1,θ2均不为零).若θ1=θ2,则满足条件的P所形成的轨迹是.BACDMPABP14.(2018秋•诸暨市校级期中)如图,在底面为平行四边形的四棱锥P﹣ABCD中,E,F分别是棱AD,BP上的动点,且满足AE=2BF,则线段EF中点的轨迹是()A.一条线段B.一段圆弧C.抛物线的一部分D.一个平行四边形15.(2015秋•太原期末)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,P为棱A1B1的中点,点Q在侧面DCC1D1内运动,给出下列结论:①若BQ⊥A1C,则动点Q的轨迹是线段;②若|BQ|=,则动点Q的轨迹是圆的一部分;③若∠QBD1=∠PBD1,则动点Q的轨迹是椭圆的一部分;④若点Q到AB与DD1的距离相等,则动点Q的轨迹是抛物线的一部分.其中结论正确的是(写出所有正确结论的序号).16.如图,长方体ABCD﹣A′B′C′D′中,AB=BC=,AA,上底面A′B′C′D′的中心为O′,当点E在线段CC′上从C移动到C′时,点O′在平面BDE上的射影G的轨迹长度为()A.B.C.D.17.(2016秋•温州期末)点P为棱长是2的正方体ABCD﹣A1B1C1D1的内切球O球面上的动点,点M为B1C1的中点,若满足DP⊥BM,则动点P的轨迹的长度为()A.B.C.D.18.(2018•宁波二模)已知棱长为1的正方体ABCD﹣A1B1C1D1中,E为侧面BB1C1C中心,F在棱AD上运动,正方体表面上有一点P满足=x(x≥0,y≥0),则所有满足条件的P点构成图形的面积为.19.(2017•定海区校级模拟)已知异面直线a,b所成角为60°,直线AB与a,b均垂直,且垂足分别是点A,B 若动点P∈a,Q∈b,|P A|+|QB|=m,则线段PQ中点M的轨迹围成的区域的面积是.20.(2017秋•赣州期末)如图,在等腰梯形ABCD中,CD=2AB=2EF=2a,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得平面BEFC⊥平面ADFE.若动点P∈平面ADFE,设PB,PC与平面ADFE 所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则动点P的轨迹围成的图形的面积为()A.B.C.D.翻折问题面(动问题)翻折问题的一线五结论.DF AE ⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角;3D DF ')在底面上的投影一定射线上; 1、(2016年联考试题)平面四边形ABCD 中,AD=AB=2,CD=CB=5,且AD AB ⊥,现将△ABD 沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______2.(2015年10月浙江省学业水平考试18)如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。
立体几何中的截面(解析版)在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱、圆锥、球、棱柱、棱锥、长方体、正方体等),得到的平面图形。
总共有三种截面方式,分别为横截、竖截、斜截。
我们需要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
正六面体的基本斜截面不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
圆柱体的基本截面也有其特殊性质。
我们可以运用线、面平行的判定定理与性质求截面问题,或者结合线、面垂直的判定定理与性质定理求正方体中截面问题。
此外,我们还可以灵活运用一些特殊图形与几何体的特征,“动中找静”,如正三角形、正六边形、正三棱锥等。
建立函数模型也是求最值问题的一种方法。
在一个透明的塑料制成的长方体内灌进一些水,固定底面一边于地面上,再将倾斜,有四个命题。
其中,水的部分始终呈棱柱状,棱AD始终与水面平行,当倾斜到如图5(2)时,BE·BF是定值。
水面的面积在转动过程中会改变,而BC//FG//A1D1,所以A1D1//面EFGH。
因此,正确的命题序号为①③④。
一个容积为1立方单位的正方体,在棱AB、BB1及对角线B1C的中点各有一小孔E、F、G。
若此可以任意放置,则该可装水的最大容积是多少?分析本题,不能用一个平面去截一个正方体,使得截面为五边形。
进一步地,截面也不能为正五边形。
这是因为正方体的每个面都是正方形,而五边形无法与正方形相切。
因此,无论如何调整平面的位置,都不能得到五边形的截面。
而且OE=OC是抛物线的直线准线,所以焦点F在OC上,且OF=OC=1.故选:D二、完形填空在数学课上,老师讲到一个有趣的问题:如何用一个平面去截一个正方体所得截面不能是一个正五边形。
这个问题引起了我的思考,我开始想象一个平面在正方体中穿过的情景。
我发现,如果截面是一个正五边形,那么这个五边形的五条边必须分属于正方体的五个不同的面。
但是,正方体的每两个相对的面是平行的,所以这五条边中必有两条边是平行的。
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体接于一个球,过这个球的球心作一平面,则截面图形不可能...是( )分析 考虑过球心的平面在转动过中,平面在球的接正方体上截得的截面不可能是大圆的接正方形,故选D 。
例2 如图,在透明的塑料制成的长方体ABCD-A 1B 1C 1D 1容器灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:① 水的部分始终呈棱柱状; ② 水面EFGH 的面积不改变; ③ 棱A 1D 1始终与水面EFGH 平行;④ 当容器倾斜到如图5(2)时,BE·BF 是定值; 其中正确的命题序号是______________分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BC BF BE V ⋅⋅=21水是定值,又BC 是定值,所以BE·BF 是定值,即④正确。
《实践活动——立体的截面》教学设计教学内容:青岛版小学数学六年级下册 34-35页实践活动教学目标:1.参与切截几何体的过程,经历观察、猜想、验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳的能力。
2.通过用一个平面去截一个正方体的切截活动,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉。
教学重点:经历切截几何体的活动过程,体会几何体截面的变化。
教学难点:从切截活动中发现规律并能用语言表达,能运用规律来解决问题。
教学具准备:教师准备:课件学生准备:水果刀,火腿肠、苹果,胡萝卜,面包,土豆、黄瓜等,教学过程:一、创设情境,提出问题1.谈话引入课件展示几幅图片,鼓励学生大胆说出自己的感想,想说什么,大胆说出来。
生1:黄瓜切的很好看.生2看上去很好吃。
生3黄瓜的截面不同。
师:聪明的厨师能用黄瓜不同的截面拼成美丽的图案装点菜肴,你能用黄瓜一刀切出哪些不同的切面?引导学生先猜想,再动手操作,切截准备好的黄瓜,并请部分同学展示自己的成果。
生用实物展示台展示切法和截面形状。
生1:横着切,截面是圆形。
生2:纵切是长方形。
生3:斜切是楕圆形。
师:有不同意见吗?一生发表不同意见。
一刀切下去不可能是长方形,而是不规则图形。
根据学生的操作结果展示,引出截面的概念和特点:用一个平面去截一个几何体,截出的面叫做截面。
(板书)二、自主学习,小组探究设置问题。
师:用一个平面去截一个立方体,所得到的截面可能是什么形状?1.猜想可能截出的截面形状,想像怎样能截出这样的截面?今天我们就一起研究立体的截面。
课题学生独立思考后,小组合作讨论交流。
鼓励学生积极发言,回答问题。
2.动手操作,亲身感受温馨提示:(1)制定方案,小组确定要研究的内容:①柱体的截面②椎体的截面③??确定方法:观察、想象、操作、画图、讨论等(2)实践探究,验证猜想学生分组动手切截课前准备的立方体模型。
教师巡视指导,参与学生的讨论与交流。
《立体的截面》教学设计【教学内容】《义务教育课程标准实验教科书·数学》(青岛版)六年制六年级下册第二单元立体的截面。
【教材分析】“综合与实践”课《立体的截面》是在学生学习了长方体、正方体、圆柱、圆锥等立体图形的认识、表面积与体积的基础上,并初步具有一定的观察能力、空间想象能力和动手操作能力的基础上安排的。
通过本活动,学生将进一步获得开展数学实践活动的经验,提高应用数学的意识,培养学生的空间想象力,感受数学的魅力。
本节综合与实践内容充分体现了对学生动手实践能力培养的关注,通过动手操作发现了火腿肠的截面,从而产生对截面是什么形状的研究;同时又通过动手切物体,验证自己的想象是否正确;让学生感受到动手实验是发现问题和研究问题的重要方法;在学生的实验操作中,有效培养了学生的实践能力。
【教学目标】知识目标:经历实物及正立体的截面的研究过程,学会观察、想象,并通过运手实验进行验证,获得基本的活动经验,探索沿着物体不同的位置切出的截面形状的变化规律。
能力目标:通过参与实践活动的过程,尝试解决实际问题的策略和方法,从而培养学生的观察能力、空间想象能力和实践能力,提高学生的综合能力。
情感态度价值观目标:在实践过程中,形成自主探索与合作交流的意识和能力,获得成功的体验。
【教学重点】经历探索活动的过程,探索沿着物体不同的位置切出的截面形状的变化规律。
学会观察、想象,并通过动手实验进行验证,提高学生的观察能力、空间想象能力和实践能力。
【教学难点】建立学生空间观念。
【教具准备】1.多媒体课件2.正方体平面图纸、课堂达标测试卷3.正方体萝卜块、水果刀【学具准备】学生提前进行实物截面的研究,完成的研究方案和研究报告。
【教学过程】一、创设情境,故事引入谈话引入:同学们,今天老师带来一幅图,课件出示“苹果里的五角星”,还记得吗?(生记得)提问并总结:对,这是我们学过的一篇课文,故事中的小朋友是怎样切苹果的呢(拦腰截断)?我们通常是怎样切的呢(从上到下竖切)?换一种方法切苹果,让他发现了苹果中隐藏的五角星。
⽴体⼏何中的截⾯(解析版)专题13 ⽴体⼏何中的截⾯【基本知识】1.截⾯定义:在⽴体⼏何中,截⾯是指⽤⼀个平⾯去截⼀个⼏何体(包括圆柱,圆锥,球,棱柱,棱锥、长⽅体,正⽅体等等),得到的平⾯图形,叫截⾯。
其次,我们要清楚⽴体图形的截⾯⽅式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每⼀种⽴体图形通过上述三种截⾯⽅式所得到的截⾯图有哪些。
2、正六⾯体的基本斜截⾯:3、圆柱体的基本截⾯:正六⾯体斜截⾯是不会出现以下⼏种图形:直⾓三⾓形、钝⾓三⾓形、直⾓梯形、正五边形。
【基本技能】技能1.结合线、⾯平⾏的判定定理与性质性质求截⾯问题;技能2.结合线、⾯垂直的判定定理与性质定理求正⽅体中截⾯问题;技能3.猜想法求最值问题:要灵活运⽤⼀些特殊图形与⼏何体的特征,“动中找静”:如正三⾓形、正六边形、正三棱锥等;技能4.建⽴函数模型求最值问题:①设元②建⽴⼆次函数模型③求最值。
例1 ⼀个正⽅体内接于⼀个球,过这个球的球⼼作⼀平⾯,则截⾯图形不可能...是()分析考虑过球⼼的平⾯在转动过中,平⾯在球的内接正⽅体上截得的截⾯不可能是⼤圆的内接正⽅形,故选D。
例2 如图,在透明的塑料制成的长⽅体ABCD-A1B1C1D1容器内灌进⼀些⽔,固定容器底⾯⼀边BC于地⾯上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①⽔的部分始终呈棱柱状;②⽔⾯EFGH的⾯积不改变;③棱A1D1始终与⽔⾯EFGH平⾏;④当容器倾斜到如图5(2)时,BE·BF是定值;其中正确的命题序号是______________分析当长⽅体容器绕BC边转动时,盛⽔部分的⼏何体始终满⾜棱柱定义,故①正确;在转动过程中EH//FG,但EH与FG的距离EF在变,所以⽔⾯EFGH的⾯积在改变,故②错误;在转动过程中,始终有BC//FG//A1D1,所以A1D1//⾯EFGH,③正确;当容器转动到⽔部分呈直三棱柱时如图5(2),因为BCBFBEV?=21⽔是定值,⼜BC是定值,所以BE·BF是定值,即④正确。
高三二轮专题复习立体几何中截面问题重难考点归纳总结作空间几何体截面的常见方法:(1)直接连接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面就是找交线的过程;(2)作平行线法:过直线与直线外一点作截面,若直线所在的平面与点所在的平面平行,可以通过过点找直线的平行线找到几何体与截面的交线;(3) 作延长线找交点法:若直线相交但是立体图形中未体现,可通过作延长线的方法先找到交点,然后借助交点找到截面形成的交线;(4)辅助平面法:若三个点两两都不在一个侧面或者底面中,则在作截面时需要作一个辅助平面.考点一:截面形状的判断1.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面以任意角度截正方体,所截得的截面图形不可能为() A .等腰梯形B .非矩形的平行四边形C .正五边形D .正六边形2.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面,如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别是棱B 1B 、B 1C 中点,点G 是棱CC 1的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形3.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体﹐则截面图形可能是______(填序号).4.(多选题)一个正方体内有一个内切球,用一个平面去截,所得截面图形可能是图中的( )A .AB .BC .CD .D5.在正方体中,M ,N ,Q 分别为棱AB ,的中点,过点M ,N ,Q 作该正方体的截面,则所得截面的形状是() A .三角形B .四边形C .五边形D .六边形考点二:求截面面积6.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为16的正方形,则该圆柱的表面积为() A . B . C . D . 7.已知球O 的表面积为,则过球Q 一条半径的中点,且与该半径垂直的截面圆的面积为___________. 8.已知圆锥的侧面积为,若其过轴的截面为正三角形,则该圆锥的母线的长为___________. 9.已知正四棱柱中、的交点为,AC 、BD 的交点为,连接,点为的中点.过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,则正四棱柱的体积为______________.111-ABCD A B CD 111,B B C D 1O 2O 12O O 24π20π8π29π11A C 11B D 1O 2O 12O O O 12O O O 1111ABCD A B C D -10.已知正四棱柱中,,,则该四棱柱被过点,C ,E 的平面截得的截面面积为______. 11.已知圆锥的侧面积为20π,底面圆O 的直径为8,当过圆锥顶点的平面截该圆锥所得的截面面积最大时,则点O 到截面的距离为______________.12.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面. 如图,在棱长为1的正方体中,点分别是棱的中点,点是棱的中点,则过线段且平行于平面的截面的面积为A . B. C . D13.已知棱长为的正四面体,,,分别是棱,,的中点,则正四面体的外接球被三角形所在的平面截得的截面面积是( )A .B .C .D . 14.已知三棱锥的所有棱长均相等,四个顶点在球的球面上,平面经过棱,,的中点,若平面截三棱锥和球所得的截面面积分别为,,则( ) ABC .D . 15.已知正方体的长为2,直线平面,下列有关平面截此正方体所得截面的结论中,说法正确的序号为______.①截面形状一定是等边三角形:②截面形状可能为五边形;③截面面积的最大值为④存在唯一截面,使得正方体的体积被分成相等的两部分.16.已知某圆锥轴截面的顶角为,过圆锥顶点的平面截此圆锥所得截面面积的最大值为,则该圆锥的1111ABCD A B C D -1124BE BB ==143AB AA =1A 1111ABCD A B C D -,E F 111,B B B C G 1CC AG 1A EF 198894ABCD E F N AB AC AD ABCD EFN 73π83π103π163πA BCD -O αAB AC AD αA BCD -O 1S 2S 12S S =38π364π1111ABCD A B C D -1AC ⊥αα120 2底面半径为() ABC .D .17.在长方体中,已知,,分别为,的中点,则平面被三棱锥外接球截得的截面圆面积为___________.考点三:求截面周长18.如图,在正方体中,,为棱的中点,为棱的四等分点(靠近点),过点作该正方体的截面,则该截面的周长是___________.19.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.20.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )1111ABCD A B C D -122AA AB AD ===E F 1BB 11D C 11A BCD 1C CEF -1111ABCD A B C D -4AB =E BC F 11A D 1D ,,A E FA .B .C .D .21.在三棱锥中,,截面与,都平行,则截面的周长等于( )A .B .C .D .无法确定考点四:截面最值问题22.已知三棱锥的四个顶点在球的球面上,,的正三角形,三棱锥的体积为,为的中点,则过点的平面截球所得截面面积的取值范围是( ) A . B . C . D . 23.正四面体ABCD 的棱长为4,E 为棱AB 的中点,过E 作此正四面体的外接球的截面,则该截面面积的取值范围是( ) A . B . C . D . 24.已知球O 是正三棱锥A -BCD (底面是正三角形,顶点在底面的射影为底面中心)的外接球,BC =3,AB =E 在线段BD 上,且BD =3BE .过点E 作球O 的截面,则所得截面面积的最小值是( ) A . B. C . D .25.如图,四边形为四面体的一个截面,若四边形为平行四边形,,,则四边形的周长的取值范围是___________.26.如图,设正三棱锥的侧棱长为,,分别是上的点,过作三棱锥的截面,则截面周长的最小值为________.+A BCD -AB CD a ==MNPQ AB CD MNPQ 2a 4a a P ABC -O PA PB PC ==ABC ∆P ABC -16Q BC Q O 13,24ππ⎡⎤⎢⎥⎣⎦12,23ππ⎡⎤⎢⎥⎣⎦13,44ππ⎡⎤⎢⎥⎣⎦12,43ππ⎡⎤⎢⎥⎣⎦[]46ππ,[]412ππ,[]4ππ,[]6ππ,2π3π4π5πEFGH ABCD EFGH 4AB =6CD =EFGH P ABC -240APB ∠=︒,E F ,BP CP ,,A E F AEF27.正三棱锥,点在棱上,且,已知点都在球的表面上,过点作球的截面,则截球所得截面面积的最小值为___________.考点五:有关截面的综合问题28.如图,在正方体中,点P 为线段上的动点(点与,不重合),则下列说法不正确的是( )A .B .三棱锥的体积为定值C .过,,三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面所成角的正弦值最大为 29.(多选题)在棱长为2的正方体中,以下结论正确的有()A .三棱锥外接球的体积是B .当点在直线上运动时,的最小值是P ABC -AB ==E PA 3PE EA =P A B C 、、、O E O ααO 1111ABCD A B C D -11A C P 1A 1C BD CP ⊥C BPD -P C 1D 1111D C B A 131111ABCD A B C D -11B A DC -Q 1BC 1A Q QC +8+C .若棱,,的中点分别是,,,过,,三点作正方体的截面,则所得截面面积为D .若点是平面上到点和距离相等的点,则点的轨迹是直线30.(多选题)如图,正方体的棱长为1,P 为的中点,Q 为线段上的动点,过点A ,P ,Q 的平面截该正方体所得的截面多边形记为S ,则下列命题正确的是( )A .当时,S 为等腰梯形B .当时,S 与的交点R 满足C .当时,S 为六边形D .当时,S31.(多选题)在正方体中,,点E ,F 分别为,中点,点P 满足,,则( )A .当时,平面截正方体的截面面积为B .三棱锥体积为定值 AB 1AA 11CDEFG E F G M 1111D C B A D 1C M 11A D 1111ABCD A B C D -BC 1CC 12CQ =34CQ =11C D 113C R =314CQ <<1CQ =1111ABCD A B C D -2AB =AB BC 1AP AA λ= [0,1]λ∈1λ=PEF 941P ECC -C .当时,平面截正方体的截面形状为五边形D .存在点P ,二面角为45°10,3λ⎛⎤∈ ⎥⎝⎦PEF P EF A --Word 版见:高考高中资料无水印无广告word 群559164877详细解析1.C 【详解】画出截面图形如图:可以画出等腰梯形,故A 正确;在正方体中,作截面(如图所示)交,,,分别于点,,,,根据平面平行的性质定理可得四边形中,,且,故四边形是平行四边形,此四边形不一定是矩形,故B 正确;经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形,故C 错误;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形,故D 正确. 故选:C1111ABCD A B C D EFGH 11C D 11A B AB CD E F G H EFGH //EF HG //EH FGEFGH高中数学教研群 QQ 群号929518278 精品资料每天更新2.D 【详解】取的中点,如图连接、、、,由题意得:,, 不在平面内,平面内,∴平面.不在平面内,平面内,∴平面.,平面,平面平面,过线段且平行于平面的截面图形为等腰梯形.故选:.3.①⑤【详解】由题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时①符合条件; 当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件, 综上可知截面的图形可能是①⑤.故答案为:①⑤4.AB 【详解】由组合体的结构特征可知:当截面过球与正方体切点时可知A 正确、C 错误;当截面过正方体的对角面时可知B 正确;此题是正方体的内切球,可知D 错误.故选:AB5.D 【详解】如图所示:分别为中点,M ,N ,Q 确定平面, 且,故,,故,同理可得,,,故截面为六边形.故选:D. BC H AH GH 1D G 1AD //GH EF 1//AH A F GH 1A EF EF ⊆1A EF ||GH 1A EF AH 1A EF 1A F ⊆1A EF ||AH 1A EF GH AH H = ,GH AH ⊆1AHGD ∴1//AHGD 1A EF AG AEF 1AHGDD ,,EF H 111,,AD DD B C αNH MQ ∥N α∈NH α⊂,Q H αα∈∈QH α⊂FQ α⊂EF α⊂EM α⊂6.B 【详解】根据题意,所得截面是边长为4的正方形,结合圆柱的特征,可知该圆柱的底面是半径为的圆,且高为4,所以其表面积.故选:B. 7.【详解】 设球的半径为,则,解得.设截面圆的半径为,由题知:, 所以截面圆的面积.故答案为: 8.【详解】 设圆锥的底面半径为r ,圆锥的母线为l ,又圆锥过轴的截面为正三角形,圆锥的侧面积为, ∴, ∴.故答案为:. 9.3【详解】设正四棱柱的底面边长为a ,高为h ,由题知当截面平行于平面时,截面面积最小;当截面为平面时,截面面积最大,2()22222424S =⨯+⨯⨯=πππ32ππR 248R ππ=R =r r ==232S ππ==32π2329π22,9l r rl ππ==23l =23ABCD 11A B CD因为过点且与直线AB 平行的平面截这个正四棱柱所得截面面积的最小值和最大值分别为1,所以, 于是正四棱柱的体积为.故答案为:3.10.由题意,正四棱柱中,,, 可得,在上取点,使得,连接,则有, 所以四边形是平行四边形,由勾股定理可得,所以所以, 所以四边形是平行四边形的面积为, 故答案为:O 21a ⎧=⎪⎨=⎪⎩13a h =⎧⎨=⎩1111ABCD A B C D -23a h =1111ABCD A B C D -1124BE BB ==143AB AA =1118,2AA BB CC BE ====1DD F 12D F =1,A F CF 11,//A F CE A F CE =1A ECF 11A E CE A C ====2221111cos 2A E CE A C A EC A E CE +-∠===⨯1sin A EC ∠=1A ECF 11sin A E EC A EC ⨯⨯∠==11设圆锥的底面圆的半径为r ,高为h ,母线长为l ,则,∴,h =3,由于h<r ,所以圆锥的轴截面为钝角三角形,所以过圆锥顶点的平面截该圆锥所得的截面为直角三角形时面积最大,如图,△SAB 为截面三角形,SO 为圆锥的高,设点O 到截面的距离为d ,则∴,即, ∴,即点O. 12.B 【详解】取BC 的中点H ,连接,4,20r rl ππ==5l =25,2SAB AB S == 14,2AOB OA OB S ===⨯= 1133SAB AOB S d S h ⋅=⋅ 12513323d ⨯⋅=d =,AH GH因为面AHGD1,面AHGD1,面AHGD1,同理,面AHGD1,又,则平面AHGD1∥平面A1EF,等腰梯形AHGD1,,故选B.13.D【详解】过点作平面的垂线,垂足为,交平面于点,设该四面体外接球球心为,连接,作图如下所示:因为四面体为正四面体,且面,故点为△的外心,则该四面体的球心一定在上,不妨设外接球球心为;因为分别为的中点,则//,//,又,且面,面,故平面//平面,故面,又为中点,故也为中点.因为正四面体的所有棱长为,故1,EF BC GH EF⊄GH⊂EF∴∥1A E∥1A E EF E⋂=98A BCD H EFN'O O,OB BHABCD AH⊥BCDH BCD AH O,,E F N,,AB AC AD EF BC FN CD,EF FN F BC CD C⋂=⋂= ,EF FN⊂EFN,BC CD⊂BCD EFN BCDAO'⊥EFN E AB'O AHABCD4243BH==则设该四面体的外接球半径为,即,则, 在△中,,即, 解得即外接球球心到平面, 设平面截外接球所得圆的半径为,则,解得,故截面圆的面积为.故选:D. 14.B 【详解】设平面截三棱锥所得正三角边长为a ,截面圆的半径为r ,则, 由正弦定理可得, ,故选:B15.④【详解】如图可知,截面形状可以是等边三角形、六边形、正六边形,∴①②明显错误;截面面积的最小值可以趋向于零,故③错误;当截面为正六边形时,截面过正方体的中心,此时正方体的体积被分成相等的两部分.故④正确.故答案为:④AH ===12O H AH ='=R OA OB R ==OH AH R R =-=Rt OHB 222OH BH OB +=222R R ⎫+=⎪⎪⎭R =OO R AO =-==''O EFN EFN r 222r +=2163r =163παA BCD -21S =sin 60a r ==︒22243πa S πr ∴==12S S =∴16.A 【详解】如图,由题可知,,又过圆锥顶点的平面截此圆锥所得截面面积的最大值为,∴,即, 在中,.故选:A. 17.【详解】 以点为原点建立空间直角坐标系如图所示:120APB ∠= 30ABP ∠= 22122l =2l =Rt POB cos302r l === 98πD依题意得:,,,则,,所以,则;设为中点,因为则,所以点为三棱锥外接球的球心,则设球心到平面的距离为,又因为为中点,所以点到平面的距离为,由于,所以故截面圆的半径为,所以截面圆面积为. 故答案为:18如图,取的中点,取上靠近点的三等分点,()0,2,0C ()1,2,1E ()0,1,2F ()1,0,1EC =-- ()111EF ,,=-- 1010EC EF ⋅=+-= EF EC ⊥O CF EF EC ⊥1EO OC FO C O ===O 1C CEF -12R CF ==O 11A BCD h O CF F 11A BCD 2h 111244h C D ==⨯=h =r ==98π98π11C D H 1CC 1C G连接,易证,则五边形为所求截面.因为,所以, 则, 故该截面的周长是.19.如图,延长EF ,A 1B 1,相交于点M ,连接AM ,交BB 1于点H ,延长FE ,A 1D1,相交于点N ,连接AN,交DD 1于点G ,连接FH,EG,可得截面为五边形AHFEG .因为ABCD-A 1B 1C 1D1是棱长为6的正方体,且E ,F 分别是棱C 1D 1,B 1C 1的中点,由中位线定理易得:EF =:AG =AH =EG =FH AH +HF +EF +EG +AG =故答案为:20.B 【详解】如图,在正三棱柱中,延长AF 与CC 1的延长线交于M ,连接EM 交B 1C 1于P ,连接FP ,则四边形AEPF 为所求截面.,,,,AE EG GH HF FA //,//AE HF AF EG AEGHF 4AB =111182,3,1,3BE CE C H D H A F D F CG =======143C G =103AE EG ==5,GH HF AF ===AE EG GH HF AF ++++=+111ABC A B C -过E 作EN 平行于BC 交CC 1于N ,则N 为线段CC 1的中点,由相似于可得MC 1=2,由相似于可得:, 在中,,则,在中,,则在中,,则在中,, 由余弦定理:,则故选:B.21.A 【详解】 设,因为平面,平面平面,平面,所以,同理可得,,,故四边形为平行四边形, 所以,. 因为,所以,, 1MFC MAC △1MPC △MEN 111242,2333PC PC B P =⇒==1Rt AA F 112,1AA A F ==AF ==Rt ABE △2,1AB BE ==AE ==1Rt B EP 1121,3B E B P ==PE ==1C FP 11141,,603C F C P FC P ==∠=︒2224413121cos 60339PF ⎛⎫=+-⨯⨯⨯︒= ⎪⎝⎭PF ==AM k CM=//AB MNPQ ABC MNPQ MN =AB ÌABC //MN AB //PQ AB //MQ CD //NP CD MNPQ 11MN PQ AB AB k ==+1MQ NP k CD CD k==+AB CD a ==1a MN PQ k ==+1ak MQ NP k==+所以四边形的周长为. 故选:A.22.A 【详解】设在底面上的射影为,因为,所以为的中心,由题可知,,由,解得 在正中,可得.从而直角在中解得. 进而可得,,,因此正三棱锥可看作正方体的一角, 正方体的外接球与三棱锥的外接球相同,正方体对角线的中点为球心. 记外接球半径为,则所以过的平面截球所得截面的面积最大为; 又为中点,由正方体结构特征可得 由球的结构特征可知,当垂直于过的截面时, MNPQ 2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭P ABC M PA PB PC ==M ABC ∆ABC S ∆1136P ABC ABC V PM S -∆=⨯⨯=PM =ABC ∆AM =ABC 1PA =PA PB ⊥PB PC ⊥PC PA ⊥P ABC -P ABC -O R R Q O 2max 34S R ππ==Q BC 1122OQ PA ==OQ Q截面圆半径最小为. 因此,过的平面截球所得截面的面积范围为. 故选:A.23.A 【详解】如图,将正四面体补为边长是ABCD 的外接球为正方体 的外接球,球心O在体对角线的中点,且球的半径;当OE 垂直于截面时,截面面积最小,截面圆的半径为面积为;当截面过球心O 时,截面面积最大,截面圆的半径为,面积为故选:A24.A【详解】解:如图,O 1是A 在底面的射影,由正弦定理得,△BCD 的外接圆半径r ==2min 12S r ππ==Q O 13,24ππ⎡⎤⎢⎥⎣⎦R =12r ==4π1r R =6π1031sin 602r =⨯=由勾股定理得棱锥的高AO 1;设球O 的半径为R ,则,解得,所以OO 1=1;在△BO 1E 中,由余弦定理得 所以O 1E =1;所以在△OEO 1中,OE;当截面垂直于OE. 故选:A25.【详解】解:四边形为平行四边形,;平面,平面, 平面;又平面,平面平面,,同理可得;设,, ,, ; 又,,, ,且; 四边形的周长为 ,;四边形周长的取值范围是.故答案为:26.将正三棱锥的三个侧面展开如图,由图可知,为使的周长最小,只需让四点共线即可,则当为与交点时,的周长最小,由题意,,∴,得的周长3==()223R R =-2R =2113211,O E =+-⨯==2π(8,12) EFGH //EH FG ∴EH ⊂/ ABD FG ⊂ABD //EH ∴ABD EH ⊂ ABC ABC ABD AB =//EH AB ∴//EF CD EH x =EF y =∴EH CE AB CA =EF AE CD AC =∴1EH EF CE AE AC AB CD CA AC AC+=+==4AB =Q 6CD =∴146x y +=614x y ⎛⎫∴=- ⎪⎝⎭04x <<∴EFGH 2()2[6(1)]4xl x y x =+=+-12x =-81212x ∴<-<∴EFGH (8,12)(8,12)AEF 1,,,A E F A ,E F 1AA ,BP CP AEF 140BPC CPA APB ∠=∠=∠=︒1120APA ∠=︒1AA ===AEF的最小值为故答案为:27.【详解】,,, 同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则.所以,当平面时,平面截球O 的截面面积最小,,故截面的面积为.故答案为:28.D 【详解】由题可知平面,所以,故A 正确; 由等体积法得为定值,故B 正确; 设的中点为,当时,如下图所示:3π4PA PC PB === AB AC BC ===222PA PC AC ∴+=2CPA π∴∠=2CPB BPA π∠=∠=O 2R =PA F OF OF =OF PA ⊥3OE ==OE ⊥αα=3π3πBD ⊥11ACC A BD CP ⊥113C BPD P BCD BCD V V S AA --==⋅⋅ 11A C M 1P MC ∈此时截面是三角形,当时,如下图所示:此时截面是梯形,故C 正确;选项D ,在正方体中,连接,则为在平面上的射影,则为与平面所成的角,设正方体的棱长为1,,则当取得最小值时,的值最大,即时,, 所以D 不正确. 故选:D.29.ACD 【详解】对于A :三棱锥的外接球即为正方体的外接球,因为正方体的外接球的直径即为正方体的体对角线,即所以外接球的体积是,故选项A 正确;1D QC 1PMA ∈1D QRC 1D P 1D P DP 1111D C B A 1D PD ∠DP 1111D C B A 1PD x =DP =1sin D PD ∠x 1sin D PD ∠111D P A C ⊥x 1sin D PD ∠11B A DC -1111ABCD A B C D -2R =R 34π3V =´=对于B :把沿翻折到与在同一个平面(如图所示),连接,则是的最小值,其中是边长为的等边三角形,是直角边为的等腰直角三角形,所以, 即故选项B 错误;对于C :分别取棱,,的中点,,,连接,,,,,,则易知过,,三点的截面是正六边形,1BCC 1BC 11A C B △1A C 1A C 1A Q QC +11A C B △1BCC 211A C A Q QC =+==1A Q QC +11A D 1CC BC H M N EF FH HG GM MN NE E F G EFHGMN所以截面面积为故选项C 正确;对于D :因为是平面上到点和距离相等的点,所以点的轨迹是平面与线段的垂直平分平面的交线,即点的轨迹是平面与平面的交线,所以点的轨迹是直线,即选项D 正确.故选:ACD.30.ABD 【详解】解:过点A ,P ,Q 的平面截正方体,当时,其截面形状为梯形如图1,特别地当时,截面形状为等腰梯形, 当时,其截面形状为五边形如图2. 若,则,所以. 当时,与重合,其截面形状为四边形如图3,此时,因为P 为的中点,且,所以为的中点,所以,同理,所以四边形为平行四边形,所以四边形为菱形,其面积为ABD 正确. 故选:ABD.31.BCD 【详解】A 选项中,当时,与重合,则截面为等腰梯形,其面积为,故A 选项错误; 1(62⨯=M 1111D C B A D 1C M 1111D C B A 1DC 11A BCD M 1111D C B A 11A BCD 11A D M 11A D 102CQ <≤12CQ =112CQ <<34CQ =1113C Q C R QC CM ==113C R =1CQ =Q 1C PQ AP =BC CP AD ∕∕Q MN PC AE ∕∕QE AP ∕∕APQE APQE 112AC PE ⋅==1λ=P 1A 92B 选项中,因为平面,故P 到平面的距离不变,故三棱锥体积为定值.故B 选项正确:C 选项中,当时,其截面刚好为五边形,时,截面为五边形;故C 选项正确;D 选项中,当点P 与重合时,其二面角正切值为,此时二面角大于45°, 所以存在点P ,二面角为45°,D 选项正确;故选:BCD .1//AA 1ECC 1ECC 1P ECC -13λ=103λ<<1A P EF A --。
一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。
立体几何截面、外接球、动点归类目录题型一:动点:恒平行题型二:动点:恒垂直题型三:动点:球截面题型四:动点;定角题型五:外接球:线面垂直型题型六:外接球:垂面型题型七:外接球:两线定心法题型八:外接球:二面角型题型九:外接球:最值范围型题型十:外接球:动点与翻折题型十一:动点型最短距离和题型十二:动点:内切球题型十三:多选题综合应用:二面角型几何体题型十四:多选题综合应用:翻折型题型十五:多选题综合应用:正方体表面动点型题型十六:多选题综合应用:两部分体积比型题型一:动点:恒平行线面恒平行,过线做面,需要找它们和第三个面的交线互相平行,借助好“第三个面的交线平行“这个性质,可以解决线面恒平行题型的截面问题1在四棱锥P-ABCD中,PA⊥平面ABCD,且PA=AC=2AB=2AD=4,CD⊥AD,CB⊥AB,G为PC的中点,过AG的平面α与棱PB、PD分别交于点E、F.若EF∥平面ABCD,则截面AEGF的面积为.【答案】865【分析】由题知AC =2AB +2AD ,则PA =23PB +23PD -13PC ①,再根据E 、F 、G 三点共面得PA=xPE +yPF +zPG ,其中x +y +z =1.设PE =λPB 0<λ<1 ,PF =λPD ,从而可求PA =λxPB +λyPD +z 2PC ,与①对比即可求出λ,从而可求EF 的长度;再证明BD 垂直平面PAC ,EF ∥BD ,从而得AG ⊥EF ,根据S 截面AEGF =12AG ⋅EF 即可得答案.【详解】∵AC =2AB =2AD ,CD ⊥AD ,CB ⊥AB ,∴∠DAC =∠BAC =60°,则根据向量加法法则易知,AC =2AB +2AD ,即PC -PA =2PB -PA +2PD -PA ,则PA =23PB +23PD -13PC .根据共面向量定理的推论知,PA =xPE +yPF +zPG,其中x +y +z =1.连接BD ,∵EF ∥平面ABCD ,EF ⊂平面PBD ,平面PBD ∩平面ABCD =BD ,∴EF ∥BD ,设PE =λPB 0<λ<1 ,则PF =λPD ,又G 为PC 的中点,∴PA =xPE +yPF +zPG =λxPB +λyPD+z 2PC ,则λx =λy =23,z 2=-13,解得λ=45,AB =2,BD =2×AB sin60°=23,则EF =45BD =835.连接AG ,∵PA =AC =4,G 为PC 的中点,故AG =12PC =22.易知BD ⊥AC ,BD ⊥PA ,AC ∩PA =A ,故BD ⊥平面PAC ,又AG ⊂平面PAC ,∴BD ⊥AG ,∴AG ⊥EF ,因此S 截面AEGF =12AG ⋅EF=12×22×835=865.故答案为:865.解法二:连接BD ,设AC 与BD 交于点K ,连接AG 、PK ,设AG 与PK 交于点L ,由题易得BD ∥EF ,则PL PK =PE PB =EFBD ,作KN ∥AG 交PC 于N ,易知CK =3AK ,则CN =3GN ,从而PG =4GN ,故EF BD =PL PK =PG PN=45,即EF =45BD =835.以下解法同上故答案为:865.2在三棱锥ABCD 中,对棱AB =CD =5,AD =BC =13,AC =BD =10,当平面α与三棱锥ABCD 的某组对棱均平行时,则三棱锥ABCD 被平面α所截得的截面面积最大值为.【答案】3【分析】每组对棱棱长相等,所以可以把三棱锥ABCD 放入长方体中,设长宽高分别为x ,y ,z ,求出x ,y ,z ,由线面平行得线线平行,证明当E ,F ,G ,H 是所在棱中点时面积最大,按截面与哪对棱平行分类讨论求得截面面积的最大值.【详解】因为每组对棱棱长相等,所以可以把三棱锥ABCD 放入长方体中,设长宽高分别为x ,y ,z ,则x 2+y 2=5,x 2+z 2=10,y 2+z 2=13,则x =1,y =2,z =3.当平面α与三棱锥ABCD 的对棱AB ,CD 均平行时,截而为四边形EFGH ,AB ⎳FG ⎳EH ,CD ⎳EF ⎳HG ,设AE AC =t (0<t <1),则EF CD =AE AC=t ,EF =tCD ,同理EH =(1-t )AB ,∠HEF (或其补角)是异面直线AB ,CD 所成的角,S EFGH =EF ⋅EH sin ∠HEF =t (1-t )AB ⋅CD sin ∠HEF ,其中AB ⋅CD sin ∠HEF 为定值,t (1-t )=-t 2+t =-t -12 2+14,t =12时,t (1-t )取得最大值,即截面EFGH 面积最大,此时E ,F ,G ,H是所在棱中点,由长方体性知最大面积为长方体上下底面面积的一半12xy =1,同样地,当平面a 与三棱锥ABCD 的对棱AC ,BD 均平行时,截面最大面积为12xz =32;当平面α与三棱锥ABCD 的对棱AD ,BC 均平行时,截面最大面积为12yz =3.故答案为:3.3(山西省怀仁市2022届高三下学期一模数学试)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,P 在底面的射影为正方形的中心O ,PO =4,Q 点为AO 中点.点T 为该四棱锥表面上一个动点,满足PA ,BD 都平行于过QT 的四棱锥的截面,则动点T 的轨迹围成的多边形的面积为()A.55B.554C.354D.552【答案】D【分析】首先取AD 的中点E ,PD 的中点F ,PO 的中点R ,PB 的中点N ,连接QR 延长交PC 与点M ,连接EFMNG ,证明平面EFMNG 即为所求的截面,再证明四边形EFNG 是矩形,RM ⊥FN ,矩形面积加三角形面积之和即为所求.【详解】取AD 的中点E ,PD 的中点F ,PO 的中点R ,PB 的中点N ,连接QR 延长交PC 与点M ,连接EFMNG ,因为底面ABCD 是边长为22的正方形,所以对角线AC =BD =4,AO =2,因为在底面的射影为正方形的中心,可得PO ⊥面ABCD ,因为AO ⊂面ABCD ,所以PO ⊥AO ,因为PO =4,AO =2,所以PA =22+42=25,因为E 、F 为AD 、PD 的中点,所以EF =12PA =5,且EF ⎳PA ,因为PA ⊄平面EFMG ,EF ⊂平面EFMG ,所以PA ⎳平面EFMG ,同理BD ⎳平面EFMG ,所以平面EFMG 即为所求截面.又因为平面APC ∩平面EFMG =QM ,PA ⊂平面APC ,所以QM ⎳AP ,因为Q 为AO 的中点,可得QC =34AC ,所以QM =34AP ,QR =12AP ,RM =QM -QR =14AP =52,因为N 、F 为PB 、PD 的中点,所以FN ⎳BD ,FN =12BD ,所以FN ⎳EG ,FN =EG ,所以四边形EFNG 是平行四边形,因为EG ⊥PO ,EG ⊥AC ,PO ∩AC =O ,所以EG ⊥平面APC ,因为QM ⊂平面APC ,可得EG ⊥QM ,所以EG ⊥GN ,所以四边形EFNG 是矩形,所以动点T 的轨迹围成的多边形的面积为5×2+12×2×52=552.故选:D题型二:动点:恒垂直恒垂直型截面,可以借助投影解决,投影型,需要利用”三垂线定理及其逆定理“这个性质转化寻找。
专题13 立体几何中的截面【基本知识】1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。
其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。
最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。
2、正六面体的基本斜截面:3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。
【基本技能】技能1.结合线、面平行的判定定理与性质性质求截面问题;技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。
例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能...是()分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。
例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题:①水的部分始终呈棱柱状;②水面EFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当容器倾斜到如图5(2)时,BE·BF是定值;其中正确的命题序号是______________分析当长方体容器绕BC边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG,但EH与FG的距离EF在变,所以水面EFGH的面积在改变,故②错误;在转动过程中,始终有BC//FG//A1D1,所以A1D1//面EFGH,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为BCBFBEV⋅⋅=21水是定值,又BC是定值,所以BE·BF是定值,即④正确。
立体几何中的截面问题一.基本原理:过正方体(长方体)上三点做截面.1.三点中有两点共面例1.如图,在正方体ABCD-A 1B 1C 1D 1中,E,F,G 分别在AB,BC,DD 1上,求作过E,F,G 三点的截面.思路:当三点中有两点共面时,做截面的思路就是先找共面两点所在直线与该平面所有的棱交点,而这些交点由同时在另外一个平面中,即该截面和正方体某个侧面的交点,这样利用公理1,逐次相连找到所有的交点,即可得到截面.解析:作法:①.由于F E ,共面,在底面AC 内,过F E ,作直线EF ,与DA 于L ,显然,此时L 即在侧面D A 1内,又在欲求截面内,而该截面与侧面D A 1又交于点G ,根据公理1,截面与侧面D A 1交于L .同理,过F E ,作直线EF 与DC 的延长线交于M ,此时M 即在侧面1DC 内,又在欲求截面内,根据公理1,截面与侧面1DC 交于M .②在侧面D A 1内,连接LG 交1AA 于K .③在侧面1DC 内,连接GM 交1CC 于H .④连接FH KE ,.则五边形EFHGK EFHGK 即为所求的截面.练习1.(三点两两共面)P,Q,R 三点分别在直四棱柱AC 1的棱BB 1,CC 1和DD 1上,试画出过P,Q,R 三点的截面作法.解析:作法:(1)连接QP,QR 并延长,分别交CB,CD 的延长线于E,F.(2)连接EF 交AB 于T,交AD 于S.(3)连接RS,TP.则五边形PQRST 即为所求截面.例2.(三点所在的棱两两异面)如图,长方体1111D C B A ABCD -中,R Q P ,,分别为111,,CC AB D A 上三点,求过这三点的截面.分析:此题的难点在于R Q P ,,三点均不在同一个侧面(底面)中,这样我们就暂时无法通过侧面(底面)中连线与棱的交点来找到截面的边界点,于是需要先做出一个平面来,让上面三点RQ P ,,中有两点共面,这就转化成例1的情形,从而解决问题.解:如图,作1//BB QE 交11B A 与E ,则1,RC QE 确定一个平面,转化为例1的情形.连接QR EC ,1,交于点F ;连接PF 交1111,B A D C 延长线于H G ,;连接HQ 交11,BB AA 延长线于J I ,;连接JR 交BC 于K .则KRGPIQK 为所作截面.例3.利用平行关系确定截面在三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB ,CD 都平行,则截面MNPQ 的周长等于()A.2a B.4a C.a D.无法确定解析:设AM k CM=,因为//AB 平面MNPQ ,平面ABC 平面MNPQ MN =,AB Ì平面ABC ,所以//MN AB ,同理可得//PQ AB ,//MQ CD ,//NP CD ,故四边形MNPQ 为平行四边形,所以11MN PQ AB AB k ==+,1MQ NP k CD CD k ==+.因为AB CD a ==,所以1a MN PQ k==+,1ak MQ NP k ==+,所以四边形MNPQ 的周长为2211a ak MN PQ MQ NP a k k ⎛⎫+++=+= ⎪++⎝⎭.故选:A.二.截面的的画法小结1.确定截面的主要依据有(1)平面的四个公理及推论.(2)直线和平面平行的判定和性质.(3)两个平面平行的性质.2.作截面的几种方法(1)直接法:有两点在几何体的同一个面上,连接该两点即为几何体与截面的交线,找截面实际就是找交线的过程。
六年级下册数学教案立体的截面(1) 青岛版我今天要分享的教案是我为六年级下册的数学课准备的,主题是“立体的截面”。
这个单元主要介绍立体图形的截面,让学生通过实践活动,加深对立体图形截面的理解。
一、教学内容我选择的教材是青岛版的六年级下册数学教材。
本节课的教学内容主要包括第二章第四节“立体的截面”。
这部分内容主要介绍立方体和圆柱体的截面,让学生通过实际操作,理解不同角度和不同工具对截面形状的影响。
二、教学目标我的教学目标是让学生掌握立方体和圆柱体的截面形状,并能够用语言描述不同角度和不同工具对截面形状的影响。
三、教学难点与重点本节课的重点是让学生能够通过实际操作,理解立方体和圆柱体的截面形状。
难点是让学生能够用语言描述不同角度和不同工具对截面形状的影响。
四、教具与学具准备五、教学过程1. 引入:我会让学生观察教室里的立方体和圆柱体,然后提问:“你们能想象到如果我们用不同的工具,从不同的角度去切这些物体,会得到什么样的截面吗?”2. 讲解:我会拿出立方体和圆柱体的模型,向学生展示不同角度和不同工具的截面。
我会让学生观察并描述他们看到的截面形状。
3. 实践:我会让学生分组,每组用模具和切割工具自己尝试去切立方体和圆柱体,并记录下他们的观察结果。
4. 分享:我会让学生分享他们的实践结果,并让学生用语言描述不同角度和不同工具对截面形状的影响。
六、板书设计我会设计一个简单的板书,用图示和文字结合的方式,展示立方体和圆柱体的截面形状,以及不同角度和不同工具对截面形状的影响。
七、作业设计作业题目:请学生用自己的语言描述立方体和圆柱体的截面形状,以及不同角度和不同工具对截面形状的影响。
答案可以包括具体的形状描述,以及相应的解释。
八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看学生是否掌握了立方体和圆柱体的截面形状,以及他们是否能够用语言描述不同角度和不同工具对截面形状的影响。
对于没有掌握的学生,我会考虑再次进行讲解和实践。