聚酰亚胺薄膜的国内外开发进展
- 格式:pdf
- 大小:1002.09 KB
- 文档页数:7
2024年聚酰亚胺(PI)薄膜市场分析现状
概述
本文将对聚酰亚胺(PI)薄膜市场的现状进行分析,主要包括市场规模、市场需求和发展趋势等方面的内容。
市场规模
聚酰亚胺薄膜市场是一个快速增长的市场,目前已经成为高性能薄膜市场的重要组成部分。
根据市场调研数据显示,聚酰亚胺薄膜市场在过去几年里呈现出持续增长的态势,预计未来几年仍将保持稳定增长。
市场需求
聚酰亚胺薄膜市场的需求主要来自于电子、光电、航空航天等领域。
随着电子产品的不断升级换代,对薄膜材料的要求也越来越高。
聚酰亚胺薄膜作为一种具有高温稳定性、优异的电气绝缘性能和高强度的材料,正得到这些行业的广泛应用。
市场竞争态势
目前聚酰亚胺薄膜市场的竞争态势较为激烈,市场上存在着多家厂商。
主要的竞争因素包括产品质量、性能和价格等方面。
一些知名企业在技术研发和市场推广方面具有较大的优势,增强了它们在市场上的竞争力。
市场发展趋势
聚酰亚胺薄膜市场的发展有以下几个趋势:
1.技术升级:随着科技的发展,人们对薄膜材料的要求也越来越高,聚酰
亚胺薄膜将会逐步向更高性能和更多应用领域发展。
2.产业协同发展:聚酰亚胺薄膜作为一种高性能材料,与其他行业的合作
将会进一步推动产业的协同发展,创造更多商机。
3.环保意识增强:随着环保意识的提高,对环保材料的需求也越来越大,
聚酰亚胺薄膜作为一种无毒、无味、可回收利用的材料,将会得到更多的关注与应用。
结论
综上所述,聚酰亚胺薄膜市场是一个具有较大潜力和发展空间的市场。
随着技术的不断升级和需求的增加,聚酰亚胺薄膜市场将会继续保持稳定增长,并为相关行业带来更多的商机。
聚酰亚胺的现状及未来五至十年发展前景聚酰亚胺是一种高性能聚合物材料,其独特的化学结构和物理性质使其在各个领域具有广泛的应用前景。
本文将对聚酰亚胺产业的现状进行概述,并展望未来五至十年的发展前景。
首先,我们来看一下聚酰亚胺产业的现状。
聚酰亚胺具有优异的耐高温性能、优良的电绝缘性能以及优秀的耐化学腐蚀性能,因此在航空航天、汽车、电子、电气以及化工等领域有着广泛的应用。
目前,聚酰亚胺材料已经成为新一代高性能电子产品、航空航天器材、汽车部件等的重要组成部分。
同时,聚酰亚胺也具有良好的可加工性,可以通过模压、注塑等工艺制备出各种形状的制品,满足不同领域的需求。
在电子领域,随着电子产品的不断进步和智能化程度的提高,对高性能材料的需求也越来越高。
聚酰亚胺作为一种理想的电子封装材料,具有优异的电绝缘性能和耐高温性能,能够有效保护电子元器件免受外界环境的影响。
预计未来五至十年,随着电子产品市场的持续扩大,聚酰亚胺在电子领域的应用将会进一步增加。
在航空航天领域,聚酰亚胺的高温稳定性和耐化学腐蚀性能使其成为理想的航空航天材料。
聚酰亚胺制备的复合材料可以用于制造航空航天器材,如航空发动机叶片、燃气轮机叶片等,能够提高航空航天器材的性能和可靠性。
预计未来五至十年,随着航空航天事业的快速发展,聚酰亚胺在航空航天领域的应用前景将会更加广阔。
此外,在汽车领域,聚酰亚胺材料也有着重要的应用。
聚酰亚胺制备的复合材料可以用于汽车部件的制造,如发动机罩、座椅骨架等,能够提高汽车部件的强度和耐磨性,同时降低汽车的整体重量,提高燃油效率。
随着汽车行业的快速发展和环保意识的增强,预计未来五至十年,聚酰亚胺在汽车领域的应用将会得到进一步推广。
总结起来,聚酰亚胺产业目前处于快速发展阶段,并且具有广阔的应用前景。
未来五至十年,随着各个领域对高性能材料的需求不断增加,聚酰亚胺的市场规模将会进一步扩大。
同时,随着科技水平的提高和制备技术的改进,聚酰亚胺材料的性能也将得到进一步提升,为更多领域的应用提供更好的解决方案。
聚酰亚胺薄膜(PI膜)市场发展现状引言聚酰亚胺薄膜(PI膜)作为一种高性能工程塑料薄膜,在电子、光电、航空航天等领域具有广泛的应用。
本文将对聚酰亚胺薄膜市场的发展现状进行详细分析和探讨。
一. 市场概述聚酰亚胺薄膜市场是一个快速发展的市场,主要因其卓越的高温耐性、优异的电绝缘性能和良好的机械性能而受到广泛关注。
聚酰亚胺薄膜具有良好的耐化学性和耐热性,在电子领域中扮演着重要的角色。
目前,聚酰亚胺薄膜市场主要集中在亚太地区,由于亚太地区电子产业的快速发展,聚酰亚胺薄膜需求量持续增加。
二. 市场驱动因素聚酰亚胺薄膜市场的发展得益于以下几个关键因素:2.1 技术进步近年来,聚酰亚胺薄膜制备技术取得了显著进展,包括溶液浇铸法、溶液旋涂法、热压法等多种制备方法。
多种制备方法的发展不仅提高了生产效率,而且提高了产品质量,满足了市场不断增长的需求。
随着电子行业的迅猛发展,对高性能材料的需求不断增加。
聚酰亚胺薄膜作为一种高性能工程塑料薄膜,可用于柔性电子、光电子、电池等领域,受到了电子行业的广泛应用。
2.3 新兴应用领域的拓展除了电子行业之外,聚酰亚胺薄膜在航空航天、医疗、汽车等领域也有广泛的应用前景。
随着这些领域的不断发展,聚酰亚胺薄膜的市场需求将进一步增加。
三. 市场挑战聚酰亚胺薄膜市场发展过程中仍然面临一些挑战:3.1 生产成本聚酰亚胺薄膜的生产成本较高,主要取决于原材料成本和制备工艺。
目前,聚酰亚胺薄膜的原材料价格较高,这限制了其在一些领域的应用。
3.2 环境友好性随着环保意识的增强,对材料的环境友好性要求也越来越高。
因此,聚酰亚胺薄膜制备过程中需要注意减少对环境的污染,寻求更加环保的制备方法。
四. 市场前景聚酰亚胺薄膜市场有着广阔的前景和发展潜力:随着电子行业的快速发展,对高性能材料的需求将持续增加,聚酰亚胺薄膜作为一种重要的材料,在电子行业中的应用将进一步扩大。
4.2 新兴应用领域的开拓随着航空航天、医疗、汽车等领域的不断发展,对聚酰亚胺薄膜的需求也将逐渐增加。
2024年聚酰亚胺薄膜市场规模分析简介聚酰亚胺薄膜是一种高性能工程塑料薄膜,具有出色的热稳定性、化学稳定性和机械性能。
在电子、航天航空、医疗等领域具有广泛的应用。
本文主要对聚酰亚胺薄膜的市场规模进行分析。
市场规模聚酰亚胺薄膜市场规模呈现快速增长趋势。
据统计数据显示,2019年全球聚酰亚胺薄膜市场规模达到X亿美元,并且预计在2025年将达到X亿美元。
增长主要受到电子和航天航空行业的需求推动。
电子行业聚酰亚胺薄膜在电子行业中有重要应用。
随着电子产品的不断更新换代,对于电子器件的性能要求也越来越高。
聚酰亚胺薄膜具有良好的介电性能、尺寸稳定性和化学稳定性,常被用作电子器件的保护层、绝缘材料和柔性电路板等。
预计随着电子行业的快速发展,聚酰亚胺薄膜市场规模将持续增长。
航天航空行业航天航空领域对于材料的要求极高,聚酰亚胺薄膜由于其优异的热稳定性和强度,被广泛应用于卫星、导弹和飞机等航天航空器件中。
随着航天航空行业的快速发展,聚酰亚胺薄膜市场规模也将随之增长。
医疗行业聚酰亚胺薄膜在医疗行业中的应用也逐渐增多。
它具有良好的生物相容性和耐高温性能,广泛用于医疗器械、人工器官和药物输送系统等。
随着人们对医疗服务的需求不断增加,聚酰亚胺薄膜市场规模将继续扩大。
影响因素聚酰亚胺薄膜市场规模增长的主要影响因素包括技术进步、市场需求和政策支持等。
技术进步随着科学技术的不断进步,聚酰亚胺薄膜的性能不断提升,新型技术和工艺的应用使得聚酰亚胺薄膜的制造更加高效和经济。
这进一步推动了市场规模的增长。
市场需求聚酰亚胺薄膜在电子、航天航空和医疗行业的需求持续增长,主要受到这些行业的技术进步和产品需求的推动。
市场对高性能材料的需求促使聚酰亚胺薄膜市场规模不断扩大。
政策支持政府的政策支持和产业政策的调整对于推动聚酰亚胺薄膜市场的发展起到重要作用。
通过优惠政策、资金支持和技术创新引导等手段,政府促进了聚酰亚胺薄膜产业的快速增长。
市场竞争分析聚酰亚胺薄膜市场存在一定的竞争。
聚酰亚胺薄膜市场分析报告1.引言1.1 概述:聚酰亚胺薄膜作为一种高性能的薄膜材料,在电子、航空航天、汽车、医疗等行业具有广泛的应用前景。
本报告旨在对聚酰亚胺薄膜市场进行全面的分析,探讨其发展趋势、竞争格局以及市场前景展望,为相关行业提供决策参考。
通过深入的研究和分析,我们将为读者呈现出聚酰亚胺薄膜市场的全貌,以及未来的发展方向。
1.2 文章结构文章结构部分的内容可以包括对整篇文章的组织结构和各部分内容的简要介绍。
具体内容可以包括:文章结构:本文主要由引言、正文和结论三个部分组成。
在引言部分,将介绍聚酰亚胺薄膜市场的概况和发展趋势,以及撰写本文的目的和意义。
在正文部分,将分别对聚酰亚胺薄膜市场的概况、发展趋势分析和竞争格局进行详细分析和阐述。
在结论部分,将展望聚酰亚胺薄膜市场的发展前景,并提出针对市场发展的建议和总结。
整篇文章将全面系统地介绍聚酰亚胺薄膜市场的相关内容,以期为读者提供全面而深入的市场分析报告。
1.3 目的本报告旨在全面分析聚酰亚胺薄膜市场的现状和发展趋势,为相关企业和投资者提供决策参考。
通过对市场概况、发展趋势和竞争格局的分析,旨在为读者提供全面了解聚酰亚胺薄膜市场的机会和挑战,帮助他们制定有效的业务战略和投资规划。
同时,本报告也旨在对未来聚酰亚胺薄膜市场的发展趋势和前景进行展望,为行业发展提供参考和建议。
1.4 总结:在本文中,我们对聚酰亚胺薄膜市场进行了全面的分析和研究。
首先,我们对聚酰亚胺薄膜市场进行了概况介绍,包括产品特点、应用领域和市场规模等方面的内容。
接着,我们分析了聚酰亚胺薄膜市场的发展趋势,包括技术创新、市场需求和产业链发展等方面的变化和趋势。
最后,我们对聚酰亚胺薄膜市场的竞争格局进行了详细分析,包括主要企业的竞争优势、市场份额和发展策略等方面的内容。
通过本文的研究,我们可以看到聚酰亚胺薄膜市场呈现出稳步增长的态势,具有较大的发展潜力和市场空间。
同时,也存在着激烈的市场竞争和技术革新的挑战。
均苯型聚酰亚胺薄膜的研究现状摘要:聚酰亚胺(Polyimide,PI)薄膜是通过由含二酐和二胺的化合物逐步反应聚合成PAA胶液再经过亚胺化成膜制备而成一类薄膜材料。
本文围绕聚酰胺薄膜的国内外研究现状、PAA胶液的制备方法以及微观结构的表征方法对聚酰亚胺薄膜材料进行介绍。
关键词:聚酰亚胺薄膜、发展现状、PAA胶液、表征手段聚酰亚胺(PI)薄膜是最早商业化的高分子材料之一,具有优异的化学稳定性、耐热性、阻燃性、电绝缘性及力学性能,在航空航天、电子信息行业中得到了广泛的应用。
[1]一、聚酰亚胺薄膜国内外研究发展状况1、聚酰亚胺薄膜在制备方法及表面改性方面的研究现状近几年许多制备聚酰亚胺薄膜的方法被提出,其中一种制备聚酰亚胺(PI)薄膜的方法——气相沉积聚合(VDP),用此方法制得的聚合物膜具有纯度高、膜厚可控、可实现保形涂敷、可制备难溶难熔聚合物、集聚合与成膜为一体等优点[2]。
另外还可以通过对聚酰亚胺薄膜进行纳米改性,获得具有特殊功能的纳米杂化薄膜[3] , ,此方法成本低、见效快,已成为提高聚酰亚胺薄膜性能的主要途径。
随着电子行业的快速发展,聚酰亚胺薄膜以其优异性能在微电子行业发挥着越来越重要的作用。
为了提高其粘接强度,对聚酰亚胺薄膜的表面改性具有重要的意义。
通过酸碱处理、等离子处理、离子束法和表面接枝改性后,有效地改善了PI薄膜表面的粘接性能[4]。
2、国内PI薄膜工业的快速发展20世纪80~90年代,我国聚酰亚胺薄膜薄膜主要用于绝缘材料领域,年消费量只有数百吨。
由于当时下游需求不足,聚酰亚胺薄膜薄膜工业发展缓慢。
进入21世纪,随着我国电子工业的发展,尤其是挠性覆铜板的快速发展给聚酰亚胺薄膜薄膜市场带来大的变革,聚酰亚胺薄膜薄膜生产快速增长。
2002年,我国聚酰亚胺薄膜薄膜产能约75Ot/a;到2004年,聚酰亚胺薄膜薄膜产能达到1700t/a,生产企业达到30多家,产量约几百吨;截至2009年,聚酰亚胺薄膜薄膜规模达到约4700t/a,生产厂家在40家以上,年产量达到2000一300ot。
聚酰亚胺行业发展历程
聚酰亚胺指主链上含有酰亚胺环(-CO-NR-CO-)的一类聚合物,是综合性能最佳的有机高分子材料之一。
其发展历程可概括为:
20世纪60年代,中国科学院长应用化学研究所开始研究聚酰亚胺(PI)材料,并在60年代末完成了实验室研究。
70年代初,上海合成树脂研究所、中国科学院北京化学所等单位开始生产聚酰亚胺薄膜,打破了西方的技术封锁,满足了我国国防军工和民用高技术的急需。
2023年,聚酰亚胺已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。
在高端领域,国外实行技术垄断,相关研究仍然受到很大的限制。
瑞华泰成为中国大陆率先掌握自主核心技术的高性能聚酰亚胺薄膜专业制造商,此后,聚酰亚胺薄膜、纤维、浆料等生产企业大量兴起,开创出了新的发展格局。
2024年聚酰亚胺薄膜市场环境分析一、市场概况聚酰亚胺薄膜是一种高性能薄膜材料,具有优异的耐高温、耐化学腐蚀、高电气绝缘性能等特点。
该薄膜广泛应用于电子、光电、航空航天等领域。
本文将从市场规模、供需状况、竞争格局等方面对聚酰亚胺薄膜市场进行分析。
二、市场规模及发展趋势目前,全球聚酰亚胺薄膜市场规模不断扩大,预计未来几年将保持较高的增长速度。
聚酰亚胺薄膜的主要应用领域包括LCD显示屏、电子线路、锂电池等,这些行业的快速发展为聚酰亚胺薄膜市场提供了巨大的机遇。
三、供需状况聚酰亚胺薄膜的市场需求量持续增长,但目前供应量相对较少,供需矛盾比较突出。
主要原因是聚酰亚胺薄膜的生产工艺较为复杂,投资成本较高,技术门槛较高。
目前市场上主要的供应商有几家大型企业,如某公司、某公司等,但产能受限,难以满足市场的快速增长。
四、竞争格局当前,全球聚酰亚胺薄膜市场竞争激烈。
市场上除了少数大型供应商外,还有一些中小型企业进入市场。
这些企业通常通过降低价格以争夺市场份额,加大产品研发力度,提高产品性能和品质。
由于聚酰亚胺薄膜的技术要求较高,市场对优质产品的需求量较大,因此优质供应商具有竞争优势。
五、市场发展机遇与挑战随着电子、光电等行业的快速发展,聚酰亚胺薄膜市场的前景广阔。
同时,新材料技术的不断发展与突破也为聚酰亚胺薄膜的应用提供了新的机遇。
然而,聚酰亚胺薄膜市场也面临着一些挑战,如技术壁垒较高、产能有限、价格波动等,供需矛盾亟待解决。
六、市场前景展望总体而言,聚酰亚胺薄膜市场在未来几年有望保持快速增长。
随着新兴技术的不断涌现,聚酰亚胺薄膜的应用领域将不断扩大。
同时,市场竞争将更加激烈,优质供应商将脱颖而出。
在政策扶持和市场需求的推动下,聚酰亚胺薄膜市场有望迎来更加广阔的发展前景。
以上是对聚酰亚胺薄膜市场环境的分析,通过对市场规模、供需状况、竞争格局的分析,可以更好地了解聚酰亚胺薄膜市场的现状和未来发展趋势。
希望该分析能为相关企业和投资者提供有价值的参考信息。
无色透明聚酰亚胺薄膜的研究进展李智杰ꎬ虞鑫海∗(东华大学化学化工与生物工程学院ꎬ上海㊀201600)㊀㊀摘㊀要:本文综述了无色透明聚酰亚胺(PI)薄膜的研究进展及其应用ꎬ首先分析了聚酰亚胺薄膜产生颜色的原因ꎬ并从分子结构设计的角度ꎬ介绍了几种制备无色透明聚酰亚薄膜的方法:分子主链上引入含氟基团㊁脂环结构和非共平面结构等ꎬ并分析了各种方法的不足ꎮ此外ꎬ还介绍了无色透明聚酰亚胺薄膜在光电器件中的应用ꎮ关键词:聚酰亚胺㊀薄膜㊀无色透明㊀分子结构设计㊀应用中图分类号:TQ323.8㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀文章编号:1006334X(2019)04002605收稿日期:20190516作者简介:李智杰(1996 )ꎬ江苏镇江人ꎬ在读硕士研究生ꎬ研究方向为无色透明聚酰亚胺薄膜ꎮ∗通讯作者:虞鑫海ꎬyuxinhai@dhu.edu.cnꎮ㊀㊀高分子材料是工业生产中应用十分广泛的一类材料ꎬ种类繁多ꎬ发展前景广阔ꎮ聚酰亚胺是综合性能极其优异的一种有机高分子材料ꎬ其主链上含有特征结构 酰亚胺环(-CO-N-CO)ꎮ聚酰亚胺材料具有优良的耐低温性㊁耐辐射性㊁介电性能和机械性能ꎬ热膨胀系数低ꎬ无毒可自熄ꎬ可用于制造薄膜㊁涂料㊁先进复合材料㊁纤维㊁工程塑料㊁电-光材料㊁光刻胶等ꎬ其中聚酰亚胺薄膜是当今电子㊁微电子以及航天航空等工业中不可或缺的材料之一ꎬ其优异的耐热性能和可弯曲的柔韧特性使其成为柔性封装以及柔性光电器件中的重要材料ꎬ受到了学者的重点研究ꎮ然而ꎬ传统的聚酰亚胺薄膜一般属于全芳香族ꎬ且一般由二胺和二酐通过缩聚反应制得预聚物ꎬ再经过亚胺化处理制得ꎮ二胺残基的给电子性和二酐残基的吸电子性导致了分子内电荷的运动ꎬ形成电子转移络合物(CTC)ꎬ从而透光率低ꎬ薄膜显示出特征黄色或棕黄色ꎬ大大限制了其在光学领域的应用ꎮ目前国内外学者通过在聚酰亚胺主链上引入含氟基团㊁脂环结构㊁非共平面结构㊁间位取代结构㊁砜基等抑制CTC的形成ꎬ从而提高聚酰亚胺薄膜的透光性ꎬ降低薄膜的黄色指数ꎮ据此而制备的PI薄膜可分为含氟类㊁脂环类㊁非共平面类等[13]ꎮ1㊀不同类型PI薄膜研究进展1.1㊀含氟类PI薄膜氟原子电负性较大ꎬ可降低二胺的给电子性ꎬ以此抑制CTC的形成ꎻ同时氟原子体积较大ꎬ可增加分子间的自由体积ꎬ继而提高聚酰亚胺材料的介电性能[4]ꎮ虞鑫海[5]将等摩尔比的1ꎬ3-双(2-三氟甲基-4-氨基苯氧基)苯(DARes-2TF)和2ꎬ2-双[4-(2-三氟甲基-4-氨基苯氧基)苯基]六氟丙烷(BAPFP-2TF)作为二胺与双酚A型二醚二酐(BPADA)缩聚ꎬ通过流延机成膜及热亚胺化制得全芳型含氟PI薄膜ꎮ该薄膜热分解温度为512.4ħꎬ最大透光率高达95%ꎮ张丽娟等[6]将1ꎬ3-双(2-三氟甲基-4-氨基苯氧基)苯(DARes-2TF)与芳香族二酐在NꎬN-二甲基乙酰胺(DMAc)溶剂中进行缩聚反应制得预聚体ꎬ通过热亚胺化制得PI薄膜ꎮ该薄膜紫外截止波长为365nmꎬ最大透光率超过90%ꎬ但玻璃化转变温度只有185.2ħꎬ拉伸断裂强度仅98.52MPaꎬ表明含氟基团的引入在提高此薄膜光学性能的同时ꎬ也带来薄膜的玻璃化转变温度与力学性能降低的问题ꎮ韩青霞等[7]以双酚AF和2-氯-5-硝基三氟甲苯为原料制备含氟二胺2ꎬ2-双[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷(BAPFP-2TF)ꎬ以3ꎬ3ᶄꎬ4ꎬ4ᶄ-联苯四酸二酐(BPDA)为二酐单体ꎬ分别与上述含氟二酐㊁2ꎬ2-双[4-(4-氨基-2-三氟甲基苯氧基)苯基]丙烷及二苯醚二胺通过缩聚㊁热亚胺化处理得到三种PI薄膜ꎮ其中BAPFP-2TF型PI薄膜的耐热性和溶解性良好ꎬ500nm处透过率为90.8%ꎬ初始分解温度高达519ħꎬ较其他两种薄膜ꎬ尤其是无氟薄膜ꎬBAPFP第34卷第4期2019年12月合成技术及应用SYNTHETICTECHNOLOGYANDAPPLICATIONVol.34㊀No.4Dec.2019-2TF型PI薄膜的无色透明性得到了较大的提升ꎮ张明艳等[8]将以4ꎬ4ᶄ-(六氟异丙烯)二酞酸酐(6FDA)㊁4ꎬ4ᶄ-二氨基-2ꎬ2ᶄ-双三氟甲基联苯(TFMB)及不同比例的3ꎬ3ᶄꎬ4ꎬ4ᶄ-联苯四羧酸二酐(BPDA)进行共聚制备了一系列聚酰亚胺薄膜ꎮ结果表明加入BPDA的系列薄膜在失重5%时的温度都大于525ħꎬ玻璃化转变温度都高于303ħꎬ表明热性能优良ꎮ加入BPDA的摩尔分数不大于20%时ꎬ450nm处的透光率均超过90%ꎬ介电常数小于2.5ꎬ可满足实际应用的要求ꎮ但系列薄膜的拉伸断裂强度为84.27~100.74MPaꎬ机械强度不足ꎮ陈颖等[9]分别将9ꎬ9-双(3-氟-4-氨基苯基)芴(FFDA)㊁4ꎬ4ᶄ-二氨基二苯醚(ODA)和环丁烷四甲酸二酐(CBDA)进行缩聚ꎬ并以等摩尔比的FFDA和ODA作为二胺与CBDA共聚ꎬ采用梯度升温的热亚胺法制得了三种聚酰亚胺薄膜ꎮ性能测试表明ꎬ共聚所得PI薄膜的光学性能最佳ꎬ450nm处透光率高达92%ꎬ紫外截止波长低至287nmꎬ10kHz时介电常数只有2.29ꎬ同时薄膜还有较好的耐热稳定性和机械强度ꎮ这说明该配方中脂环结构㊁氟原子㊁含芴大侧基及醚键的引入对薄膜光学性能的提高起到了较好的协同作用ꎬ且没有牺牲薄膜的热学和力学性能ꎮChoHM等[10]以4ꎬ4ᶄ-(六氟异丙烯)二酞酸酐(6FDA)和4ꎬ4ᶄ-二氨基-2ꎬ2ᶄ-双三氟甲基联苯(TFMB)为二胺ꎬ以3ꎬ3ᶄꎬ4ꎬ4ᶄ-联苯四羧酸二酐(BPDA)为二酐ꎬ通过PAA前驱体制备共聚物ꎬ通过PAAs的化学亚胺化反应制备凝胶状PAA膜或可溶性PI树脂ꎮ然后用这些中间产物在300ħ的高温下制备了具有柔韧性的低色㊁高透明度PI薄膜ꎮSingJY等[11]以2ꎬ2ᶄ-双(三氟甲基)-4ꎬ4ᶄ-二氨基联苯(TFMB)为二胺ꎬ一定摩尔比的4ꎬ4ᶄ-(六氟异丙烯)二酞酸酐㊁均苯四甲酸二酐㊁氢化均苯四甲酸二酐为二酐制备的聚酰亚胺薄膜具有优异的光学性能ꎬ在可见光范围内透光率超过90%ꎬ黄色指数小于2ꎬ玻璃化转变温度高于270ħꎬ且具有较低的热膨胀系数ꎮ综上ꎬ含氟基团的引入可以有效地提高薄膜的光学和介电性能ꎬ一般不会影响薄膜的耐热稳定性ꎬ但氟元素的引入可能会导致薄膜机械强度的降低以及玻璃化转变温度的下降ꎮ此外ꎬ含氟二胺相对来说价格较高ꎬ这也会使得薄膜的成本进一步上升ꎮ1.2㊀脂环类PI薄膜脂环化合物指的是分子中含有除苯环及稠苯体系以外的碳环结构的化合物ꎬ在聚酰亚胺主链中引入脂环结构可有效抑制链内或链间的电荷转移ꎬ从而改善PI薄膜的光学性能ꎮ虞鑫海等[12]以等摩尔比的3ꎬ3ᶄ-二甲基-4ꎬ4-二氨基二环己基甲烷(DMDC)和2ꎬ2-双[4-(2-三氟甲基-4-氨基苯氧基)苯基]丙烷(BAPP-2TF)为二胺ꎬ与双酚A型二醚二酐(BPADA)反应ꎬ再通过流延机成膜及热亚胺化反应得到的PI薄膜具有极佳的光学性能ꎬ可见光最大透过率为97 5%ꎬ热分解温度为479.1ħꎮ徐永芬等[13]将两种二胺3ꎬ3ᶄ-二甲基-4ꎬ4-二氨基二环己基甲烷(DMDC)和4ꎬ4ᶄ-二氨基二苯醚(ODA)按照不同的比例与3ꎬ3ᶄꎬ4ꎬ4ᶄ-四羧基二苯醚二酐(ODPA)反应ꎬ制得了一系列PI薄膜ꎮ只以ODA为二胺的PI薄膜最高透过率为85 5%ꎬ其他PI薄膜的最高透过率为88.4%~90 3%ꎮ表明脂环结构明显提高了薄膜的光学性能ꎬ然而随着DMDC用量的增加ꎬ玻璃化转变温度和耐热稳定性略有所下降ꎮ张玲等[14]以1ꎬ1ᶄ-双(4-氨基苯基)环己烷(BAPC)和2ꎬ2ᶄ-双(三氟甲基)-4ꎬ4ᶄ-二氨基联苯(TFMB)为二胺分别与3ꎬ3ᶄꎬ4ꎬ4ᶄ-二苯醚四酸二酐(ODPA)㊁3ꎬ3ᶄꎬ4ꎬ4ᶄ-二苯酮四酸二酐(BTDA)通过两步法制备了两种脂环类PI薄膜ꎬ与只以TFMB为二胺及同样的二酐为原料且采用相同工艺制备的PI薄膜相比ꎬ脂环类薄膜的光学性能有了较大的提升ꎮ然而ꎬ由于脂环结构的存在增加了分子链的柔性ꎬ两种薄膜的拉伸断裂强度并不高ꎬ分别为104 79MPa和99.61MPaꎮ刘金刚等[15]将1ꎬ2ꎬ3ꎬ4-环丁烷四酸二酐㊁1ꎬ2ꎬ4ꎬ5-环戊烷四酸二酐和1ꎬ2ꎬ4ꎬ5-环己烷四酸二酐与含三氟甲基的芳香族二胺通过两步法制得了一系列PI薄膜ꎬ结果表明半脂环结构与三氟甲基的协同作用使薄膜具有较高的透光率ꎬ系列薄膜中450nm处大部分透光率都在90%以上ꎬ失重5%温度在438~463ħꎮ王大可等[16]用自制的功能二胺与1-亚甲基双(4-氨基合环己烷)㊁1ꎬ3-环己二甲胺作为二胺ꎬ与羧酸二酐反应制得的聚酰亚胺薄膜在385nm处的透光率高达93.1%且该薄膜具有优良的疏水性能ꎬ在液晶显示及光波导材料等光学领域有巨大的应用潜力ꎮ鲁云华等[17]将1ꎬ4-双(4-氨基-2-三氟甲基苯氧基)苯与两种脂环二酐发生共聚反应ꎬ先在72第4期李智杰等.无色透明聚酰亚胺薄膜的研究进展氮气气氛中制得聚酰胺酸ꎬ再按照一定的工艺热亚胺化ꎬ最高升温至280ħꎬ所制得的PI薄膜在450nm处的透光率高达95%ꎬ玻璃化转变温度为285ħꎮ他还将1ꎬ4-双(4-氨基-2-三氟甲基苯氧基)苯㊁上述脂环二酐中的一种以及不同的含三氟甲基的二胺共聚ꎬ制得的PI薄膜450nm处的透光率在90%以上ꎮ胡知之等[18]用含有三氟甲基的芳香族二胺与脂环二酐1ꎬ2ꎬ3ꎬ4-环丁烷四羧酸二酐㊁1ꎬ2ꎬ4ꎬ5-环戊烷四羧酸二酐㊁1ꎬ2ꎬ3ꎬ4-环丁烷-对称(3ꎬ6-氧桥)-1ꎬ2ꎬ3ꎬ6-四氢苯-1ꎬ2-二甲基甲酸酐通过两步法制备了一系列PI薄膜ꎬPI薄膜在450nm处的透光率在91%~95%ꎬ紫外截止波长在280~306nm之间ꎬ玻璃化转变温度252~288ħꎬ并且薄膜在非质子强极性溶剂中溶解性良好ꎮOguroH等[19]以1ꎬ2ꎬ4ꎬ5-环己四羧基二氢化物和芳香二胺为原料ꎬ采用一步高温缩聚法制备了可溶性PI薄膜ꎮ薄膜在250ħ和氮气流下进行双轴和横向拉伸ꎬ吹干后薄膜的厚度为200μmꎬ透光率达89.8%ꎬ黄色指数1.9ꎮHideoS等[20]通过脂环二酐1ꎬ2ꎬ3ꎬ4-环丁烷四酸二酐将脂环结构引入聚酰亚胺主链中ꎬ并与芳香族二胺制备了PI薄膜ꎮ相比于以均苯四甲酸二酐为二酐及相同的芳香族二胺为原料制备的PI薄膜ꎬ脂环结构明显地提高了薄膜的综合性能ꎬ50μm厚度的薄膜透光率在81.5%~85.5%ꎬ厚度较小ꎬ2μm时几乎无色ꎮ由此可见ꎬ脂环结构的引入对于PI薄膜的透光率有明显的改善作用ꎬ但由于分子链中柔性的脂环结构代替了部分刚性结构ꎬ使得薄膜的耐热性能和机械强度有所降低ꎮ因此ꎬ脂环类PI薄膜在分子链的设计中要注意脂环结构与刚性结构的搭配ꎬ不可过多地牺牲薄膜的力学和耐热性能ꎮ1.3㊀非共平面类PI薄膜引入非共平面结构使得分子链的共平面性遭到破坏ꎬ分子链之间距离增大ꎬ降低了分子链的堆积密度ꎬ从而减少了电荷转移络合物ꎬ改善聚酰亚胺薄膜的光学性能ꎮ裴响林[21]用3ꎬ3ᶄ-二叔丁基-4ꎬ4ᶄ-二氨基苯基-4ᶄ-叔丁基甲苯及3ꎬ3ᶄ-二叔丁基-4ꎬ4ᶄ-萘基甲烷与芳香二酐反应制得了含有大侧基和大吊环结构的聚酰亚胺ꎬ同时用以4-苯基苯甲醛及2-异丙基苯胺合成的非共平面二胺与芳香二酐在高温条件下反应得到聚酰亚胺ꎬ用溶液浇注法共制得两类非共平面聚酰亚胺薄膜ꎬ薄膜均具有较好的光学㊁介电和力学性能ꎬ其中最大透光率在88%~90%之间ꎮ莫鑫等[22]将非共平面结构3ꎬ3ᶄꎬ5ꎬ5ᶄ-四甲基及甲苯基结构引入聚酰亚胺的主链ꎬ由溶液浇注法制备的PI薄膜具有优异的光学性能ꎬ500nm处的透光率高于85%ꎬ玻璃化转变温度高于333ħꎮ刘金刚等[23]以3ꎬ3ᶄꎬ4ꎬ4ᶄ-联苯四甲酸二酐(s-BPDA)及2ꎬ3ꎬ3ᶄꎬ4ᶄ-联苯四甲酸二酐(α-BPDA)作为二酐与含氟芳香二胺反应制备了两种聚酰亚胺薄膜ꎬ由于选用的二酐使聚酰亚胺主链中带有了非共平面结构以及非共平面结构与氟原子的协同作用ꎬ使得薄膜的光学性能得到了明显提高ꎬ450nm处透光率接近93%ꎬ几乎接近无色ꎮ相对于引入非共平面结构而言ꎬ引入含氟基团和脂环结构对PI薄膜光学性能的提高更显著ꎬ而非平面结构的优势在于对分子链中刚性结构没有影响ꎬ因此不会牺牲薄膜的力学和耐热稳定性ꎮ在分子设计中ꎬ可以考虑在引入非共平面结构的同时再引入含氟基团或脂环结构等ꎬ在多因素的协同作用下提高薄膜的综合性能ꎮ1.4㊀其他类PI薄膜间位取代结构增加了自由体积ꎬ降低了分子间的作用力ꎬ故可有效减少电子转移络合物的形成ꎮ张玉谦等[24]通过以2ꎬ7-双(3-氨基苯氧基)噻嗯(APOT)作为二胺引入了间位取代结构ꎬ以3ꎬ3ᶄꎬ4ꎬ4ᶄ-二苯醚四酸二酐(ODPA)㊁4ꎬ4ᶄ-(六氟异丙烯)二酞酸酐(6FDA)为二酐ꎬ分别通过化学亚胺法制得了两种PI薄膜ꎬ薄膜在450nm处的透光率分别为86%和87%ꎬ且具有较高的折射率ꎮ与以含有对位取代结构的2ꎬ7-双(4-氨基亚苯基硫烷基)噻嗯(APTT)为二胺ꎬODPA㊁2ꎬ3ꎬ3ᶄꎬ4ᶄ-联苯四羧酸二酐(α-BPDA)为二酐所制备的PI薄膜相比ꎬ光学性能有明显的提高ꎮ砜基中由于有硫原子ꎬ故而电负性较高ꎬ吸电子性强ꎬ可有效抑制电子转移络合物的形成ꎮ张谭妹等[25]将砜基和间位取代结构引入自制的新型二胺ꎬ以6FDA㊁BPDA为二酐制备的聚酰亚胺薄膜具有良好的无色透明性ꎬ玻璃化转变温度高且具有荧光功能ꎮ除此之外ꎬ引入醚键㊁体积较大的取代基㊁减少共轭双键结构等都对PI薄膜的光学性能有所提高ꎬ而各种方法也都有其利弊ꎬ如柔性的醚键在提升透光率的同时会使薄膜的机械强度下降ꎬ因此ꎬ选取合82合成技术及应用第34卷适的二胺㊁二酐ꎬ使分子链的设计做到取长补短是制备无色透明聚酰亚胺薄膜的关键所在ꎮ2㊀应㊀用随着时代的发展ꎬ光电器件的更新换代越来越快ꎬ人们对光电器件的性能也提出了越来越高的要求ꎬ如轻质化㊁超薄化和柔性化等ꎮ这种趋势为无色透明聚酰亚胺光学薄膜的发展提供了巨大的机遇ꎮ无色透明PI薄膜具有轻薄㊁透明㊁可耐高温㊁加工性好等优点ꎬ可用于柔性显示器件㊁柔性太阳能电池等各种基体ꎬ在光电子领域得到了广泛的应用ꎮ此外ꎬ无色透明PI薄膜还是未来柔性封装的重点研究材料ꎮ2.1㊀柔性显示器件衬底柔性衬底是柔性显示器件中的重要组成部分ꎬ起到了结构支撑以及为光信号传输提供介质的作用ꎬ柔性衬底的特性和功能在很大程度上决定着柔性器件的质量ꎮ目前ꎬ柔性显示器的衬底主要有三种:薄玻璃㊁透明塑料(聚合物)和金属箔ꎮ透明塑料基体与薄玻璃都具有良好的透光率ꎬ但透明塑料基体同时还具有与金属箔相当的柔韧性[26]ꎮ因此ꎬ透明塑料基体是柔性显示的理想选择ꎮ采用塑料衬底的柔性显示器具有薄㊁轻㊁柔性好等优点ꎬ具有广阔的发展前景ꎮ无色透明PI薄膜热稳定性能和机械性能优异ꎬ抗张强度高ꎬ除了目前广泛使用的聚对苯二甲酸乙二醇酯(PET)薄膜外ꎬPI薄膜被业界认为是最适宜做柔性衬底的材料之一ꎮ2.2㊀柔性薄膜太阳能电池衬底柔性薄膜太阳能电池是一种性能优良且成本低廉的先进电池ꎬ可用于太阳能手电筒㊁太阳能背包㊁太阳能汽车或集成在屋顶或外墙上ꎬ用途十分广泛ꎮ传统的薄膜太阳能电池对形状没有适应性ꎬ而在柔性聚合物基板上制备薄膜太阳能电池可以解决这一问题ꎬ并能降低电池的重量和成本ꎮ无色透明PI薄膜具有极佳的光学透明性和优异的耐高温性ꎬ可以承受加工过程中450ħ以上的高温ꎬ为生产高效太阳能电池提供了可能ꎮ2.3㊀柔性封装材料基板封装指的是用绝缘材料将集成电路打包ꎬ将电路与外界隔离ꎬ以防止空气中的杂质腐蚀电路ꎬ同时也便于电路的安装和运输ꎮ目前ꎬ光电器件的发展趋势为超薄化㊁轻质化和柔性化ꎬ这就需要相应的高性能柔性封装材料ꎮ传统的玻璃基板厚度较大ꎬ质量偏大且不具备柔性ꎬ无法满足未来柔性封装材料的要求ꎮ无色透明PI薄膜能满足柔性要求ꎬ且透明质轻ꎬ可耐高温和高压ꎬ因此是未来柔性封装基板材料的首选ꎮ3㊀结㊀论通过分子结构设计ꎬ如在主链上引入含氟基团㊁脂环结构㊁非共平面结构㊁间位取代结构㊁砜基等ꎬ或者将上述因素结合起来发挥协同作用ꎬ都能有效地提高聚酰亚胺薄膜的光学性能ꎮ在提高PI薄膜的光学性能同时ꎬ也要兼顾PI薄膜的其他性能ꎬ如力学性能㊁介电性能和耐热稳定性ꎮ此外ꎬ利用纳米复合效应可以在保持PI薄膜光学性能的前提下ꎬ降低薄膜的热膨胀系数提高机械和耐热性能[2728]ꎮ无色透明PI薄膜无疑是一种技术含量高㊁附加值高的新型材料ꎬ优良的综合性能使其成为先进光电器件的理想选择ꎮ可以预见ꎬ随着光电制造需求的不断增加ꎬ无色透明PI薄膜的研究将会受到学术界和工业界的更多关注ꎬ无色透明PI薄膜正面临着巨大的发展机遇ꎮ目前无色透明PI薄膜在市面上非常有限ꎬ成本昂贵ꎬ仅应用于高端电子产品ꎮ因此ꎬ如何降低无色透明PI薄膜的成本值得广大材料研究人员深入研究ꎮ参考文献:[1]㊀许梅芳ꎬ虞鑫海ꎬ徐永芬.功能性聚酰亚胺的研究进展[J].化工新型材料ꎬ2013ꎬ41(9):13+7.[2]㊀任小龙.电子行业用特种聚酰亚胺薄膜研究进展[C].//第十六届中国覆铜板技术 市场研讨会论文集ꎬ2015:153165. [3]㊀任小龙ꎬ张俊杰ꎬ李立严ꎬ等.无色透明聚酰亚胺薄膜研究进展[J].中国塑料ꎬ2015ꎬ29(5):513.[4]㊀潘晓娣ꎬ戴钧明ꎬ钱明球.聚酰亚胺薄膜的国内外开发进展[J].合成技术及应用ꎬ2018ꎬ33(2):2228.[5]㊀虞鑫海.全芳型含氟无色透明聚酰亚胺薄膜及其制备方法:中国ꎬ101597428B[P].20120201.[6]㊀张丽娟ꎬ虞鑫海ꎬ徐永芬ꎬ等.1ꎬ3-双(4-氨基-2-三氟甲基苯氧基)苯及其无色透明聚酰亚胺薄膜的制备与性能研究[J].绝缘材料ꎬ2010ꎬ43(1):48+13.[7]㊀韩青霞ꎬ宋丽贤ꎬ张平ꎬ等.含氟二胺的合成及透明聚酰亚胺薄膜的性能研究[J].绝缘材料ꎬ2013ꎬ46(3):5155. [8]㊀张明艳ꎬ高升ꎬ吴子剑ꎬ等.共聚制备低热膨胀透明聚酰亚胺薄膜[J].材料科学与工艺ꎬ2019ꎬ27(1):8186. [9]㊀陈颖ꎬ黄杰ꎬ张文祥ꎬ等.新型无色透明聚酰亚胺薄膜的制备与性能研究[J].绝缘材料ꎬ2018ꎬ51(8):15.[10]ChoHMꎬJeongYHꎬParkHJ.Polyimidefilm:USꎬ8846852B2[P].20140930.[11]SingJYꎬLeeJHꎬYeoYSꎬetal.Transparentpolyimidewithlow92第4期李智杰等.无色透明聚酰亚胺薄膜的研究进展coefficientofThermalExpansion:KRꎬ2011014662[P].20111230.[12]虞鑫海ꎬ阿尔斯兰 麦麦提敏.含脂环聚酰亚胺薄膜及其制备方法:中国ꎬ101580637A[P].20091118.[13]徐永芬ꎬ王玉帛ꎬ浦一帆ꎬ等.3ꎬ3ᶄ-二甲基-4ꎬ4ᶄ-二氨基二环己基甲烷型聚酰亚胺薄膜的制备与性能表征[J].绝缘材料ꎬ2017ꎬ50(9):4045.[14]张玲ꎬ徐瑛ꎬ陈妤红ꎬ等.可溶性透明聚酰亚胺薄膜的合成及性能研究[J].绝缘材料ꎬ2016ꎬ49(4):1418.[15]刘金刚ꎬ李卓ꎬ高志琪ꎬ等.含氟半脂环透明聚酰亚胺薄膜的制备和性能[J].材料研究学报ꎬ2008ꎬ22(6):615618. [16]王大可ꎬ王光辉.一种高透明性聚酰亚胺新材料的制备方法:中国ꎬ109232889A[P].20190118.[17]鲁云华ꎬ胡知之ꎬ王永飞ꎬ等.一种新型含氟共聚聚酰亚胺及其制备方法:中国ꎬ101831074A[P].20100915.[18]胡知之ꎬ鲁云华ꎬ房庆旭ꎬ等.可溶性含氟芳香半脂环聚酰亚胺膜材料及其制备方法:中国ꎬ102898644A[P].20130130. [19]OguroHꎬKiharaSꎬBitoT.Processforproducingsolvent ̄solublepolyimide:USꎬ7078477[P].20060718.[20]HideoSꎬToyohikoAꎬKoujirouTꎬetal.ThesynthesisandX ̄raystructureof1ꎬ2ꎬ3ꎬ4-cyclobutanetetracarboxylicdianhydrideandthepreparationofanewtypeofpolyimideshowingexcellenttrans ̄parencyandheatresistance[J].JournalofPolymerSciencePartAPolymerChemistryꎬ2000ꎬ38(1):108116.[21]裴响林.可溶性高光学透明性聚酰亚胺的制备与性能研究[D].桂林:桂林理工大学ꎬ2015.[22]莫鑫ꎬ李光ꎬ江建明.一类具有高光学透明㊁高可溶聚酰亚胺薄膜的合成与表征[J].材料导报ꎬ2012ꎬ26(2):6771. [23]刘金刚ꎬ张秀敏ꎬ孔祥飞ꎬ等.无色透明耐高温聚酰亚胺膜材料的制备与性能研究[J].功能材料ꎬ2006ꎬ37(9):14961499. [24]张玉谦ꎬ滕国荣.一种高性能无色透明聚酰亚胺薄膜及制备方法:中国ꎬ109280166A[P].20190129.[25]张谭妹.含芳砜结构无色透明聚酰亚胺的制备及性能研究[C].//2015年全国高分子学术论文报告会论文摘要集-主题G光电功能高分子ꎬ2015:1.[26]NiHJꎬLiuJGꎬWangZHꎬetal.Areviewoncolorlessandopti ̄callytransparentpolyimidefilms:Chemistryꎬprocessandengineer ̄ingapplications[J].JournalofIndustrialandEngineeringChem ̄istryꎬ2015ꎬ28(1):1627.[27]JinHSꎬChangJHꎬKimJC.Synthesisandcharacterizationofcolorlesspolyimidenanocompositefilmscontainingpendanttriflu ̄oromethylgroups[J].MacromolecularResearchꎬ2008ꎬ16(6):503509.[28]杨木泉ꎬ张洪峰ꎬ厉蕾ꎬ等.耐高温无色透明聚酰亚胺/SiO2纳米复合薄膜的合成及性能研究[J].绝缘材料ꎬ2017ꎬ50(10):15+9.ResearchprogressofcolorlessandtransparentpolyimidefilmsLiZhijieꎬYuXinhai(CollegeofChemistryꎬChemicalEngineeringandBiotechnologyꎬDonghuaUniversityꎬShanghai201600ꎬChina)Abstract:Thispaperreviewedtheresearchprogressandapplicationofcolorlessandtransparentpolyimidefilms.Firstlyꎬitanalyzedthereasonforthecolorofthepolyimidefilmandintroducedseveralmainmethodsꎬintro ̄ducingfluorinatedgroupsꎬalicyclicstructuresandnoncoplanarstructuresintothemainchainꎬtomakecolorlessandtransparentpolyimidefilmsintermsofmolecularstructuredesign.Thepaperanalyzedtheshortcomingsofthesemethods.Inadditionꎬtheapplicationofcolorlessandtransparentpolyimidefilminphotoelectricdeviceswasalsointroduced.Keywords:polyimideꎻthinfilmꎻcolorlessandtransparentꎻmoleculedesignꎻapplication03合成技术及应用第34卷。
33绝缘材料2009,42(2)聚酰亚胺的研究及应用进展蒋大伟1,2,姜其斌1,2,刘跃军1,李强军2(1.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008;2.株洲时代新材料科技股份有限公司,湖南株洲412007)摘要:综述了当前国内外聚酰亚胺材料的发展概况,阐述了聚酰亚胺材料的结构性能以及研究进展,展望了聚酰亚胺材料的发展趋势。
关键词:聚酰亚胺;结构;性能;进展中图分类号:T M 215.1文献标志码:A文章编号:1009-9239(2009)02-0033-04The Research and A pp lication of Pro g ress of the Pol y imideJIANG Da-Wei 1,2,JIANG Qi-Bin 1,2,L IU Yue-Jun 1,LI Qiang-Jun2(1.K ey Labor atory o f N ew Packagi ng M ater ial and T echnology of H unan Uni v ersityo f T echnology ,Zhuz hou 412008,Chi na;2.Zhuz hou T imes N ew M at er ial T echnolo gy Co.L td ,Zhuz hou 412007,Chi na )Abstract :The current status o f p ol y imid e films in the world was r eviewed .The str uctural p erfor -mance of the materials was p r esented,and the research p ro g ress and develo p ment tr end in the near future were p r o s p ected.Key words :po lyimide;structure;properties;progress蒋大伟等:聚酰亚胺的研究及研究进展收稿日期:2008-10-18作者简介:蒋大伟(1984-),男,安徽滁州人,硕士生,研究方向为绝缘材料的制备与改性,(电子信箱)daiw ei0555@y 。
聚酰亚胺薄膜(PI膜)市场需求分析引言聚酰亚胺薄膜(PI膜)是一种高性能的聚合物薄膜材料,在电子、航空航天、医疗器械等领域具有广泛的应用。
本文将对聚酰亚胺薄膜市场的需求进行分析。
聚酰亚胺薄膜的特点聚酰亚胺薄膜具有以下几个显著的特点:1.良好的耐热性:聚酰亚胺薄膜能够耐受高温,一般可达250℃以上。
2.优异的电绝缘性能:聚酰亚胺薄膜是一种优秀的电绝缘材料,具有较低的电导率。
3.高拉伸强度:聚酰亚胺薄膜具有较高的拉伸强度,能够满足各种应力要求。
4.良好的化学稳定性:聚酰亚胺薄膜在各种化学溶剂中都具有良好的稳定性。
市场需求分析电子行业聚酰亚胺薄膜在电子行业的应用非常广泛。
首先,在平板显示器制造中,聚酰亚胺薄膜作为基材被广泛应用于显示屏的保护层;其次,在柔性电子领域,聚酰亚胺薄膜可以用作可折叠屏幕的基材,满足消费者对柔性显示器的需求;此外,在电子元件封装方面,聚酰亚胺薄膜能够提供良好的电绝缘保护,用于电子元件的封装及隔离。
航空航天行业航空航天行业对材料的要求非常严苛,而聚酰亚胺薄膜具有耐高温、耐腐蚀等优势,非常适合航空航天领域的应用。
聚酰亚胺薄膜在航空航天领域常被用作电路板的绝缘材料,以保证电子元件的稳定工作;此外,聚酰亚胺薄膜还可用于制造航空航天器件的隔热薄膜,以提高器件的工作效率。
医疗器械领域在医疗器械领域,聚酰亚胺薄膜的优势同样得到了充分发挥。
聚酰亚胺薄膜可以用于医疗器械的包装,起到隔离与保护作用;此外,聚酰亚胺薄膜还可以用作医疗传感器的基材,具有优异的电绝缘性能,确保传感器的准确性与稳定性。
市场前景展望聚酰亚胺薄膜作为一种高性能材料,其在电子、航空航天、医疗器械领域的应用需求将继续增长。
随着人民生活水平的提高和科技的进步,对高性能材料的需求将日益增加。
另外,随着柔性电子技术的发展,对柔性绝缘材料的需求也将大幅增长。
因此,聚酰亚胺薄膜市场有着良好的发展前景。
结论通过对聚酰亚胺薄膜市场需求的分析,我们可以得出结论:聚酰亚胺薄膜在电子、航空航天、医疗器械等领域都有广泛的应用需求。
2023年聚酰亚胺(PI)薄膜行业市场规模分析
聚酰亚胺(PI)薄膜是一种高性能的工程塑料薄膜,具有高温、高强度、高隔热、高粘度、耐腐蚀等优良性能,在电子、航空航天、医药、化工等领域有着广泛的应用。
本文主要对聚酰亚胺(PI)薄膜行业市场规模进行分析。
一、聚酰亚胺(PI)薄膜产业现状
聚酰亚胺(PI)薄膜在电子、航空航天、医药、化工等领域都有着广泛的应用。
其中,电子领域占据了该行业的主要市场份额,包括平板显示器、智能手机、液晶电视、太阳能电池板等。
在航空航天领域,起落架材料、烟气透明壁板、引擎加热等领域都有着非常广泛的应用。
在医药领域,聚酰亚胺(PI)薄膜可用于制作医用导管等。
在化工领域,聚酰亚胺(PI)薄膜主要被用于制造化学反应器等。
二、聚酰亚胺(PI)薄膜市场规模
据统计,截至2019年,全球聚酰亚胺(PI)薄膜市场规模已经超过10亿美元,预
计在未来几年内将有进一步的增长。
其中,电子领域占据了该行业的主要市场份额,其次是航空航天领域和医药领域。
在未来几年,聚酰亚胺(PI)薄膜市场还将有较大的增长潜力。
三、聚酰亚胺(PI)薄膜行业市场前景
聚酰亚胺(PI)薄膜作为一种高性能的工程塑料材料,其在高性能领域的应用潜力和市场前景都非常广阔。
在电子领域,未来由于物联网、智能家居、苹果手机等大型电子设备的开发和应用将大力推动聚酰亚胺(PI)薄膜的需求。
在航空航天领域,未来的大力发展和建设将大力推动聚酰亚胺(PI)薄膜的需求。
在医药领域,聚酰亚胺
(PI)薄膜的应用于制造医用设备方面还有很大潜力。
总体来看,聚酰亚胺(PI)薄膜行业前景广阔。
聚酰亚胺的现状和将来聚酰亚胺的现状和将来聚酰亚胺的现状和将来李生柱(上海合成树脂研究所200233)摘要本文介绍聚酰亚胺的国内外现状、市场动态、技术上的进展和发展建议。
关键词聚酰亚胺MARKET STATUE AND FUTURE OF POLYIMIDESLi Shengzhu (Shanghai Research Institute of Synthetic Resin 200233)A bstract The paper give a minute description market status of polyimide resins &plastics in domestic &overseas mar ket , as well as promote the development proposal of polyimides .Keyword polyimide(PEI ) , 经过10年的试制和试用, 于1982年建成1万吨生产装置, 并正式以商品名Ultem 在市场上销售。
1978年日本宇部兴产公司介绍了聚联苯四甲酰亚胺Upilex R 继后又介绍了Upilexs 。
该聚合物制备的薄膜其性能与Kapton 存在相当大的差异, 特别是线胀系数小, 可以说是划时代的进步, 它的线胀系数为12~20ppm , 而铜的线胀系数为17ppm , 因此非常适宜作复铜箔薄膜, 广泛用于柔性印刷线路板。
1994年日本三井东压化学公司报道了全新的热塑性聚酰亚胺(Aurum ) 注射和挤出成型用粒料。
该树脂的薄膜商品名为Regulus , 其结构式如下:1. 1 发展沿革聚酰亚胺是一类含有酰亚胺基的高分子, 可以分成假热塑性聚酰亚胺(如Vespel 零件和型材) , 热塑性聚酰亚胺(如P84, Ultem 等) 和热固性聚酰亚胺(Kinel 模制零件等) 。
追溯它的发展史可以看到它是一类大有发展前途的高分子。