二次函数总结表
- 格式:doc
- 大小:572.00 KB
- 文档页数:4
二次函数的知识点归纳总结一般地,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a ≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
等号右边自变量的最高次数是2。
注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别.如同函数不等于函数关系。
二次函数的几种表达式一般式y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为[-b/2a,(4ac-b^2)/4a]把三个点代入式子得出一个三元一次方程组,就能解出a、b、c的值。
顶点式y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式交点式y=a(x-x)(x-x) (a≠0) [仅限于与x轴即y=0有交点A(x,0)和B(x,0)的抛物线,即b^2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x,0)和B(x,0),我们可设y=a(x-x)(x-x),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:X1+x2=-b/ax1·x2=c/ay=ax^2+bx+c=a(x^2+b/ax+c/a)=a[﹙x^2-(x+x2)x+x1x2. =a(x-x1)(x-x2)重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。
a>0时,开口方向向上;a<0时,开口方向向下。
a的绝对值可以决定开口大小。
二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)22-32十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
函数部分一、平面直角坐标系:1、不同位置的点的坐标的特征①点A(a,b)在第一象限时:a>0,b>0;在第二象限时:a<0,b>0;在第三象限时:a<0,b<0;在第四象限时:a>0.b<0.②坐标轴上的点不属于任何象限,在x轴上的点的纵坐标都为0;在y轴上的点的横坐标都为0,原点的坐标为(0,0)。
2、坐标平面内点的对称①点A(a,b)关于x轴的对称点为:A1(a,-b);②关于y轴的对称点为:A2(-a,b);③关于原点对称的点为:A3(-a,-b);3、坐标平面内点的距离①、点A(a,b)到x轴的距离为|b|②、点A(a,b)到y轴的距离为|a|③、点A(a,b)到原点的距离为√a2+b2④、x轴上两点A(a,0)和B(b,0)之间的距离|a-b|⑤、y轴上两点A(0,a)和B(0,b)之间的距离|a-b|练习:选择题:1.当23<m<1时,点P(3m-2,m-1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在电影院内,如果将“12排4号”记作(12,4),那么“3排6号”应表示为()A.(3,6) B.(6,3) C.(4,12) D.6号3排5.下列数据中不能确定物体位置的是()A.某市政府位于北京路32号 B.小明住在某小区3号楼7号C.太阳在我们的正上方 D.东经130°,北纬54°的城市6.以等腰三角形底角的度数x为自变量(单位:°),顶角的度数y为因变量的函数关系式为()A.y=180°-2x(0°≤x<90°) B.y=180°-2x(0°<x<90°)C.y=180°-2x(0°<x≤90°) D.y=180°-2x(0°≤x≤90°)7.某班同学在探究弹簧长度跟外力的变化关系时,实验记录得到的数据如下表:则y关于x的函数图象是()8.已知点A的坐标为A(3,m),若直线AB垂直于x轴,则点B的横坐标为()A.3 B.-3 C.m D.不能确定9.已知点P的坐标为(-2-b2),则点P在第()象限A.一 B.二 C.三 D.四10.已知点A、点B在x轴上,分别以A、B为圆心的两圆相交于M(a,5)、N(9,b),则a+b的值为()A.14 B.-14 C.-4 D.4二、填空题(本大题共8小题,每小题3分,共24分)x的取值范围是________.11.函数的位置的坐标为_________.13.如图,在平面直角坐标系中,A点的坐标为(2,2),•请你用另一种方法确定A点的位置______.14.如图,矩形ABCD的四个顶点的坐标分别为A(1,0),B(5,0),C(5,3),D(1,3),边CD上有一点E(4,3),过点E的直线与AB交于点F,若直线EF平分矩形的面积,则F点的坐标为_________.15.已知点A(a,b),点B(4,3),且AB∥x轴,则a≠_______,b=_______.16.已知点M(x,y)在第四象限,它到两个坐标轴的距离和等于17,且到x轴距离比到y轴的距离大3,则x=_______,y=_______.17.在直角坐标系中,已知两点A(0,2),B(4,1),点P是x轴上一点,则PA+PB的最小值是__________.18.根据指令[S,A](S,0°<A<180°)机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离S.现机器人在直角坐标系的坐标原点,且面对x轴的正方向,若给机器人下了一个指令(4,60°),则机器人应移到点的坐标为_________.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.画矩形ABCD,使AB=6,BC=4,在矩形所在的平面内建立适当的平面直角坐标系,并求此时A、B、C、D的坐标.20.如图,已知点A,点B的坐标分别为A(1,3),B(5,0),在x轴上是否存在点P,•使△PAB为等腰三角形?若存在请直接写出P点的坐标;若不存在,请说明理由.21.已知:四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0).请确定这个四边形的面积.22.如图,平面直角坐标系中,等边△ABO的顶点A的坐标是(1,a),求点B•的坐标及S△ABO.23.(1)请在如图所示的方格纸中,将△ABC向上平移3格,再向右平移6格,•得到△A1B1C1,再将△A1B1C1按顺时针方向绕点B1旋转90°,得到△A2B1C2,最后将△A2B1C2以点C2•为位似中心放大到2倍,得到△A3B2C2.(2)请在方格纸的适当位置画上坐标轴(一个小正方形的边长为1个单位长度),•在你所建立的平面直角坐标系中,点C、C1、C2的坐标分别为C(_______),C1(_______),C2(_________).24.如图,在平面直角坐标系中,A(-3,4),B(-1,2),O为原点,求△AOB的面积.25.在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)•的点用线段依次连结起来形成一个图案.(1)将这四个顶点的纵坐标不变,横坐标变为原来的2部,将所得的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2)横坐标保持不变,纵坐标加3呢?(3)横坐标分别乘-1呢?三、一次函数1)若两个变量x,y之间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y 是x的一次函数。
数学二次函数知识点总结一二函数知识点总结8映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其**(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的`习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.函数知识点总结9一次函数:一次函数图像与性质是中考必考的内容之一。
中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。
甚至有存在探究题目出现。
主要考察内容:①会画一次函数的图像,并掌握其性质。
②会根据已知条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一ic函数与二元一次方程组,一元一次不等式的关系。
突破方法:①正确理解掌握一次函数的概念,图像和性质。
②运用数学结合的思想解与一次函数图像有关的问题。
③掌握用待定系数法球一次函数解析式。
④做一些综合题的训练,提高分析问题的能力。
函数性质:1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的'点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
二次函数基础知识点总结1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.3.几种特殊的二次函数的图像特征如下:)(0≠a4. 二次函数平移规律: 左加右减 上加下减 设函数为()k h x a y +-=2,那么左加右减是加减在h 上,指的是x 上 上加下减是加减在k 上,指的是y 上5.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.求抛物线的顶点、对称轴的方法(1)公式法:c bx ax y ++=2,顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.8.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121。
二次函数图表总结二次函数图表总结y=ax图象2a>0ay=ax+k图象2a>0a0开口对称性顶点k0ky=a(x-h)2图象a>0a0开口对称性顶点增减性h0hy=a(x-h)+k2a>0a0,k>0h>0,k0,kh0顶点是最低点左右平移y=ax2+k上下平移y=a(xh)2+k上下平移y=a(xh)2左右平移y=ax2一般地,抛物线y=a(x-h)+k与y=ax2的形状相同,位置不同。
2y=ax2向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k扩展阅读:二次函数单元总结二次函数单元总结【知识归纳和总结】一、知识网络二次函数的定义yax2bxc(a0)yax2(a0)二次函数的图像ya(xm)2k(a0)yax2bxc(a0)二次函数二次函数的性质开口方向、对称轴、顶点坐标、增减性,二次函数与一元二次方程的关系二次函数的应用最大面积、利润等二、知识要点分布1.二次函数的定义:形如yax2bxc(a、b、c为常数,a0)的函数叫二次函数。
任何一个二次函数的表达式都可以化为yax2bxc的形式,这就是二次函数的一般形式。
2.二次函数表达式的几种形式:(1)y=ax2;(2)y=ax2+k;(3)y=a(x+h)2;(4)(5)y=ax2+bx+c(a0)。
y=a(x+h)2+k;3.二次函数表达式的形式及对称轴、顶点坐标。
(1)一般式:yaxbxc(a、b、c为常数,a0),其对称轴为直线x=-2b,顶点2ab4ac-b2坐标为-,。
2a4a(2)顶点式:y=a(x+h)+k(a、h、k为常数,a0),其对称轴为直线x=-h,顶点坐标为-h,k。
(3)交点式:y=ax-x1x-x2,其中a0,x1、x2是抛物线与x轴两个交点的横坐标,即一元二次方程ax-x1x-x2=0的两个根。
4.二次函数图像之间的平移关系1向上(k>0)或向下(k0)或向下(k0)或向下(k0a对称轴顶点坐标直线x=-b2a直线x=-b2ab4ac-b2-,2a4a当x-小;当x-大;b4ac-b2-,2a4a 当x-大;性质增减性b时,y随x的增大而减2ab时,y随x的增大而增2ab时,y随x的增大而增2ab时,y随x的增大而减2a当x-小;最值当x=-b时,y有最小值,2a当x=-b时,y有最大值,2a4ac-b2y最小值=4a","p":{"h":19.298,"w":9.111,"x":407.786,"y":455.644,"z":象而具体了。
2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。
(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。
2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
初中数学二次函数知识点总结I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y 轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
人教版初三数学二次函数知识点及难点总结Revised by BETTY on December 25,2020初三数学二次函数知识点总结二次项系数a决定二次函数图像的开口方向和大小.当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口.|a|越大,则二次函数图像的开口越小.1、决定对称轴位置的因素一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右.事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到.2、决定二次函数图像与y轴交点的因素常数项c决定二次函数图像与y轴交点.二次函数图像与y轴交于(0,c)一、二次函数概念:1.二次函数的概念:一般地,形如2=++(a b cy ax bx c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对Array值越大,抛物线的开口越小。
2.2=+的性质:上加下减。
y ax c)2h-()2=-+的性质:y a x h k三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小; 当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1、考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2、综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )2-32y=-2x 2y=-2(x-3)21、考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
中a b ac k a b h 4422-=-=,.Ø 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.² 二次函数解析式的表示方法二次函数解析式的表示方法Ø 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ¹);Ø 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ¹);Ø 两根式:12()()y a x x x x =--(0a ¹,1x ,2x 是抛物线与x 轴两交点的横坐标). Ø 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ² 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点的三要素:开口方向、对称轴、顶点. .Ø a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;时,开口向下;a 相等,抛物线的开口大小、形状相同相等,抛物线的开口大小、形状相同. .Ø 对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . Ø 顶点坐标坐标:),(ab ac a b 4422-- Ø 顶点决定抛物线的位置顶点决定抛物线的位置..几个不同的二次函数,几个不同的二次函数,如果二次项系数如果二次项系数a 相同,相同,那么抛物线的开口方向、那么抛物线的开口方向、那么抛物线的开口方向、开口开口大小完全相同,只是顶点的位置不同大小完全相同,只是顶点的位置不同. .² 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系与函数图像的关系 Ø 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ¹.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大的大小决定开口的大 小.小.Ø 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.决定了抛物线的对称轴. ⑴ 在0a >的前提下,的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;轴左侧;当0b =时,02b a-=,即抛物线的对称轴就是y 轴;轴;二次函数知识点总结及相关典型题目第一部分 二次函数基础知识² 相关概念及定义相关概念及定义Ø 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ¹)的函数,叫做二次函数。
二次函数知识点总结在数学中,二次函数的最高阶必须是二次的。
在数学中,二次函数主要研究学生对公式的应用,是数学知识的重点。
二次函数知识点总结有哪些?一起来看看二次函数知识点总结,欢迎查阅!数学二次函数知识点归纳计算方法1.样本平均数:⑴ ;⑵若,,…, ,则(a―常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。
通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。
2.样本方差:⑴ ;⑵若, ,…, ,则(a―接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。
3.样本标准差:三、应用举例(略)初三数学知识点:第四章直线形重点相交线与平行线、三角形、四边形的有关概念、判定、性质。
☆ 内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
初三數學 二次函數 知識點總結一、二次函數概念:1.二次函數的概念:一般地,形如2y ax bx c =++(a b c ,,是常數,0a ≠)的函數,叫做二次函數。
這裏需要強調:和一元二次方程類似,二次項係數0a ≠,而b c ,可以為零.二次函數的定義域是全體實數.2. 二次函數2y ax bx c =++的結構特徵:⑴ 等號左邊是函數,右邊是關於引數x 的二次式,x 的最高次數是2.⑵ a b c ,,是常數,a 是二次項係數,b 是一次項係數,c 是常數項. 二、二次函數的基本形式1. 二次函數基本形式:2y ax =的性質: a 的絕對值越大,拋物線的開口越小。
2. 2y ax c =+的性質: 上加下減。
3. ()2y a x h =-的性質:左加右減。
4. ()2y a x h k =-+的性質:三、二次函數圖象的平移1. 平移步驟:方法一:⑴ 將拋物線解析式轉化成頂點式()2y a x h k =-+,確定其頂點座標()h k ,; ⑵ 保持拋物線2y ax =的形狀不變,將其頂點平移到()h k ,處,具體平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移規律在原有函數的基礎上“h 值正右移,負左移;k 值正上移,負下移”. 概括成八個字“左加右減,上加下減”. 方法二:⑴c bx ax y ++=2沿y 軸平移:向上(下)平移m 個單位,c bx ax y ++=2變成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿軸平移:向左(右)平移m 個單位,c bx ax y ++=2變成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函數()2y a x h k =-+與2y ax bx c =++的比較從解析式上看,()2y a x h k =-+與2y ax bx c =++是兩種不同的表達形式,後者通過配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函數2y ax bx c =++圖象的畫法五點繪圖法:利用配方法將二次函數2y ax bx c =++化為頂點式2()y a x h k =-+,確定其開口方向、對稱軸及頂點座標,然後在對稱軸兩側,左右對稱地描點畫圖.一般我們選取的五點為:頂點、與y 軸的交點()0c ,、以及()0c ,關於對稱軸對稱的點()2h c ,、與x 軸的交點()10x ,,()20x ,(若與x 軸沒有交點,則取兩組關於對稱軸對稱的點).畫草圖時應抓住以下幾點:開口方向,對稱軸,頂點,與x 軸的交點,與y 軸的交點.六、二次函數2y ax bx c =++的性質1. 當0a >時,拋物線開口向上,對稱軸為2bx a =-,頂點座標為2424b ac b a a ⎛⎫-- ⎪⎝⎭,.當2b x a <-時,y 隨x 的增大而減小;當2b x a >-時,y 隨x 的增大而增大;當2bx a=-時,y 有最小值244ac b a-.2. 當0a <時,拋物線開口向下,對稱軸為2b x a =-,頂點座標為2424b ac b a a ⎛⎫-- ⎪⎝⎭,.當2bx a <-時,y 隨x 的增大而增大;當2b x a >-時,y 隨x 的增大而減小;當2b x a =-時,y 有最大值244ac b a-.七、二次函數解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 為常數,0a ≠);2. 頂點式:2()y a x h k =-+(a ,h ,k 為常數,0a ≠);3. 兩根式:12()()y a x x x x =--(0a ≠,1x ,2x 是拋物線與x 軸兩交點的橫坐標).注意:任何二次函數的解析式都可以化成一般式或頂點式,但並非所有的二次函數都可以寫成交點式,只有拋物線與x 軸有交點,即240b ac -≥時,拋物線的解析式才可以用交點式表示.二次函數解析式的這三種形式可以互化.八、二次函數的圖象與各項係數之間的關係1. 二次項係數a二次函數2y ax bx c =++中,a 作為二次項係數,顯然0a ≠.⑴ 當0a >時,拋物線開口向上,a 的值越大,開口越小,反之a 的值越小,開口越大; ⑵ 當0a <時,拋物線開口向下,a 的值越小,開口越小,反之a 的值越大,開口越大.總結起來,a 決定了拋物線開口的大小和方向,a 的正負決定開口方向,a 的大小決定開口的大小. 2. 一次項係數b在二次項係數a 確定的前提下,b 決定了拋物線的對稱軸. ⑴ 在0a >的前提下,當0b >時,02ba-<,即拋物線的對稱軸在y 軸左側; 當0b =時,02ba-=,即拋物線的對稱軸就是y 軸; 當0b <時,02ba->,即拋物線對稱軸在y 軸的右側. ⑵ 在0a <的前提下,結論剛好與上述相反,即 當0b >時,02ba->,即拋物線的對稱軸在y 軸右側;當0b =時,02ba-=,即拋物線的對稱軸就是y 軸; 當0b <時,02ba-<,即拋物線對稱軸在y 軸的左側. 總結起來,在a 確定的前提下,b 決定了拋物線對稱軸的位置.ab 的符號的判定:對稱軸abx 2-=在y 軸左邊則0>ab ,在y 軸的右側則0<ab ,概括的說就是“左同右異” 總結:3. 常數項c⑴ 當0c >時,拋物線與y 軸的交點在x 軸上方,即拋物線與y 軸交點的縱坐標為正; ⑵ 當0c =時,拋物線與y 軸的交點為座標原點,即拋物線與y 軸交點的縱坐標為0; ⑶ 當0c <時,拋物線與y 軸的交點在x 軸下方,即拋物線與y 軸交點的縱坐標為負. 總結起來,c 決定了拋物線與y 軸交點的位置.總之,只要a b c ,,都確定,那麼這條拋物線就是唯一確定的.二次函數解析式的確定:根據已知條件確定二次函數解析式,通常利用待定係數法.用待定係數法求二次函數的解析式必須根據題目的特點,選擇適當的形式,才能使解題簡便.一般來說,有如下幾種情況:1. 已知拋物線上三點的座標,一般選用一般式;2. 已知拋物線頂點或對稱軸或最大(小)值,一般選用頂點式;3. 已知拋物線與x 軸的兩個交點的橫坐標,一般選用兩根式;4. 已知拋物線上縱坐標相同的兩點,常選用頂點式.九、二次函數圖象的對稱二次函數圖象的對稱一般有五種情況,可以用一般式或頂點式表達 1. 關於x 軸對稱2y ax bx c =++關於x 軸對稱後,得到的解析式是2y ax bx c =---;()2y a x h k =-+關於x 軸對稱後,得到的解析式是()2y a x h k =---;2. 關於y 軸對稱2y ax bx c =++關於y 軸對稱後,得到的解析式是2y ax bx c =-+;()2y a x h k =-+關於y 軸對稱後,得到的解析式是()2y a x h k =++;3. 關於原點對稱2y ax bx c =++關於原點對稱後,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+關於原點對稱後,得到的解析式是()2y a x h k =-+-; 4. 關於頂點對稱(即:拋物線繞頂點旋轉180°)2y ax bx c =++關於頂點對稱後,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+關於頂點對稱後,得到的解析式是()2y a x h k =--+.5. 關於點()m n ,對稱()2y a x h k =-+關於點()m n ,對稱後,得到的解析式是()222y a x h m n k =-+-+- 根據對稱的性質,顯然無論作何種對稱變換,拋物線的形狀一定不會發生變化,因此a 永遠不變.求拋物線的對稱拋物線的運算式時,可以依據題意或方便運算的原則,選擇合適的形式,習慣上是先確定原拋物線(或運算式已知的拋物線)的頂點座標及開口方向,再確定其對稱拋物線的頂點座標及開口方向,然後再寫出其對稱拋物線的運算式.十、二次函數與一元二次方程:1. 二次函數與一元二次方程的關係(二次函數與x 軸交點情況):一元二次方程20ax bx c ++=是二次函數2y ax bx c =++當函數值0y =時的特殊情況. 圖象與x 軸的交點個數:① 當240b ac ∆=->時,圖象與x 軸交於兩點()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的兩根.這兩點間的距離21AB x x =-.② 當0∆=時,圖象與x 軸只有一個交點; ③ 當0∆<時,圖象與x 軸沒有交點.1' 當0a >時,圖象落在x 軸的上方,無論x 為任何實數,都有0y >; 2' 當0a <時,圖象落在x 軸的下方,無論x 為任何實數,都有0y <. 2. 拋物線2y ax bx c =++的圖象與y 軸一定相交,交點座標為(0,)c ;3. 二次函數常用解題方法總結:⑴ 求二次函數的圖象與x 軸的交點座標,需轉化為一元二次方程;⑵ 求二次函數的最大(小)值需要利用配方法將二次函數由一般式轉化為頂點式;⑶ 根據圖象的位置判斷二次函數2y ax bx c =++中a ,b ,c 的符號,或由二次函數中a ,b ,c 的符號判斷圖象的位置,要數形結合;⑷ 二次函數的圖象關於對稱軸對稱,可利用這一性質,求和已知一點對稱的點座標,或已知與x 軸的一個交點座標,可由對稱性求出另一個交點座標. ⑸ 與二次函數有關的還有二次三項式,二次三項式2(0)ax bx c a ++≠本身就是所含字母x 的二次函數;下麵以0a >時為例,揭示二次函數、二次三項式和一元二次方程之間的內在聯繫:二次函數圖像參考:十一、函數的應用二次函數應用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函數考查重點與常見題型1. 考查二次函數的定義、性質,有關試題常出現在選擇題中,如:已知以x 為引數的二次函數2)2(22--+-=m m x m y 的圖像經過原點, 則m 的值是2. 綜合考查正比例、反比例、一次函數、二次函數的圖像,習題的特點是在同一直角坐標系內考查2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)2兩個函數的圖像,試題類型為選擇題,如:如圖,如果函數b kx y +=的圖像在第一、二、三象限內,那麼函數12-+=bx kx y 的圖像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定係數法求二次函數的解析式,有關習題出現的頻率很高,習題類型有中檔解答題和選拔性的綜合題,如: 已知一條拋物線經過(0,3),(4,6)兩點,對稱軸為35=x ,求這條拋物線的解析式。
二次函数y=ax 2(a ≠0)与y=ax 2+c (a ≠0)的图象与性质要点一、二次函数的概念 1.二次函数的概念一般地,形如y=ax 2+bx+c (a ≠0,a, b, c 为常数)的函数是二次函数. 若b =0,则y=ax 2+c ; 若c =0,则y=ax 2+bx ; 若b=c =0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c (a ≠0)是二次函数的一般式. 二次函数由特殊到一般,可分为以下几种形式:①y=ax 2(a ≠0);②y=ax 2+k (a ≠0);③y=a(x-h)2(a ≠0);④y=a(x-h)2+k (a ≠0),其中abh 2-=,a b ac k 442-=;⑤y=ax 2+bx+c (a ≠0). 要点诠释:如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么y 叫做x 的二次函数.这里,当a =0时就不是二次函数了,但b 、c 可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.2.二次函数解析式的表示方法1. 一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0);2. 顶点式:y=a(x-h)2+k (a ,h ,k 为常数,a ≠0);3. 两根式:))((21x x x x a y --=(a ≠0,x 1,x 2是抛物线与x 轴两交点的横坐标)(或称交点式).要点诠释:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.x 240b ac -≥要点二、二次函数y=ax2(a≠0)的图象及性质1.二次函数y=ax2(a≠0)的图象用描点法画出二次函数y=ax2(a≠0)的图象,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点。