电磁场与电磁波复习资料全
- 格式:doc
- 大小:376.50 KB
- 文档页数:13
电磁场与电磁波知识点复习一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或变化的电场产生的。
电荷是产生电场的源,库仑定律描述了两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
电场强度是描述电场强弱和方向的物理量,其定义为单位正电荷在电场中所受到的力。
电流是产生磁场的源,安培定律描述了电流元之间的相互作用。
磁场强度则是描述磁场强弱和方向的物理量。
二、电磁波的产生电磁波是由时变的电场和时变的磁场相互激发而产生,并在空间中以一定的速度传播。
变化的电流和电荷分布都可以产生电磁波。
例如,一个振荡的电偶极子就是一种常见的电磁波源。
当电偶极子中的电荷来回振动时,周围的电场和磁场也随之发生周期性的变化,从而产生电磁波向空间传播。
三、电磁波的性质1、电磁波是横波电磁波中的电场强度和磁场强度都与电磁波的传播方向垂直,这是电磁波作为横波的重要特征。
2、电磁波的传播速度在真空中,电磁波的传播速度恒定,等于光速 c,约为 3×10^8 米/秒。
3、电磁波的频率和波长频率和波长是描述电磁波的两个重要参数,它们之间的关系为:波长=光速/频率。
电磁波的频率范围非常广泛,从低频的无线电波到高频的伽马射线。
4、电磁波的能量电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培麦克斯韦定律。
高斯定律描述了电场的通量与电荷量之间的关系;高斯磁定律表明磁场的通量总是为零;法拉第电磁感应定律说明了时变磁场可以产生电场;安培麦克斯韦定律则指出时变电场也可以产生磁场。
这组方程统一了电学和磁学现象,预言了电磁波的存在,并奠定了现代电磁学的基础。
五、电磁波的传播电磁波在不同介质中的传播特性不同。
在均匀介质中,电磁波遵循直线传播规律;当电磁波从一种介质进入另一种介质时,会发生折射和反射现象。
电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。
4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。
如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。
如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。
电流是磁场的旋涡源。
5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。
Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。
6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。
第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。
一、基本概念;电场强度▁▁▁▁、磁场强度▁▁▁▁▁、坡印廷向量▁▁▁、电位▁▁▁、极化强度▁▁▁▁、电通量密度▁▁▁▁、磁化强度▁▁▁▁、电感▁▁▁、能量密度▁▁▁▁、介电常数▁▁▁▁▁、电偶极矩▁▁▁▁2.解释名词:散度、旋度、电场强度、传导电流、位移电流、电位、梯度、电偶极子、磁偶极子、束缚电荷、束缚电流、极化强度、磁化强度、电容、电感、互感、能量密度、恒定电场、等位面、漏电流、铁磁物质、磁通、坡印廷向量、理想导体、理想介质3.主要内容:电场、磁场边界条件;电场与电位的关系;真空中的电场;介质中的电场;真空中的磁场;介质中的磁场;高斯定律;安培环路定律;同轴电缆中电场磁场计算;磁通量的计算;直导线对线框的作用力;同轴线电容、漏电流、电导计算;复坡印廷向量,坡印廷向量平均值;二、填空题:①.电场的最基本特征就是电场对运动或静止的电荷都有作用力。
②.在静电场中,导体内电场等于▁▁,导体是▁▁▁▁体,导体表面是▁▁▁▁,电力线▁▁▁于导体表面。
而在恒定电场中,导体内部可能存在▁▁▁。
③.在恒定电场中有⎰∙ss d E=0,它说明在均匀内部虽然有恒定电流,但没有▁▁▁,恒定电荷只能分布在导体▁▁▁。
④.在导电媒质中,平均磁能密度比平均电能密度▁▁。
这正是由于σ≠0 所引起的▁▁▁所致,因为它激发了附加▁▁▁。
⑤.全电流包括▁▁▁▁▁▁、▁▁▁▁▁▁和▁▁▁▁▁▁。
⑥.当磁力线从▁▁▁▁▁▁进入到▁▁▁▁▁▁时,▁▁▁▁一侧的B ▁▁▁于分界面。
⑦.介质在外电场作用下,内部的▁▁▁▁▁形成▁▁▁▁▁,对外呈▁▁▁▁▁▁,从而改变了原来的▁▁▁▁▁▁。
一、判断与选择(判断题正确时在括号内打√,错题打╳,选择题直接选)(分)(1) 电场强度相同的地方电位也一定相等。
( )(2) 电力线与磁力线在任何情况下都相互垂直 ( )(3) 电感的大小由流过导体的电流确定。
( )(4) 电场磁场在通过不同媒质界面会发生突变。
“电磁场与电磁波“复习提纲根本定义、根本公式、根本概念、根本计算一、场的概念〔§1-1〕 1. 场的定义2. 标量场与矢量场:等值面、矢量线 二、矢量分析1. 矢量点积与叉积的定义:〔第一次习题〕2. 三种常用正交坐标系3.标量的梯度〔§1-3〕 a) 等值面:例1-1 b) 方向导数:例1-2c) 梯度定义与计算:例1-3 4. 矢量场的通量与散度〔§1-4〕a) 矢量线的定义:例1-4b) 矢量场的通量:()()S e r F S r F n SSd d⋅=⋅=⎰⎰ψc) 矢量场的散度定义与计算:例1-5d) 散度定理〔高斯定理〕:⎰⎰⋅=⋅∇SVS F V Fd d5. 矢量场的环量与旋度〔§1-5〕a) 矢量场的环流〔环量〕:⎰⋅=ll F d Γb) 矢量场的旋度定义与计算:例1-6 c) 旋度定理〔斯托克斯定理〕:()⎰⎰⋅=⋅⨯∇CSl F S Fd d6. 无源场与无散场a) 旋度的散度()0≡⨯∇⋅∇A ,散度处处为0的矢量场为无源场,有A F⨯∇=b) 梯度的旋度()0≡∇⨯∇ϕ,旋度处处为0的矢量场为无旋场,有u F -∇=;c) 矢量场的分类 7. 拉普拉斯算子8. 亥姆霍兹定理:概念与意义 根本概念:1. 矢量场的散度和旋度用于描述矢量场的不同性质a) 矢量场的旋度是矢量,矢量场的散度是标量;b) 旋度描述矢量场中场量与涡旋源的关系,散度描述矢量场中场量与通量源的关系; c) 无源场与无旋场的条件;d) 旋度描述场分量在与其垂直方向上的变化规律;散度描述场分量沿各自方向上的变化规律 2. 亥姆霍兹定理概括了矢量场的根本性质a) 矢量场由其散度、旋度和边界条件唯一确定;b) 由于矢量的散度和旋度分别对应矢量场的一种源,故分析矢量场总可以从研究其散度和旋度着手; c) 散度方程和旋度方程是矢量场的微分形式,故可以从矢量场沿闭合面的通量和沿闭合路径的环流着手,得到根本方程的积分形式。
电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++=面积元:⎪⎩⎪⎨⎧===dxdy dS dxdzdS dydzdS zyx ,体积元:dxdydzd =τ(2)柱坐标系长度元:⎪⎩⎪⎨⎧===dz dl rd dl drdl z r ϕϕ,面积元⎪⎩⎪⎨⎧======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ϕϕϕϕ,体积元:dzrdrd d ϕτ=(3)球坐标系长度元:⎪⎩⎪⎨⎧===ϕθθϕθd r dl rd dl drdl r sin ,面积元:⎪⎩⎪⎨⎧======θϕθϕθθθϕϕθθϕrdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:ϕθθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系⎪⎪⎩⎪⎪⎨⎧==+=⎪⎩⎪⎨⎧===z z x y yx r zz r y r x arctan,sin cos 22ϕϕϕ(2)直角坐标系与球坐标系的关系⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=⎪⎩⎪⎨⎧===z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222222ϕθθϕθϕθ(3)柱坐标系与球坐标系的关系⎪⎪⎩⎪⎪⎨⎧=+=+=⎪⎩⎪⎨⎧===ϕϕθθϕϕθ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x∂∂+∂∂+∂∂=∇=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r∂∂+∂∂+∂∂=∇=→→→μϕμμμμϕ1(3)球坐标系中:ϕμθθμμμμϕθ∂∂+∂∂+∂∂=∇=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:zA y A x A A div zy X ∂∂+∂∂+∂∂=→(2)柱坐标系中:z A A r rA r r A div zr ∂∂+∂∂+∂∂=→ϕϕ1)(1(3)球坐标系中:ϕθθθθϕθ∂∂+∂∂+∂∂=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、高斯散度定理:⎰⎰⎰→→→→=⋅∇=⋅ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。
电磁场与电磁波知识点要求第一章 矢量分析和场论基础1、理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。
梯度:x y z u u uu x y z∂∂∂∇=++∂∂∂e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。
y x zA A A x y z∂∂∂∇⋅=++∂∂∂A散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ()()V S dV d ∇⋅=⋅⎰⎰⎰⎰⎰A A S ,x y zy y x x z zx y z xy zA A A A A A x y z y z z x xy A A A ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫∇⨯==-+-+- ⎪⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭e e e A e e e旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。
斯托克斯定理:()()S L d d ∇⨯⋅=⋅⎰⎰⎰A S A l数学恒等式:()0u ∇⨯∇=,()0∇⋅∇⨯=A 3、理解亥姆霍兹定理的重要意义:若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
u =∇⨯-∇A F第二、三、四章 电磁场基本理论1、 理解静电场与电位的关系,QPu d =⋅⎰E l ,()()u =-∇E r r2、 理解静电场的通量和散度的意义,d d d 0V SV SVρ⎧⋅=⎪⎨⋅=⎪⎩⎰⎰⎰D S E l ,0V ρ∇⋅=⎧⎨∇⨯=⎩D E 静电场是有散无旋场,电荷分布是静电场的散度源。
3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
一、名词解释1.通量、散度、高斯散度定理通量:矢量穿过曲面的矢量线总数。
(矢量线也叫通量线,穿出的为正,穿入的为负)散度:矢量场中任意一点处通量对体积的变化率。
高斯散度定理:任意矢量函数A的散度在场中任意一个体积的体积分,等于该矢量函在限定该体积的闭合面的法线分量沿闭合面的面积分。
2.环量、旋度、斯托克斯定理环量:矢量A沿空间有向闭合曲线C的线积分称为矢量A沿闭合曲线l的环量。
其物理意义随 A 所代表的场而定,当 A 为电场强度时,其环量是围绕闭合路径的电动势;在重力场中,环量是重力所做的功。
旋度:面元与所指矢量场f之矢量积对一个闭合面S的积分除以该闭合面所包容的体积之商,当该体积所有尺寸趋于无穷小时极限的一个矢量。
斯托克斯定理:一个矢量函数的环量等于该矢量函数的旋度对该闭合曲线所包围的任意曲面的积分。
3.亥姆霍兹定理在有限区域 V 的任一矢量场,由他的散度,旋度和边界条件(即限定区域 V 的闭合面S 上矢量场的分布)唯一的确定。
说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.电场力、磁场力、洛仑兹力电场力:电场力:电场对电荷的作用称为电力。
磁场力:运动的电荷,即电流之间的作用力,称为磁场力。
洛伦兹力:电场力与磁场力的合力称为洛伦兹力。
5.电偶极子、磁偶极子电偶极子:一对极性相反但非常靠近的等量电荷称为电偶极子。
磁偶极子:尺寸远远小于回路与场点之间距离的小电流回路(电流环)称为磁偶极子。
6.传导电流、位移电流传导电流:自由电荷在导电媒质中作有规则运动而形成的电流。
位移电流:电场的变化引起电介质部的电量变化而产生的电流。
7.全电流定律、电流连续性方程全电流定律(电流连续性原理):任意一个闭合回线上的总磁压等于被这个闭合回线所包围的面穿过的全部电流的代数和。
电流连续性方程:8.电介质的极化、极化矢量电介质的极化:把一块电介质放入电场中,它会受到电场的作用,其分子或原子的正,负电荷将在电场力的作用下产生微小的弹性位移或偏转,形成一个个小电偶极子,这种现象称为电介质的极化。
极化矢量 P:单位体积的电偶极矩矢量和。
9.磁介质的磁化、磁化矢量磁介质的磁化:当把一块介质放入磁场中时,它也会受到磁场的作用,其中也会形成一个个小的磁偶极子,这种现象称为介质的磁化。
磁化矢量 M:单位体积磁偶极矩的矢量和。
10.介质中的三个物态方程D=εE,B=μH,J C=γE11.静态场、静电场、恒定电场、恒定磁场静态场:场量不随时间变化的场。
静电场:静止电荷或静止带电体产生的场。
恒定电场:载有恒定电流的导体部及其周围介质中产生的电场。
恒定磁场:由恒定电流或永磁体产生的磁场不随时间变化,称为恒定磁场12.静电场的位函数满足的泊松方程、拉普拉斯方程泊松方程:在有“源”的区域,静电场的电位函数φ所满足的方程,即2ρφε∇=-,这种形式的方程。
拉普拉斯方程:场中某处有电荷密度ρ=0,即在无源区域,这中形式的方程20φ∇=。
13.对偶定理、叠加原理、唯一性定理对偶定理:如果描述两种物理现象的方程具有相同的数学形式,并且具有相似的边界条件或对应的边界条件,那么他们的数学解的形式也将是相同的。
叠加原理:若Φ1和Φ2分别满足拉普拉斯方程,即和,则和的线性组合:必然也满足拉普拉斯方程.式中a、b均为常系数。
唯一性定理:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。
14.电磁波、平面电磁波、均匀平面电磁波电磁波:同相震荡且相互垂直的电场与磁场交互形成的行进波动。
平面电磁波:对于任意时刻t,在其传播空间具有相同相位的点所构成的等相位面为平面的波称为平面波,具有这种性质的电磁波称为平面电磁波。
均匀平面电磁波:在任意时刻,波所在的平面中场的大小和方向都是不变的平面电磁波。
15.电磁波的极化均匀平面波传播的过程中,在某一波阵面上电场矢量的振动状态随时间变化的方式称为波的极化(或称为偏振)。
16.损耗正切复介电系数的虚部与实部的比值γ/ωε它代表了传导电流和位移电流密度的比值。
该比值是一个相角,可以用来描述媒质损耗的强弱,工业上称之为损耗正切。
17.正常色散介质、非正常色散介质正常色散介质:波长大的波,其相速度大,群速小于相速;非正常色散介质:是波长大的波,其相速度小,群速大于相速18.相速、群速相速:波的相位的传播速度,V=ω/k(其中k为传播常数或波速)。
通俗的说,就是电磁波形状向前变化的速度。
即正弦波的最大速度。
一般情况下,速度 v 是恒定相位面在波中向前推进的速度,群速:定义为V g=dω/dk,群速是一个代表能量的传播速度,群速是波包络上某一恒定相位点推进的速度。
19.波阻抗、传播矢量波阻抗:媒质电阻率和电磁场测量值的关系,是媒质的固有属性,平面波的波阻抗为电磁波中电场与磁场的振幅比。
传播矢量:许多不同频率的正弦电磁波的合成信号在介质中传播的速度。
不同频率正弦波的振幅和相位不同,在色散介质中,相速不同,故在不同的空间位置上的合成信号形状会发生变化。
群速是一个代表能量的传播速度。
20.色散介质、耗散介质色散介质:不同频率的波在同一种介质中以以不同的速度传播的现象称为色散,相应的介质 称为色散介质。
耗散介质:耗散介质是指其折射率的虚部为非零值的媒质,这时波在传播的过程中会逐渐衰减。
(电导率≠0,但任然保持均匀,线性及各向同性等特性)21.趋肤效应、趋肤深度趋肤效应:当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体部的电流越来越小的现象;趋肤深度:将电磁波的振幅衰减到 e -1时,它透入导电介质的深度定义为趋肤深度,用δ表示。
趋肤深度的表达式/ic n δω=22.全反射、全折射全反射:当电磁波入射到两种媒质交界面时,如果反射系数 R=1,则投射到界面上的电磁波将全部反射回第一种媒质中,这种情况称为全反射。
全折射:当电磁波以某一入射角入射到两种煤质交界面时,如果反射系数为零,则全部电磁能量都进入到第二种媒质,这种情况称为全折射。
二、简答题1.散度和旋度均是用来描述矢量场的,它们之间有什么不同?答:散度描述的是场中任意一点通量对体积的变化率旋度描述的是场中任意一点最大环量密度和最大环量密度方向。
2.写出直角坐标系下的散度、旋度和梯度公式→→→→→→→→•∇=⎪⎭⎫⎝⎛++•⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=A e e e e e e A x x z z y y x z y A A A z y x divz A y A x A zy x ∂∂+∂∂+∂∂=→A div3.亥姆霍兹定理的描述及其物理意义是什么?答:亥姆霍茨定理:在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定;物理意义:要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度4.分别叙述麦克斯韦方程组微分形式的物理意义答:第一方程:电荷是产生电场的通量源第二方程:变换的磁场是产生电场的漩涡源第三方程:磁感应强度的散度为0,说明磁场不可能由通量源产生;第四方程:传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。
5.解释坡印廷矢量及其物理意义、坡印廷定理及其物理意义坡印廷矢量:S=E×H 具有电磁能量密度的量纲,表示电磁能量在空间的能流密度。
瞬时坡印廷矢量表示了单位面积的瞬时功率流或功率密度。
功率流的方向与电场和磁场的方向垂直。
坡印廷定理描述的是能量守恒定律。
6.试写出静电场基本方程的微分形式,并说明其物理意义。
P101 ▽×E=0;▽·D=ρ前式表明静电场中 E 的旋度为零,即静电场不可能由漩涡源产生;后式表明产生静电场的通量源是电荷ρ,静电场是一个有源无旋场。
7.请说明镜像法、分离变量法、有限差分法。
P125镜像法:利用一个称为镜像电荷的与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场的方法。
分离变量法:把一个多变量的函数表示成为几个单变量函数的乘积后再进行计算的方法。
格林函数法:用镜像法或其他方法找到与待求问题对应的格林函数,然后将它代入第二格林公式导出的积分公式就可得到任一分布源的解得方法有限差分法:在待求场域选取有限个离散点,在各个离散点上以差分方程近似代替各点上的微分方程,从而把以连续变量形式表示的位函数方程转化为以离散点位函数表示的方程组的方法。
8.叙述什么是镜像法?其关键和理论依据各是什么?镜像法:利用一个称为镜像电荷的与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场的方法。
关键:寻找合适的镜像电荷,在引出位函数并求解。
理论依据:唯一性定理,即所假设的位函数就是该区域上的唯一的电位函数。
9.举例说明电磁波的极化的工程应用。
A、极化波在天线设计中具有重要意义。
利用极化波进行工作时,接收天线的极化特性必须与发射天线的极化特性相同,才能获得好的接受效果,这是天线设计的基本原则之一。
例如,发射天线若辐射左旋圆极化波,则接收天线在接收到左旋极化波的时候,就收不到右旋极化波,这称为圆极化波的旋相正交性。
又如,垂直天线发射地波,而垂直极化波,因为从天线到地的 E 场都是垂直的,因此接收天线应具有计划特性;而水平天线则发射水平极化波,所以接收天线应具有水平极化特性。
B、为了避免对某种极化波的感应,采用极化性质与之正交的天线,如垂直极化天线与水平极化波正交;右旋圆极化天线与左旋圆极化波正交。
这种配置条件称为极化隔离。
C、无线电系统必须利用圆极化波才能进行正常工作。
例如,由于火箭等飞行器在飞行过程中,其状态和位置在不断变化,因此火箭上的天线姿态也在发生不断的变化,此时若使用线极化的发射信号来遥控火箭,在某些情况下,火箭上的天线可能收不到地面控制信号而失控。
D、两种互相正交的极化波之间所存在的潜在的隔离性质,可应用于各种双极化体制。
例如,用单个具有双极化功能的天线实现双信道传输或收发双工;用两个分立的正交极化的天线实现极化分集接收或体视观测(如立体电影)等。
E、此外,在遥感、雷达目标识别等信息检测系统中,散射波的极化性质还能提供幅度、相位信息之外的附加信息。
10.试写出波的极化方式的分类,并说明它们各自有什么样的特点。
1. 如果矢量的尖端在一条直线上运动,称之为线极化波。
2.如果矢量的尖端的运动轨迹是一个圆,则称之为圆极化波,分为右旋极化波和左旋极化波。
3. 椭圆极化波:电场的尖端的运动将描绘出一个椭圆。
3.1 如果用右手的拇指指向波传播的方向,其它四指所指的方向正好与电场矢量运动的方向相同,这个波就是右旋极化波。