行测数量:巧解年龄问题
- 格式:docx
- 大小:18.16 KB
- 文档页数:4
行测中数学问题之年龄、排列组合问题解年龄问题,一般要抓住以下三条规律:(1)不论在哪一年,两个人的年龄差总是确定不变的;(2)随着时间向前(过去)或向后(将来)推移,两个人或两个以上人的年龄一定减少或增加相等的数量;(3)随着时间的变化,两个人年龄之间的倍数关系一定会改变。
【例1】妈妈今年 43岁,女儿今年11岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?【分析】无论在哪一年,妈妈和女儿的年龄总是相差43-11=32(岁)当妈妈的年龄是女儿的3倍时,女儿的年龄为(43-11)÷(3-1)=16(岁)16-11=5(岁)说明那时是在5年后。
同样道理,由11-(43-11)÷(5-1)=3(年)可知,妈妈年龄是女儿的5倍是在3年前。
【例2】今年,父亲的年龄是女儿的4倍,3年前,父亲和女儿年龄的和是49岁。
父亲、女儿今年各是多少岁?【分析】从3年前到今年,父亲、女儿都长了3岁,他们今年的年龄之和为49+3×2=55(岁)由“55 ÷(4+1)”可算出女儿今年11岁,从而,父亲今年44岁。
【例3】陈辉问王老师今年有多少岁,王老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。
”问王老师今年多少岁?【分析】我们先要明白:如果我比你大a岁,那么“当我像你这么大时”就是在a年前,“当你像我这么大时”就在a年后。
这样便可根据题意画出下图:从图上可看出,a=13,进一步推算得王老师今年29岁。
排列组合问题I一、知识点:分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且组合数的性质1:m n n m n C C -=.规定:10=n C ; 2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)从总体中排除不符合条件的方法数,这是一种间接解题的方法.b 、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1 由数字1、2、3、4、5、6、7组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP∙∙=720种不同的排法720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP∙=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:下面分别计算每一类的方法数:解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC∙=15种不同的分组方法第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC∙=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC∙=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP∙=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
行测数学运算:年龄日期问题年龄日期问题是行测数量关系中的重点题型,小编为大家提供行测数学运算:年龄日期问题,一起来看看吧!希望大家好好备考!行测数学运算:年龄日期问题行测数量关系在备考中要不断巩固,查漏补缺,今天小编给大家介绍下数量关系中的一种重点题型——年龄日期问题。
在了解具体题型之前,我们要了解到一些基本知识点:对于年龄来讲,生肖相同的人之间年龄差是12的整数倍,过相同年份后,几个人之间的年龄差不变;对于日期来讲,隔n天=n+1天,过n天=n天,第n天=n-1天。
了解到这些后我们一起来看看考试中会如何呈现给大家。
例1:网管员小刘负责甲、乙、丙三个机房的巡检工作,甲、乙和丙机房分别需要每隔2天、4天、7天巡检一次。
3月1日,小刘巡检了3个机房,问他在整个3月有几天不用做机房的巡检工作?A.12B.13C.14D.15答案:C。
解析:从题干信息中得到,巡检甲、乙、丙需要每3、5、8天,剩下的30天中,还需要巡查甲30÷3=10次,巡查乙30÷5=6次,巡查丙30÷8=3…2为3次,其中同时巡查甲乙有30÷15=2次,同时巡查甲丙30÷24=1…6为1次,没有同时巡查乙丙,也没有三个机房同时巡查,所以一共有30-10-6-3+2+1=14天,选C。
例2:小李的弟弟比小李小两岁,小王的哥哥比小王大两岁、比小李大5岁。
1994年,小李的弟弟和小王的年龄和为15.问2014年小李与小王的年龄分别为多少岁()。
A.25,32B.27,30C.30,27D.32,25答案:B。
解析:根据题干条件“小王的哥哥比小王大两岁、比小李大5岁”可知,小王比小李大3岁,只有B选项符合。
例3:某人出生于20世纪70年代,某年他发现从当年起连续10年自己的年龄与当年年份数字之和相等(出生当年算0岁)。
问他在以下哪一年时,年龄为9的整数倍()A.2006B.2007C.2008D.2009答案:B。
行测数量关系技巧:年龄问题的巧解方法公务员行测考试主要是考量大家的数学推理能力和逻辑分析能力,下面由小编为你精心准备了“行测数量关系技巧:年龄问题的巧解方法”,持续关注本站将可以持续获取更多的考试资讯!行测数量关系技巧:年龄问题的巧解方法在行测考试中,年龄问题都我们考查的一个重点考题型,但此类题型难度并不大,总共涉及三个知识点和两种解题方法,理应是每位考生必须“拿下”的考题。
小编专家在此进行全面讲解:一、年龄问题的主要的题型特点①任何两人年龄差不变;②任何两人年龄之间的倍数关系是变化的;③每过一年,所有的人都长了一岁。
具体分类如下:1.随时间推移,年龄差不变;2.随时间推理,年龄倍数在减少;3.过N年,长N岁。
二、如何巧解年龄问题解决年龄问题的关键在于“年龄差不变”。
一般说来,解决年龄问题需要从表示年龄间关系的条件入手理解数量关系例1:今年小宁8岁,妈妈32岁,那么再过多少年妈妈的岁数是小宁的2倍?下面就为考生讲解如何巧妙解答年龄问题。
由差倍问题公式可得,小宁年龄为24÷(2-1)=24岁,即小宁24岁时,妈妈的年龄等于小宁的2倍,因此再过24-8=16年。
三、多人之间的年龄问题多人之间的年龄问题在行测考试中出现的频率略有增加,它主要考查多个人之间的年龄关系变化。
解决此类题目的重点为规律③:每过一年,所有的人都长了一岁。
例题2:父亲与两个儿子的年龄和为84岁,12年后父亲的年龄等于两个儿子的年龄之和,请问父亲现在多少岁?A.24B.36C.48D.60解析:此题答案为C。
12年后,父亲与两个儿子的年龄和应该是84+12×3=120岁,将父亲12年后的年龄看做1倍,那么12年后父亲的年龄为120÷2=60岁,现在的年龄为60-12=48岁。
四、年龄推理题年龄推理题在行测考试中出现较少,它需要考生通过寻求年龄间的特殊情况来得到突破口,从而最终得出答案。
常见的特殊情况为:经过了N年,所有人增长的岁数和不是N的倍数,这说明N年前有人没有出生,从而可直接求出该人的年龄。
2018福建省厦门公务员考试行测巧解年龄问题2018年福建省考很快就要开始了,相信不少同学已经着手备考了,今天厦门中公教育和你一起探讨行测解题技巧、申论答题及写作策略,希望能够帮助到大家赢取高分。
年龄问题在我们行测考试当中,并不是年年都会出现,它有着轮回考察的特点,也就是今年出现了,可能要隔几年才会再次出现,这也为我们的备考提供了一定的方向。
既然年龄问题是个小题型,那么熟谙技巧就非常重要了,它能帮助我们快速得出答案。
年龄问题有两大特点:1. 每过一年所有人年龄加1【例1】祖父年龄70岁,长孙20岁,次孙13岁,幼孙7岁,问所少年后,三个孙子的年龄之和与祖父的年龄相等?()A.10 B12 C15 D20解析:长孙,次孙,幼孙现在的年龄和是20+13+7=40,如果设x年后三个孙子的年龄之和与祖父的年龄相等,则祖父的年龄增加了x岁,而三个孙子的年龄和增加了3x岁,故可列方程70+x=40+3x,可解得x=15.故选C。
这就是考察的第一个重要特点。
2.年龄差不变—列方程的核心【例2】10年前爸爸的年龄是儿子年龄的7倍,15年后,爸爸的年龄是儿子的2倍。
则现在爸爸的年龄是多少岁?()A.45B.50C.55D.60解析:题目都涉及到了两人年龄,所以我们可以通过年龄差不变找等量关系。
设儿子10年前年龄是x,则此时他们之间的年龄差为6x,15年后,此时儿子是x+10+15=25+x,此时他们之间的年龄差是25+x,由题意可知6x=x+25,得x=5,那么10年前爸爸35岁,现在爸爸45岁。
在这道题中年龄差成了一个衡量年龄的基准量,用它来代表各个人物各时期的年龄,不但简化了计算过程、不易出错,更使得题目容易理解。
了解了年龄问题的特点之后,我们来看一下年龄问题有什么解决技巧。
解决年龄问题一般使用的方法就是方程法。
普通的年龄问题我们可以直接找等量关系列方程,但是有时题目比较复杂,涉及的关系比较多,直接找等量关系比较困难,此时我们可以使用下面两个技巧。
【典型问题】1. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?解答:(6×6+6)÷6-6=1,这个数是1.2. 两个两位数相加,其中⼀个加数是73,另⼀个加数不知道,只知道另⼀个加数的⼗位数字增加5,个位数字增加1,那么求得的和的后两位数字是72,问另⼀个加数原来是多少?解答:和的后两位数字是72,说明另⼀个加数变成了99,所以原来的加数是99-51=48.3. 有砖26块,兄弟⼆⼈争着去挑。
弟弟抢在前⾯,刚摆好砖,哥哥赶到了。
哥哥看弟弟挑的太多,就抢过⼀半。
弟弟不肯,⼜从哥哥那⼉抢⾛⼀半。
哥哥不服,弟弟只好给哥哥5块,这时哥哥⽐弟弟多挑2块。
问最初弟弟准备挑多少块?解答:先算出最后各挑⼏块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢⾛的⼀半还给哥哥:抢⾛了⼀半,那么剩下的就是另⼀半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢⾛的⼀半还给弟弟:那么弟弟原来就是8+8=16块.4. 甲、⼄、丙三⼈钱数各不相同,甲最多,他拿出⼀些钱给⼄和丙,使⼄和丙的钱数都⽐原来增加了两倍,结果⼄的钱最多;接着⼄拿出⼀些钱给甲和丙,使甲和丙的钱数都⽐原来增加了两倍,结果丙的钱最多;最后丙拿出⼀些钱给甲和⼄,使甲和⼄的钱数都⽐原来增加了两倍,结果三⼈钱数⼀样多了。
如果他们三⼈共有81元,那么三⼈原来的钱分别是多少元?解答:三⼈最后⼀样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和⼄把钱还给丙:每⼈增加2倍,就应该是原来的3倍,所以甲和⼄都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给⼄:甲9÷3=3,丙63÷3=21,⼄81-3-21=57;3. 最后是⼄和丙把钱还给甲:⼄57÷3=19,丙21÷3=7,甲81-19-7=55元.5. 甲、⼄、丙三⼈各有糖⾖若⼲粒,甲从⼄处取来⼀些,使⾃⼰的糖⾖增加了⼀倍;接着⼄从丙处取来⼀些,使⾃⼰的糖⾖也增加了⼀倍;丙再从甲处取来⼀些,也使⾃⼰的糖⾖增加了⼀倍。
2020国考行测数量关系:教你学会求解行测年龄问题年龄问题在近几年的考试中频频出现在大家的视线里,而这一部分的知识对于大部分的考生来说也是可望而不可即,难度不小。
我们所讲,难者不会,会者不难,这一类题目在做题的过程中,是有一定的规律的。
因此呢,我们只需要掌握这一考点的解题原则和一些常见的考察形式就能够在考场中将这一类型题目的分数拿到手。
那么,接下来,中公教育就带大家来看看年龄问题中涉及到的一些知识点和解题思路。
一、基础知识年龄问题是指研究两人或者多人之间的年龄变化和关系的问题。
行测考试中常常涉及两人或者多人年龄之间的倍数关系。
二、解题原则1.任何两人年龄差不变;2.任何两人年龄之间的倍数关系是变化的,而且递减;3.每过一年,所有的人都长了一岁。
三、常见考点年龄问题的常见考察形式有以下几种:1.不同时刻年龄对比例1.小鲸鱼说:“妈妈,我到您这么大的时候,您就31岁了”,大鲸鱼说:“我像你这么大时候,你才1岁”。
问:小鲸鱼现在多少岁?【答案】11。
中公解析:根据解题原则,我们知道年龄差不变,假设大鲸鱼和小鲸鱼的年龄差为图中线段的长度,根据大小鲸鱼的描述,可以画出如上图所示的年龄轴,根据已知条件起点处年龄为1岁,终点处年龄为31岁,共差30岁,由3个年龄差组成,所以一个年龄差为10岁,现在小鲸鱼的年龄为11岁。
2.多人年龄问题例2.父亲与两个儿子的年龄和为84岁,12年后父亲的年龄等于两个儿子的年龄之和,请问父亲现在多少岁?A.24B.36C.48D.60【答案】C。
中公解析: 12年后,父亲与两个儿子的年龄和应该是84+12×3=120岁,将父亲12年后的年龄看做1倍,那么12年后父亲的年龄为120÷2=60岁,现在的年龄为60-12=48岁。
四、题目巩固例.2007年父亲年龄30岁,儿子3岁,到()年父亲年龄是儿子的3倍。
A.2012B.2013C.2014D. 2015【答案】B。
近年来的国家公务员考试中,年龄问题已经成为了数量关系的常考题型之一。
年龄问题主要考查基本数学知识以及解题技巧的运用能力。
一、年龄问题有三个基本知识点:1、每个人的年龄都是过N年,长N岁的;2、两个人的年龄差是不变的;3、两个人的年龄是同时增加或者同时减少的;4、两个人的年龄的倍数是发生变化的,随着时间的推移,两个人的年龄倍数逐渐变小。
二、年龄问题常用方法:1、代入排除法;2、方程法;3、平均分段法4、推导法以下是几道例题,通过例题的讲解,让大家了解年龄问题的考法与解法。
希望大家认真领会:【例1】赵先生34岁,钱女士30岁。
一天他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说:他们三人的年龄各不相同,三人的年龄之积是2450,三人的年龄之和是我俩年龄之和。
问三个邻居中年龄最大的是多少岁?()【答案】C【解析】本题外在特征属于年龄问题,实质属于不定方程组问题,而不定方程(组)常采用的方法是代入排除法。
依题意设A为x,B为y,C为z,故:,本题利用代入排除法解题,同时问题中问的是最大的年龄,所以应从大数往小数代。
所以当最大的年龄为50岁时,则另外两人的年龄积为49,而49=7×7不符合三个人年龄不等,49=1×49不符合三个人的年龄和为64,故排除;其次最大年龄为49岁时,则另外两人的年龄积为50,有50=10×5,符合所有条件,故满足。
所以选C。
【例2】甲乙丙丁四人,其中每三个人的岁数之和分别是55,58,62,65.这四个人中年龄最大的是?()【答案】D【解析】本题是年龄问题,而本题采用代入排除法会比传统的方程思想来的复杂,故直接采用方思想解,设甲为x,乙为y,丙为z,丁为w,则有:,纵观整个方程组,可见x,y,z,w,均出现三次,所以把四个方程加和有:3(x+y+z+w)=240,故x+y+z+w=80,而求年龄最大的则是用四个人的年龄和减去三个人年龄和中,最小的那个数,因为最小那个肯定是三个年龄最小的加和得到,所以80-55=25.所以选D。
2014年国家公务员数量关系题备考:数学运算之年龄问题2014年国家公务员考试报名工作预计2013年10月中旬展开,如何在有限的时间里让国考行测取得高分突破,成为决胜国考的重心所在,职业培训教育网小编为大家收集整理了国家公务员考试行测数量关系之数学运算题解题技巧,供大家备考学习。
年龄问题年龄问题是事业单位考试的常见题型,年龄问题的核心是大小年龄差是个不变的量,而年龄的倍数却年年不同。
解答年龄问题的一般方法是直接运用代人法。
求解年龄问题应注意以下几点:(1)两人年龄的差是不变的量。
(2)两个年龄的倍数关系是变化的量,回首过去,年龄变小,倍数变大;展望未来,年龄变大,倍数变小。
(3)每个人的年龄随着时间的增加都增加相等的量。
年龄问题的核心公式:大年龄=(两人年龄和+两人年龄差)÷2小年龄=(两人年龄和一两人年龄差)÷ 2已知二人年龄,求几年前或几年后的大年龄是小年龄的几倍:年龄差÷ (倍一1) =成倍时的小年龄成倍时的小年龄一小的现年龄=几年后的年数小的现年龄一成倍时的小年龄=几年前的年数如果已知二人年龄之和及几年后大的是小的几倍,求现在二人的年龄各是多少:几年后的二人年龄和÷ (倍+ 1) =几年后小的年龄几年后小的年龄一几年后年数=现在小的年龄二人年龄和一现在小的年龄=现在大的年龄【例题1】祖父年龄70岁,长孙20岁,次孙13岁,幼孙7岁,问多少年后,三个孙子的年龄之和与祖父的年龄相等?( )A. 10B. 12C. 15D. 2【解析】答案为C。
长孙、次孙、幼孙现在的年龄和是20 + 13 + 7 = 40,如果设x年后三个孙子的年龄之和与祖父的年龄相等,则祖父的年龄增加了 x岁,而三个孙子的年龄和增加了 3x岁,故可列方程:70+x = 40 + 3x,解得 x=15。
【例题2】甲乙两人的年龄和是33岁,四年之后,甲比乙大3岁,问乙的年龄是多少岁?( )A.18B. 17C. 16D. 15【解析】答案为D。
2022年公务员行测数量关系中年龄问题行测全部是选择题,如果你找到了适合自己的答题速度和准确率的黄金结合点,你就离上岸不远了!想拿高分要学会放弃,更要掌握技巧,全力争取。
下面小编给大家带来关于公务员行测数量关系中年龄问题,希望会对大家的工作与学习有所帮助。
公务员行测数量关系中年龄问题一、年龄问题解题原则:1)年龄差不变;2)每个人都是自然增长;3)任何两人年龄之间的倍数关系是变化的。
我们通过例题来讲解一下:例1、在一个家庭中有爸爸、妈妈、女儿和儿子。
现在把所有成员的年龄加在一起是77岁,爸爸比妈妈大3岁,女儿比儿子大2岁。
5年前,全家所有人的年龄总和是58岁。
现在爸爸的年龄是多少岁?A.67B.32C.35D.78答案:C【解析】:根据题意“爸爸、妈妈、女儿和儿子。
现在把所有成员的年龄加在一起是77岁”,可得到5年前全家所有人的年龄和是58岁,由每个人都是增长,可知现在全家人的年龄总和应该是58+4×5=78岁。
但实际上的年龄总和却是77岁,差了1岁。
就说明有一个人只长了4岁,这个人只能是儿子因为5年前尚未出生。
女儿就应该是4+2=6岁,现在父母的年龄和是77-4-6=67岁,根据题意又已知知他们的年龄差是3岁,可求出爸爸的年龄是(67+3)÷2=35岁。
因此选择C选项。
例2、1998年,小张的年龄是小王的年龄的4倍。
2002年,小张的年龄是小王的年龄的3倍。
问小张、小王二人2000年的年龄分别是多少岁?A.34岁,12岁B.32岁,8岁C.36岁,12岁D.34岁,10岁答案:D【解析】:设1998年小王的年龄是x岁,则小张的年龄是4x岁。
从98年到02这四年4年,两个年龄都增长4岁,那么这个时候,小张的年龄是4x+4岁,小王的年龄为x+4岁。
由小张的年龄是小王年龄的3倍,因此有4x+4=3(x+4)可求得x=8。
也就是说1998年,小王的年龄是8岁,则2000年的年龄是10岁,因此选择D 选项。
万华教育官方网站:山东公务员辅导网(www.s dg wy f d.co m )
公考之家论坛,免费公考资料下载!
万华:公考传奇缔造者! 万华:公考培训黄埔军校!
●国内最大的公务员面试实训基地,2010
年公务员面试传奇缔造者!
●网址: 电话:(0531)81670288/81670289 Page 1
公务员行政能力测试巧算年龄
[题目]某村有甲、乙、丙、丁四位老人。
他们四个人的平均年龄是82岁,甲、乙两位老人的平均年龄比丙、丁两位老人的平均年龄大2岁,丙老人比丁老人小2岁。
甲老人今年已经92岁了。
求今年乙、丙、丁三位老人的年龄各是多少? [分析与解]
由四位老人的平均年龄是82岁,可知四位老人的年龄之和为
(岁),
由甲、乙两位老人的平均年龄比丙、丁两位老人的平均年龄大2岁,
可知甲、乙两位老人的年龄之和比丙、丁两位老人的年龄之和大4岁。
因此可以求出甲、乙两位老人的年龄之和为
(岁), 因为甲老人今年92岁,所以乙老人今年(岁)。
由甲、乙两位老人的年龄之和是166岁可以求出丙、丁两位老人的年龄之和为
(岁),
因为丙老人比丁老人小2岁,
所以丙老人今年
(岁), 丁老人今年
(岁)。
行测数量:巧解年龄问题
年龄问题是指研究两人或者多人之间的年龄变化和关系的问题。
行测考试中常常涉及两人或者多人年龄之间的倍数关系。
常见的考查方式为:今年小宁8岁,妈妈32岁,那么再过多少年妈妈的岁数是小宁的2倍?下面为考生讲解如何巧妙解答年龄问题。
年龄问题重要原则为:①任何两人年龄差不变;②任何两人年龄之间的倍数关系是变化的;③每过一年,所有的人都长了一岁。
上例中,今年小宁比妈妈小32-8=24岁,那么小宁与妈妈的年龄差永远为24岁。
当小宁从8岁长到12岁时,妈妈也长4岁,变为32+4=36岁。
两人年龄的倍数由32÷8=4倍,变化到36÷12=3倍。
知识点一:如何解年龄问题
解决年龄问题的关键在于“年龄差不变”。
一般说来,解决年龄问题需要从表示年龄间关系的条件入手理解数量关系,必要时可借助线段图和表格进行分析。
主要的思考方式如下:
由差倍问题公式可得,小宁年龄为24÷(2-1)=24岁,即小宁24岁时,妈妈的年龄等于小宁的2倍,因此再过24-8=16年。
(2)因为行测考试中,数学运算均为选择题,对于表述直接的年龄问题,没有解题思路,或者计算比较繁琐时,可采用代入排除法。
例题1:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,姐姐多少岁?
A.22
B.34
C.36
D.43
解析:“此题答案为A.两人年龄差为13-9=4岁,用线段图显示数量关系,如下图所示:
由图可知,如果从40岁中减去姐弟年龄的差,再除以2就得到弟弟的年龄,进而可求出姐姐的年龄,这相当于一个和差问题。
根据和差公式:弟弟的年龄为(40-4)÷2=18岁,则姐姐的年龄为18+4=22岁。
知识点二:多人之间的年龄问题
多人之间的年龄问题在行测考试中出现的频率略有增加,它主要考查多个人之间的年龄关系变化。
解决此类题目的重点为规律③:每过一年,所有的人都长了一岁。
例题2:父亲与两个儿子的年龄和为84岁,12年后父亲的年龄等于两个儿子的年龄之和,请问父亲现在多少岁?
A.24
B.36
C.48
D.60
解析:此题答案为C.12年后,父亲与两个儿子的年龄和应该是84+12×3=120岁,将父亲12年后的年龄看做1倍,那么12年后父亲的年龄为120÷2=60岁,现在的年龄为60-12=48岁。
例题3:甲、乙、丙、丁四人今年的年龄分别是32、24、22、18岁,那么多少年前甲乙的年龄和恰好是丙丁年龄和的2倍?
A.15
B.14
C.12
D.10
解析:此题答案为C.画出线段图,如下图所示。
可知,(32+24)-(22+18)=16为甲乙年龄和与丙丁年龄和之差。
当甲乙的年龄和恰好是丙丁年龄和的2倍时,设丙丁年龄和为1倍,则甲乙年龄和为2倍,则1倍为16÷(2-1)=16,即丙丁当时的年龄和为16岁。
增加的年龄和为22+18-16,因此过了(22+18-16)÷2=12年。
知识点三:三等分结论
例题4:甲对乙说:“当我的岁数是你现在的岁数时,你才5岁。
”乙对甲说:“当我的岁数是你现在的岁数时,你将50岁。
”那么,甲现在()岁,乙现在()岁。
解析:35、20.根据题意画出示意图,如下图所示:
当乙5岁时,甲的年龄等于乙现在的岁数,用线段AC表示,可知甲、乙二人年龄差等于线段BC;
甲、乙现在的岁数差等于EF,当乙的岁数等于甲现在的岁数(用线段DF表示),甲将50岁(用线段GI表示),此时二人年龄差等于
线段HI.
因为年龄差是不变的量,所以BC=EF=HI.
根据图示,GI=5+BC+EF+HI=5+3BC,所以甲乙二人的年龄差为:(50-5)÷3=15岁,乙现在的岁数是15+5=20岁。
甲现在的岁数是20+15=35岁。
解析:
知识点四:年龄推理题
年龄推理题在行测考试中出现较少,它需要考生通过寻求年龄间的特殊情况来得到突破口,从而最终得出答案。
常见的特殊情况为:经过了N年,所有人增长的岁数和不是N的倍数,这说明N年前有人没有出生,从而可直接求出该人的年龄。
例题5:小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄的和是44岁。
今年父亲多少岁?
A.33
B.34
C.35
D.36
解析:此题答案为B.一家人的年龄和今年与10年前比较增加了72-44=28岁,而如果按照三人计算10年后应增加10×3=30岁,只能是小芬少了2岁,即小芬8年前出生,今年是8岁,今年父亲是(72-8+4)÷2=34岁。