初中数学八年级教案
- 格式:doc
- 大小:25.50 KB
- 文档页数:10
浙教版初中八年级数学上册全套精品教案一、教学内容1. 第十一章:数据整理与概率11.1 数据的收集与整理11.2 概率初步11.3 统计图的选择与应用二、教学目标1. 理解并掌握数据的收集、整理、描述和分析的方法。
2. 掌握概率的基本概念和计算方法,并能应用于解决实际问题。
3. 学会选用合适的统计图展示数据,提高数据分析能力。
三、教学难点与重点1. 教学难点:概率的计算和应用。
2. 教学重点:数据的收集与整理、统计图的选择与应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:直尺、圆规、计算器。
五、教学过程1. 导入:通过一个实践情景引入,例如调查班级同学的身高、体重数据。
2. 新课内容:(1)数据的收集与整理:讲解数据的收集方法、整理方法,展示例题并进行讲解。
(2)概率初步:介绍概率的概念、计算方法,讲解例题,引导学生进行随堂练习。
(3)统计图的选择与应用:分析不同统计图的特点,教授如何选择合适的统计图展示数据。
六、板书设计1. 数据的收集与整理:收集方法:问卷调查、观察法等。
整理方法:分类、排序、求和、求平均数等。
2. 概率初步:概念:某事件发生的可能性。
计算方法:概率=所求事件发生的次数/总次数。
3. 统计图的选择与应用:条形图、折线图、扇形图等。
七、作业设计1. 作业题目:(1)收集并整理家庭成员的身高、体重数据,绘制合适的统计图。
(2)计算抛硬币出现正面的概率,并分析原因。
2. 答案:(1)根据实际情况绘制统计图,无固定答案。
(2)抛硬币出现正面的概率为0.5,因为硬币的两面是等概率出现的。
八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,提高了学生的学习兴趣,让学生在动手操作中掌握了知识。
2. 拓展延伸:(1)收集更多数据,研究其分布规律。
(2)探讨其他概率问题,如掷骰子的概率等。
重点和难点解析1. 教学内容的设置与安排2. 教学目标的制定3. 教学难点与重点的识别4. 教学过程中的实践情景引入5. 板书设计的关键信息展示6. 作业设计的问题设置与答案解析7. 课后反思与拓展延伸的深度详细补充和说明:一、教学内容的设置与安排确保内容与学生的生活实际紧密相关,提高学生的学习兴趣和参与度。
2024年浙教版数学八年级上册全册教案一、教学内容1. 第一单元:实数第1节:平方根与立方根第2节:实数及其运算2. 第二单元:一元二次方程第1节:一元二次方程的概念与解法第2节:一元二次方程的配方法第3节:一元二次方程的公式法第4节:一元二次方程的判别式3. 第三单元:不等式与不等式组第1节:不等式的性质与解法第2节:不等式组的概念与解法4. 第四单元:函数及其性质第1节:函数的概念与表示方法第2节:函数的性质第3节:一次函数与反比例函数二、教学目标1. 让学生掌握实数的概念、性质与运算,提高数学运算能力。
2. 使学生掌握一元二次方程的解法,并能运用解决实际问题。
3. 培养学生熟练运用不等式与不等式组解决实际问题的能力。
4. 让学生理解函数的概念,掌握函数的性质,并学会一次函数与反比例函数的应用。
三、教学难点与重点1. 教学难点:实数的运算与性质一元二次方程的解法与判别式不等式与不等式组的解法函数的性质及其应用2. 教学重点:实数的概念与运算一元二次方程的解法与应用不等式的性质与解法函数的概念及其性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教学课件2. 学具:教材、练习本、草稿纸、计算器五、教学过程1. 实数引入:通过生活实例,让学生感受实数的概念。
例题讲解:讲解平方根、立方根的性质与运算方法。
随堂练习:完成教材第1节与第2节练习题。
2. 一元二次方程引入:通过实际问题,引导学生理解一元二次方程的概念。
例题讲解:分别讲解一元二次方程的配方法、公式法与判别式。
随堂练习:完成教材第1节至第4节练习题。
3. 不等式与不等式组引入:通过实际情景,让学生理解不等式的意义。
例题讲解:讲解不等式的性质与解法,以及不等式组的解法。
随堂练习:完成教材第1节与第2节练习题。
4. 函数及其性质引入:让学生了解函数在实际生活中的应用。
例题讲解:讲解函数的概念、表示方法及其性质。
随堂练习:完成教材第1节至第3节练习题。
2024年华师大版初中八年级数学上册全套教案一、教学内容1. 第五章:一元二次方程5.1 一元二次方程及其解法5.2 一元二次方程的判别式5.3 一元二次方程的根与系数的关系2. 第六章:二次函数6.1 二次函数及其图像6.2 二次函数的性质6.3 二次函数的应用二、教学目标1. 理解一元二次方程的概念,掌握解一元二次方程的几种常用方法。
2. 了解一元二次方程的判别式,掌握根与系数的关系。
3. 掌握二次函数的定义、图像、性质,并能解决实际问题。
三、教学难点与重点1. 教学难点:一元二次方程的解法、二次函数图像的性质。
2. 教学重点:一元二次方程的判别式、根与系数的关系、二次函数的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 导入:通过实际情景引入,如“一块长方形的地,面积为100平方米,长比宽多5米,求长和宽”。
2. 知识讲解:(1)一元二次方程的概念、解法。
(2)一元二次方程的判别式、根与系数的关系。
(3)二次函数的定义、图像、性质。
3. 例题讲解:(1)解一元二次方程:x^2 5x + 6 = 0。
(2)求一元二次方程2x^2 4x 6 = 0的判别式和根与系数的关系。
(3)二次函数y = x^2 2x 3的图像和性质。
4. 随堂练习:(1)解一元二次方程:x^2 3x 4 = 0。
(2)求一元二次方程x^2 2x + 1 = 0的判别式和根与系数的关系。
(3)分析二次函数y = x^2 + 2x + 1的图像和性质。
六、板书设计1. 一元二次方程及其解法。
2. 一元二次方程的判别式、根与系数的关系。
3. 二次函数的定义、图像、性质。
七、作业设计1. 作业题目:(1)解一元二次方程:x^2 + 5x + 6 = 0。
(2)求一元二次方程3x^2 6x + 2 = 0的判别式和根与系数的关系。
(3)分析二次函数y = x^2 + 4x 5的图像和性质。
初中数学教案(优秀8篇)初中数学优秀教案篇一一、教学目标:1、知识目标:①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2、能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1、引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。
数a的绝对值记作|a|。
举例说明数a的绝对值的几何意义。
(按教材P63的倒数第二段进行讲解。
)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。
3、例题精讲例1.求8,-8的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|。
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3例3.已知一个数的绝对值等于2,求这个数。
第十三章全等三角形13.1 命题与证明(1(2题教学反思例1 判断下列命题的真假,写出逆命题,并判断逆命题的真假:(1)如果两条直线相交,那么它们只有一个交点;(2)如果a >b ,那么a 2>b 2;(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab <0,那么a >0,b <0. 教师引导,学生分析:可以先把原命题的条件和结论写出来,然后调换条件和结论即可得逆命题,最后判断真假性.教师提示:写逆命题并不是简简单单地把条件和结论互换即可,还要使命题的语句具有逻辑性. 解:(1)命题是真命题.逆命题为:如果两条直线只有一个交点,那么它们相交.是真命题.(2)是假命题.逆命题为:如果a 2>b 2,那么a >b ,是假命题.(3)是真命题.逆命题为:如果两个数的和为零,那么它们互为相反数,是真命题.(4)是假命题.逆命题为:如果a >0,b <0,那么ab <0.是真命题. 练习:请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除. (4)已知两数a ,b .如果a +b >0,那么a -b <0. 学生独立完成,教师点评:(1)原命题是真命题,逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.逆命题也为真命题.(2)原命题是真命题,逆命题为:如果两个角相等,那么这两个角是对顶角. 逆命题为假命题.(3)原命题是假命题,逆命题为:如果一个数能被6整除,那么这个数也能被3整除.逆命题为真命题.(4)原命题是假命题,逆命题为:如果a -b <0,那么a +b >0.逆命题为假命题. 2.证明教师提问:刚才你们是怎么判断一个命题是假命题的? 学生:举反例推翻这个命题.教师:那怎么判断一个命题是真命题呢?也用举例吗?仅仅举几个例子足以说明它是真命题吗?命题有真命题,也有假命题,要说明一个命题是假命题,只要举出反例即可;要说明一个命题是真命题,则需要进行推理论证,即证明.定义:要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明. 例2 证明:平行于同一条直线的两条直线平行.已知:如图 ,直线a ,b ,c ,a ∥c , b ∥c . 求证: a ∥b .证明:如图,作直线d ,分别与直线 a ,b ,c 相交∵ a ∥c (已知),∴ ∠1=∠2(两直线平行,同位角相等). ∵ b ∥c (已知), 教学反思A BDCE∴ ∠2=∠3(两直线平行,同位角相等). ∴ ∠1=∠3(等量代换). ∴ a ∥b (同位角相等,两直线平行). 即平行于同一条直线的两条直线平行.教师:通过这个题,如何做证明题?(学生讨论) 证明的步骤:第一步:根据题意画图,将文字语言转换为符号(图形)语言; 第二步:根据条件、结论、 图形写出已知、求证; 第三步:根据基本事实、已有定理等进行证明.定义:如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理..练习:已知:如图,点O 在直线AB 上,OD ,OE 分别是BOC AOC ∠∠,的平分线. 求证:OD ⊥OE .学生独立完成,教师点评:证明:∵ 点O 在直线AB 上,∴ ∠AOC +∠BOC =180°(平角的定义). ∵ OD ,OE 分别是∠AOC ,∠BOC 的平分线,∴ ∠DOC =21∠AOC ,∠EOC = 21∠BOC (角平分线的定义), ∴ ∠DOC +∠EOC =21(∠AOC +∠BOC )=21×180°=90°.∴ OD ⊥OE .课堂练习1.命题“如果a =b ,那么3a =3b ”的逆命题是______________________.2.写出下列命题的逆命题:(1)如果两直线都和第三条直线垂直,那么这两直线平行; (2)若a +b >0,则a >0,b >0; (3)等腰三角形的两个底角相等.3.已知:如图,直线a ,b 被直线c 所截,∠1与∠2互补. 求证:a ∥b.参考答案1.如果3a =3b ,那么a =b.2.解: (1)如果两直线平行,那么这两直线都和第三条直线垂直.(2)若a >0,b >0,则a +b >0.(3)有两个角相等的三角形是等腰三角形.3.证明:∵ ∠1和∠3是对顶角,教学反思O∴ ∠1=∠3.又∵ ∠1与∠2互补,∴ ∠1+∠2=180°.∴ ∠2+∠3=180°,∴ ∠1=∠3(等角的补角相等). ∴ a ∥b (同旁内角互补,两直线平行).课堂小结(学生总结,教师点评) 1.互逆命题 2.证明证明的一般步骤:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证. 第三步,根据基本事实、已有定理等进行证明.布置作业完成教材第34页习题第1,2,3题.板书设计 13.1 命题与证明教学反思一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.命题与证明互逆命题命题与证明要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.第十三章全等三角形13.2 全等图形教学目标1.理解全等图形,了解全等图形的对应点、对应边和对应角.2.理解全等三角形的概念,能识别全等三角形的对应边、对应角.3.知道全等三角形的性质.教学重难点重点:了解全等图形的对应点、对应边和对应角;知道全等三角形的性质.难点:理解全等三角形的概念,能识别全等三角形的对应边、对应角.教学过程导入新课观察思考:(学生观察,教师引导)问题:如图,观察给出的五组图形.(1)每组图形中,两个图形的形状和大小各有怎样的关系?(2)先在半透明纸上画出同样大小的图形,再将每组中的一个图形叠放到另一个图形上,观察它们是否能够完全重合.(4)探究新知1.全等图形同桌两人合作完成,学生回答,教师评价.实验发现:(1)(2)(3)组中的两个图形能够完全重合,(4)(5)组中的两个图形不能完全重合.定义:能够完全重合的两个图形叫做全等图形.考考你对全等图形的理解:观察下面三组图形,它们是不是全等图形?(1)(2)(3)教师归纳:全等图形的性质:全等图形的形状和大小都相同.有关的概念:对应点当两个全等的图形重合时,互相重合的点叫对应点.如图,△ABC与△A′B′C′是两个全等三角形,点A和点A′,点B和点B′,点C和点C′分别是对应点.教学反思对应边当两个全等的图形重合时,互相重合的边叫对应边.如AB和A′B′,CB和C′B′,AC和A′C′.对应角当两个全等的图形重合时,互相重合的角叫对应角.如∠A和∠A′,∠B和∠B′, ∠C和∠C′.2.全等三角形全等的表示方法“全等”用符号“≌”表示,读作“全等于”.如△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,读作三角形ABC全等于三角形A′B′C′.(教师提示:书写时应把对应顶点写在对应的位置上)3.全等三角形的性质根据以下几个问题归纳全等三角形有哪些性质?(教师引导,学生讨论)1.两个能够完全重合的线段有什么关系?2.两个能够完全重合的角有什么关系?3.两个全等三角形的对应边之间有什么关系?对应角之间有什么关系?师生共同归纳:全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:(学生完成填空)如图,∵△ABC≌△A′B′C′,∴AB=____,AC=____,BC=_____(全等三角形对应边_____),∠A=_____,∠B=_____,∠C=_____(全等三角形对应角_____).练习:如图1,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个全等三角形的对应角.教师引导,学生分析:找对对应点是解决此题的关键(△BOD与△COE中,B-C,D-E,O-O;△ADO与△AEO中A-A,D-E,O-O)解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.图1图2例已知:如图2,△ABC≌△DEF,∠A=78°,∠B=35°,BC=18.(1)写出△ABC和△DEF的对应边和对应角.(2)求∠F的度数和边EF的长.(学生独立完成,教师评价)解:(1)边AB和边DE,边BC和边EF,边AC和边DF分别是对应边;教学反思AB CE DF∠A 和∠D , ∠B 和∠DEF , ∠ACB 和∠F 分别是对应角. (2)在△ABC 中,∵ ∠A +∠B +∠ACB =180°(三角形内角和定理), ∴ ∠ACB =180°-∠A -∠B =180°-78°-35°=67°. ∵ △ABC ≌△DEF ,∴ ∠F =∠ACB = 67°,EF =BC =18. 拓展:(1)全等三角形的对应元素相等.其中,对应元素包括对应边、对应角、对应中线、对应高、对应角平分线、对应周长、对应面积等;(2)全等三角形的性质是证明线段相等、角相等的常用依据.课堂练习1.如图1,△ABC ≌△BAD ,如果AB =6 cm , BD =4 cm ,AD =5 cm ,那么BC 的长是( )A .7 cmB .5 cmC .4 cmD .无法确定2.如图2,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°3.如图3,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列选项不正确的是( ) A.AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =CD4.如图4,△ABC ≌ △ADE ,若∠D =∠B , ∠C = ∠AED ,则∠DAE =__________.5.如图5,△ABC ≌△DEF ,且B ,C ,F ,E 在同一直线上,判断AC 与DF 的位置关系,并证明.参考答案1.B2. B3.D4.∠BAC5.解:AC ∥DF . 理由如下:∵ △ABC ≌△DEF ,∴ ∠ACB =∠DFE , ∴ 180°-∠ACB =180°-∠DFE , 即∠ACF =∠DFC ,∴ AC ∥DF .教学反思A DB C A BC DE F图1 图2 图3 图4 AB C DE 图5课堂小结13.2全等图形布置作业完成教材第37页习题A组、B组.板书设计1.全等图形及相关的概念;2.全等三角形的表示方法及性质.教学反思全等图形:能够完全重合的两个图形叫做全等图形全等图形全等三角形:能够完全重合的两个三角形叫做全等三角形全等三角形的性质全等三角形的对应边相等全等三角形的对应角相等第十三章 全等三角形13.3 全等三角形的判定第1课时 边边边教学目标1.进行三角形全等条件的探索,积累数学活动经验;2.掌握基本事实一,利用基本事实一证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握基本事实一,利用基本事实一证明两个三角形全等;难点:会利用三角形全等证明线段相等、角相等.教学过程 导入新课1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.如图,已知△ABC ≌△DEF①AB =DE,② BC =EF ,③CA =FD ;④∠A =∠D , ⑤∠B =∠E ,⑥∠C =∠F .探究新知 一、探究互动一 思考1:满足上述六个条件可以保证△ABC ≌△DEF 吗?思考2:可以用较少的条件判定△ABC ≌△DEF 吗?在以上六个条件中,能否选择其中部分条件,简捷地判定两个三角形全等呢?教师引导,学生探究(小组合作)探究1 只给一个条件,可以分哪几种情况?能够判断两个三角形全等吗?两个三角形不全等;两个三角形不全等; 结论:一个条件不能够判断两个三角形全等.探究2 只给两个条件.①两条边对应相等:若AB =DE ,AC =DF ,但两个三角形不全等;教学反思②一条边和一个角对应相等:若AB =DE ,∠A = ∠D ,但两个三角形不全等;③两个角对应相等:若∠A = ∠D ,∠C = ∠AFE ,但两个三角形不全等.结论:两个条件也不能够判断两个三角形全等.探究3 给出三个条件.⎧⎪⎪⎨⎪⎪⎩①三角对应相等;②三边对应相等;三个条件③两边一角对应相等;④两角一边对应相等.问题 有三个角对应相等的两个三角形全等吗?结论:不一定全等.小亮认为,剩下的三种情况才有可能判断两个三角形全等,你赞同他的说法吗?二、探究互动二——基本事实一问题1:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,折成一个边长分别是3 cm ,4 cm ,6 cm 的三角形. 把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?问题2:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,余下 1 cm ,用其余部分折成边长分别是3 cm ,4 cm ,5 cm 的三角形. 再和同学做出的三角形进行比较,它们能重合吗? 小组互动,教师指导. 归纳:基本事实一:如果两个三角形的三边对应相等,那么这两个三角形全等(可简记为“_______”或“_____”).几何语言:如图,在△ABC 和△ DEF 中,,,,AB CA BC ⎧⎪⎨⎪⎩= = = ∴ △ABC ≌△ DEF ( ).例1 如图1,已知点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB .求证:△ABC ≌△FDE . 教师指导,学生分析:在两个三角形中分别找到对应的三条边,然后证明它们分别相等. 证明:∵ AD =FB ,∴ AD +DB =FB +DB ,即AB =FD .教学反思在△ABC 和△FDE 中,∵ ,,AC FE AB FD BC DE ⎧⎪⎨⎪⎩===,∴ △ABC ≌△FDE (SSS ).图1 图2例2 如图2,已知:AB =AC ,AD =AE ,BD =CE . 求证:∠BAC =∠DAE .证明:在△ABD 和△ACE 中,∵ AB AC AD AE BD CE =,=,=,⎧⎪⎨⎪⎩∴ △ABD ≌△ACE (SSS),∴ ∠BAD =∠CAE . ∴ ∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAC =∠DAE .练习:1.如图,下列三角形中,与△ABC 全等的是_______.2.已知:如图,AB =DE ,AC =DF ,BF =CE . 求证:(1)∠A =∠D ;(2)AB ∥DE . 学生独立完成,教师评价 1.③ 2.证明:(1) ∵ BF =CE ,∴ BF +FC =FC +CE ,即BC =EF .在△ABC 和△DEF 中, ∵,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴ △ABC ≌△DEF (SSS), ∴ ∠A =∠D .(2)由(1)△ABC ≌△DEF ,可得∠B =∠E ,∴ AB ∥DE .三、三角形的稳定性问题1 问题2:观察右面两组木架,如果分别扭动它们,会得到怎样的结果?教学反思教师归纳:教学反思三角形的特性:三角形木架的形状_________,也就是说三角形是具有_____的图形.四边形的特性:四边形木架的形状_______,也就是说四边形是_________的图形.理解“稳定性”只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.想一想:在我们日常生活中,还有哪些地方运用到了三角形的稳定性?你能举出例子来吗?课堂练习1.如图1,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对2.下列关于三角形稳定性和四边形不稳定性的说法中正确的是( )A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3.在生活中我们常常会看见如图2所示的情况加固电线杆,这是利用了三角形的________.4.如图3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A. 1个B. 2个C. 3个D. 4个5.如图4,D,F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件________ (填一个条件即可).6.如图5,AD=BC,AC=BD.求证:∠C=∠D .图1 图2 图3图4图5参考答案1.C2.C3.稳定性4.C5.BD=CF(答案不唯一)如果两个三角形的三边对应相等,那么这两个三角形全等(简写成“边边边”或“SSS”)内容解题思路应用边边边注意事项三角形的稳定性结合图形找隐含条件和现有条件,找出三边对应相等1.证明两三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中6.证明:连接AB(图略),在△ABD和△BAC中,,,, AD BC BD AC AB BA ⎧⎪⎨⎪⎩===∴△ABD≌△BAC(SSS),∴∠D=∠C.课堂小结1.基本事实一;2.基本事实一的应用;3.三角形的稳定性.布置作业完成教材第40页习题.板书设计13.3全等三角形的判定第1课时边边边教学反思第十三章全等三角形13.3 全等三角形的判定第2课时边角边教学目标教学反思1.探索并正确理解三角形全等的判定方法“SAS”;2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用;3.了解“SSA”不能作为两个三角形全等的条件.教学重难点重点:会用“SAS”判定方法证明两个三角形全等及进行简单的应用;难点:了解“SSA”不能作为两个三角形全等的条件.教学过程旧知回顾回顾基本事实一的内容.导入新课问题情境小明不小心将一块大脸猫的玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节课的内容吧!探究新知观察思考:问题1:画一个三角形,使它的两条边长分别是1.5cm,2.5cm,并且使长为1. 5cm的这条边所对的角是30°.小明的画图过程如图所示.小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.那么两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?问题2:已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′.(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合? (2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?教师引导,学生自主探索. 归纳:基本事实二如果两个三角形的________和它们的______对应相等,那么这两个三角形全等.(可简写成“________”或“_____”)几何语言:在△ABC 和△ DEF 中, ____________AB A AC ⎧⎪⎨⎪⎩=,∠=,=, ∴ △ABC ≌△ DEF (______).例 已知:如图,AD ∥BC ,AD =CB . 求证:△ADC ≌△CBA . 教师引导,学生分析: 由两条直线平行可得内错角相等,还有隐含条件AC是公共边,可由SAS 证得结论.证明:∵AD ∥BC (已知),∴∠1=∠2(两直线平行,内错角相等).在△ADC 和△CBA 中,∵(),12(),(),AD CB AC CA ⎧⎪⎨⎪⎩=已知∠=∠已推出=公共边 ∴△ADC ≌△CBA (SAS ).三角形全等在实际生活中也有很广泛的应用.下图是一种测量工具的示意图.其中AB =CD ,并且AB ,CD 的中点O 被固定在一起, AB ,CD 可以绕点O 张合.在图中,只要量出AC 的长,就可以知道玻璃瓶的内径是多少.这是为什么?请把你的想法和同学进行交流.原理:SAS. 练习:在下列推理中填写需要补充的条件,使结论成立: 如图,在△AOB 和△DOC 中, AO =DO (已知),______=________( ),BO =CO (已知),∴ △AOB ≌△DOC ( ).学生独立完成,教师评价.答案:∠ AOB ∠ DOC 对顶角相等 SAS 课堂练习 1.如图,△ABC 中,已知AD 垂直于BC ,D 为BC 的中点,则下列结论不正确的是( ) A . △ABD ≌△ACD B . ∠B =∠CC . AD 是∠BAC 的平分线 D . △ABC 是等边三角形2.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A .一定全等B .一定不全等C .不一定全等D .面积相等 3.如图1,AB ,CD ,EF 交于点O ,且它们都被点O 平分,则图中共有______对全等教学反思内容 应用 边角边 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.(简写成 “边角边”或“SAS ”)1.“SSA ”不能作为判断三角形全等的依据;2. 根据已知条件,找到图形中的隐含条件,如公共边,公共角,对顶角,邻补角,外角,平角等,证明三角形全等.三角形.图1 图2 4.如图2,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC =DE ,AB ∥EF ,AB =EF .求证:△ABC ≌△EFD .5.某大学计划为新生配备如图3所示的折叠凳,图4是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长相等,O 是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为30 cm ,则由以上信息可推得CB 的长度是多少? 参考答案 1.D 2.C 3.34.证明:∵ AB ∥EF ,∴ ∠A =∠E .在△ABC 和△EFD 中,,,,AC ED A E AB EF ⎧⎪⎨⎪⎩=∠=∠=∴ △ABC ≌△EFD (SAS ).5.解:∵ O 是AB ,CD 的中点,∴ OA =OB ,OD =OC .∴ CB =AD .在△AOD 和△BOC 中,OA OB AOD BOC OD OC ⎧⎪⎨⎪⎩=,∠=∠,=, ∴ △AOD ≌△BOC (SAS ). ∵ AD =30 cm ,∴ CB =AD =30 cm.课堂小结1.基本事实二;2.SAS 的应用. 布置作业完成教材第43页习题.板书设计 13.3 全等三角形的判定第2课时 边角边 教学反思第十三章 全等三角形13.3 全等三角形的判定 第3课时 角边角、角角边教学目标1.分不同情况探索“两角一边”条件下两个三角形是否全等;2.掌握AAS 或ASA ,并会利用其证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握AAS 或ASA ,并会利用其证明两个三角形全等;难点:分不同情况探索“两角一边”条件下两个三角形是否全等.教学过程 导入新课探究新知1.角边角、角角边 问题1:如图,在△ABC和△A ′B ′C ′中,∠B =∠B ′,BC =B ′C ′.∠C =∠C ′.把△ABC 和△A ′B ′C ′叠放在一起,它们能够完全重合吗? 问题2:提出你的猜想,并试着说明理由.学生讨论会发现:将△ABC 叠放在△A ′B ′C ′上,使边BC 落在边B ′C ′上,顶点A 与顶点A ′在边B ′C ′的同侧.由BC =B ′C ′可得边BC 与边B ′C ′完全重合.因为∠B =∠B ′,∠C =∠C ′ ,∠B 的另一边BA 落在边B ′A ′上, ∠C 的另一边落在边C ′A ′上,所以∠B 与∠B ′完全重合, ∠C 与∠C ′完全重合.由于“两条直线相交只有一个交点”,所以点A 与点A ′重合.所以, △ABC 和△A ′B ′C ′全等. 归纳:基本事实三如果两个三角形的 两个角和它们的夹边对应相等,那么这两个三角形全等.(可简写成“角边角”或“ASA ”)几何语言: 如图,在△ABC 和△ DEF 中,∠A =∠D ,AB =DE ,∠B =∠E ,教学反思∴ △ABC ≌△ DEF (ASA ).问题3:已知:如问题1中的图,在△ABC 和△A ′B ′C ′中, ∠A =∠A ′, ∠B = ∠B ′,BC =B ′C ′. 求证: △ABC ≌△A ′B ′C ′.教师引导,学生观察:可将∠A =∠A ′这个条件转化为∠C =∠C ′. 证明:∵∠A +∠B +∠C =180°,∠ A ′ +∠ B ′ +∠ C ′ =180°(三角形内角和定理), 又∵ ∠A =∠A ′, ∠B = ∠B ′(已知), ∴ ∠C =∠C ′(等量代换).在△ABC 和△A ′B ′C ′中,,,,B B BC B C C C ∠=∠⎧⎪=⎨⎪∠=∠⎩′′′′ ∴ △ABC ≌△A ′B ′C ′(ASA ). 想一想:从中我们可以得到什么规律? 归纳:全等三角形的判定定理 如果两个三角形的 两角及其中一个角的对边对应相等,那么这两个三角形全等.(可简写成“角角边”或“AAS ”)几何语言:在△ABC 和△ DEF 中,∠B =∠E ,∠A =∠D ,BC =EF , ∴ △ABC ≌△ DEF (AAS ). 例 已知:如图,AD =BE ,∠A =∠FDE ,BC ∥EF . 求证:△ABC ≌△DEF .教师引导,学生分析.通过BC ∥EF ,可得∠ABC =∠E ,再根据等量代换可得AB =DE .证明:∵ AD =BE (已知),∴ AB =DE (等式的性质). ∵ BC ∥EF (已知), ∴∠ABC =∠E (两直线平行,同位角相等).在△ABC 和△DEF 中,,A FDE AB DE ABC E ⎧⎪⎨⎪⎩∠=∠,=,∠=∠∴ △ABC ≌△DEF (ASA ). 练习:1.如图1,已知△ABC 的三条边和三个角,则甲、乙两个三角形中和△ABC 全等的图形是( )A.甲B.乙C.甲、乙D.甲、乙都不是图1 图22.如图2,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,根据“AAS ”需添加的一个条件是___________. 学生独立完成,教师评价.答案:1.B 2.∠B =∠C (答案不唯一)课堂练习1.在△ABC 与△A ′B ′C ′中,已知∠A =44°,∠B =67°,∠C ′=69°,∠A ′教学反思=44°,且AC=A′C′,那么这两个三角形________________.2.如图1,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.图1 图23.如图2,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=2cm,CF=4cm,则AB的长为( )A.2cmB.4cmC.6cmD.8cm4.如图3,∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.5.已知:如图4,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.图3 图4参考答案1.全等2.33.C4.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,12,,, AB ABABC ABD ⎧⎪⎨⎪⎩∠=∠=∠=∠∴△ABC≌△ABD(ASA). 5.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90 °.在△ABC和△ADC中,12B DAC AC⎧⎪⎨⎪⎩∠=∠,∠=∠,=(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.课堂小结1.角边角、角角边的内容;2.利用角边角、角角边解决问题.布置作业完成教材第47页习题.教学反思板书设计13.3全等三角形的判定第3课时角边角、角角边教学反思角边角角角边内容应用如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等(简写成“ASA”)如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等(简写成“AAS”)注意“AAS”“ASA”中两角与边的区别第十三章 全等三角形13.3 全等三角形的判定第4课时 具有特殊位置关系的三角形全等教学目标1.会从图形变换的角度,认识两个可能全等的三角形的位置关系;2.会综合运用本节学过的基本事实及相关定理证明两个三角形全等.教学重难点重点:会从图形变换的角度,认识两个可能全等的三角形的位置关系;难点:会综合运用本节学过的基本事实及相关定理证明两个三角形全等. 教学过程 导入新课1.图形的变换---平移、旋转;2.三角形全等的几个基本事实. 探究新知 问题:如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合.学生讨论会发现: (1)、(2)图通过平移重合;(3)、(4)、(5)、(6)通过旋转重合. 归纳:实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换) 得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快地解决问题.例1 已知:如图,在△ABC 中, D 是BC 的中点,DE ∥AB,交AC 于点 E ,DF ∥AC ,交AB 于点F .求证:△BDF≌△DCE .教师引导,学生分析:将△BDF 沿BC 方向向右平移可使△BDF △DCE 重合. 证明:∵ D 是BC 的中点(已知),∴ BD =DC (线段中点定义∵ DE ∥AB ,DF ∥AC ,(已知)∴ ∠B =∠EDC ,∠BDF =∠C ,(两直线平行,同位角相等)在△BDF 和△DCE 中,B EDC BD DC BDF C ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BDF ≌△DCE (ASA ).例2 已知:如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,CF ∥AB ,交DE 的延长线于点F . 求证:DE =FE .教师引导,学生分析:将△ADE 绕点E 旋转,可与△CFE 重合.证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). 在△EAD 和△ECF 中, 教学反思,A ECF AE CE AED CEF ⎧⎪⎨⎪⎩∠=∠,=,∠=∠ ∴△EAD ≌△ECF (ASA ).∴DE =FE (全等三角形的对应边相等). 练习: 1.如图1,由∠1=∠2,BC =DC ,AC =EC ,得△ABC ≌△EDC 的根据是( ) A .SAS B .ASA C .AAS D .SSS图1 图2 2.已知:如图2,AB ∥CD ,AD ∥BC . 求证:AB =CD ,AD =BC .学生独立完成,教师评价.答案:1.A2.证明:连接AC (图略),∵ AD ∥BC ,∴ ∠DAC =∠ACB.∵ AB ∥CD ,∴ ∠BAC =∠DCA. 在△BAC 和△DCA 中,BAC DCA AC CA BCA DAC ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BAC ≌△DCA , ∴ AB =CD ,AD =BC . 课堂练习 1. 如图1,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为________.2.如图2,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A.60°B.90°C.120°D.150° 图1 图2 图3 图4 3.如图3,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A与∠PR Q 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C画一条射线AE ,AE 就是∠PR Q 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠Q A E =∠P AE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS4.如图4,AE =AC ,AB =AD ,∠EAB =∠CAD ,试说明:∠B =∠D.参考答案 1.120° 2.B 3.D 4.证明:∵ ∠ EAB =∠ CAD ,∴ ∠ EAB +∠ BAD =∠ CAD +∠ BAD , 即∠ EAD =∠ CAB .教学反思。
八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。
我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。
人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。
2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。
三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。
菱形定义:有一组邻边相等的平行四边形叫做菱形。
【强调】菱形(1)是平行四边形;(2)一组邻边相等。
让学生举一些日常生活中所见到过的菱形的例子。
四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。
∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。
2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。
3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。
八年级数学教案八年级数学教案模板汇总六篇八年级数学教案篇1一、教材分析1.教材的地位与作用平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.2.教学目标:知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.3.教学重点、难点:重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.4.教材处理:基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性.然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.二.教学方法与手段本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.八年级数学教案篇2一、回顾交流,合作学习【活动方略】活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87•的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.【问题探究1】(投影显示)飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC 中的∠C=90°,AC=4000米,AB=5000米,•要求出飞机这时飞行多少千米,•就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,•斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)【活动方略】教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.【问题探究2】(投影显示)一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,•工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?•为什么?思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:AB2+AD2=32+42=9+16=25=BD2,得∠A= 90°,同理可得∠CDB=90°,因此,这个零件符合要求.【活动方略】教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.学生活动:思考后,完成“问题探究2”,小结方法.解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,∴△ABD为直角三角形,∠A=90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.∴△BDC是直角三角形,∠CDB=90°因此这个零件符合要求.【问题探究3】甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6•千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,•甲、乙两人相距多远?思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)【活动方略】教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.学生活动:课堂练习,与同伴交流或举手争取上台演示八年级数学教案篇3教材分析因式分解是代数式的一种重要恒等变形。
华师大版初中八年级数学上册全套优质教案一、教学内容本节课,我们将在华师大版初中八年级数学上册第三章《一元二次方程》中,深入学习一元二次方程定义、性质以及求解方法。
具体涉及3.1节至3.3节内容,包括一元二次方程一般形式、求解一元二次方程公式法、配方法以及因式分解法。
二、教学目标1. 让学生理解一元二次方程概念,掌握其一般形式。
2. 使学生掌握求解一元二次方程公式法、配方法以及因式分解法。
3. 培养学生运用数学知识解决实际问题能力。
三、教学难点与重点重点:一元二次方程一般形式,求解一元二次方程公式法、配方法以及因式分解法。
难点:求解一元二次方程过程,尤其是配方法和因式分解法运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、练习本、草稿纸。
五、教学过程1. 实践情景引入:通过一个实际生活中例子,如面积问题,引出一元二次方程。
2. 知识讲解:a. 讲解一元二次方程定义及一般形式。
b. 详细介绍求解一元二次方程公式法、配方法以及因式分解法。
3. 例题讲解:选取典型例题,分别用公式法、配方法以及因式分解法求解一元二次方程。
4. 随堂练习:让学生独立完成练习题,巩固所学知识。
5. 答疑解惑:针对学生在练习过程中遇到问题,进行解答。
六、板书设计1. 一元二次方程定义及一般形式。
2. 求解一元二次方程公式法、配方法以及因式分解法。
3. 典型例题及解题步骤。
七、作业设计1. 作业题目:2x^2 5x + 3 = 0x^2 6x + 9 = 03x^3 2x^2 + x 1 = 0(x 3)(x + 2) = 02. 答案:a. 公式法求解:x1 = 3, x2 = 1/2x1 = x2 = 3b. 判断与求解:不是一元二次方程是一元二次方程,x1 = 3, x2 = 2八、课后反思及拓展延伸1. 反思:本节课学生对一元二次方程定义和求解方法掌握情况,以及自己在教学过程中优点和不足。
2. 拓展延伸:布置一道拓展题,让学生尝试用其他方法求解一元二次方程,提高学生发散思维能力。
初中八年数学教案板书教学目标:1. 让学生理解多边形的内角和外角的概念,掌握多边形的内角和外角的性质。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 多边形的内角和外角的概念。
2. 多边形的内角和外角的性质。
教学难点:1. 理解并证明多边形的内角和外角的性质。
教学准备:1. 课件或黑板。
2. 几何画板或纸张、直尺、圆规等绘图工具。
教学过程:一、导入(5分钟)1. 引导学生回顾多边形的基本概念,如三角形的内角和外角。
2. 提问:你们认为四边形的内角和外角有什么特点呢?二、新课讲解(15分钟)1. 引入多边形的内角和外角的概念,通过示例解释内角和外角的定义。
2. 引导学生观察和讨论多边形的内角和外角的性质,如内角和外角的度数关系。
3. 引导学生通过绘图和推理证明多边形的内角和外角的性质。
三、课堂练习(15分钟)1. 布置一些有关多边形的内角和外角的练习题,让学生独立完成。
2. 选取一些学生的作业进行讲解和讨论,纠正错误并解释解题思路。
四、应用拓展(15分钟)1. 给出一些实际问题,让学生运用多边形的内角和外角的性质进行解决。
2. 引导学生进行小组讨论,分享解题方法和结果。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结多边形的内角和外角的性质。
2. 提问:你们认为多边形的内角和外角在实际生活中有哪些应用呢?教学评价:1. 通过课堂讲解、练习和应用拓展,评价学生对多边形的内角和外角的掌握程度。
2. 观察学生在解决问题时的思维过程和方法,评价学生的逻辑思维能力和团队合作能力。
板书设计:多边形的内角与外角内角:多边形内部的角外角:多边形外部的角性质:1. 多边形的内角和等于(n-2)×180°,其中n为多边形的边数。
2. 多边形的外角和等于360°。
3. 多边形的内角和外角互补,即内角加外角等于180°。
人教版初中八年级数学教案(一)教学目标:(1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;(2)弄清三角形按边的相等关系的分类;(3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;(4)通过三角形三边关系定理的学习,培养学生转化的能力;(5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.教学重点:三角形三边关系定理及推论教学难点:三角形按边分类及利用三角形三边关系解题教学用具:直尺、微机教学方法:谈话、探究式教学过程:1、阅读新课,回答问题先让学生阅读教材的第一部分,然后回答下列问题:(1)这一部分教材中的数学概念有哪些?(指出来并给予解释)(2)等腰三角形与等边三角形有什么关系?估计有的学生可能把等腰三角形和等边三角形看成独立的两类.(3)写出三角形按边的相等关系分类的情况.教师最后板书给出.(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)2、发现并推导出三边关系定理问题1:用长度为4cm、10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)问题2:你能解释上述结果的原因吗?问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?定理:三角形两边的和大于第三边(发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)3、导出三边关系定理的推论及其它两种方法由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.推论:三角形两边的差小于第三边(给每一个学生表现个人数学语言表达才能的机会)能否简化上面定理及推论?从而得到如下两种判定方法:(1)、已知线段, ( ),若第三条线段c满足 - c则线段 , ,c可组成一个三角形.4、三角形三边关系定理及推论的应用例1 判断题:(出示投影)(1)等边三角形是等腰三角形(2)三角形可分为不等边三角形、等腰三角形和等边三角形(3)已知三线段满足 ,那么为边可构成三角形(4)等腰三角形的腰比底长(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)(本例要求学生说出解题思路,教师点到为止)例3 一个等腰三角形的周长为18 .(1) 已知腰长是底边长的2倍,求各边长.(2) 其中一边长4 ,求其他两边长.这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.(数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)例4 草原上有4口油井,位于四边形ABCD的4个顶点,如图1现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离HA+HB+HC+HD为最小,说明理由.本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.5、小结本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:(1)判断三条已知线段能否组成三角形采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.(2)确定三角形第三边的取值范围两边之差<第三边<两边之和若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构.6、布置作业a. 书面作业P41#8、9b. 思考题:1、在四边形ABCD中,AC与BD相交于P,求证:(AB+BC+CD+AD)2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范围,所以可知最多可以由7根火柴棒组成)人教版初中八年级数学教案(二)教学目的1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
初中数学八年级教案一教材分析本节课选自人教版数学八年级上册第十五章第四节第一个内容(P165-167)。
因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义。
本节是因式分解的第1小节,占一个课时,它主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用。
学情分析基于学生在小学已经接触过因数分解的经验,但对于因式分解的概念还完全陌生,因此,本课时在让学生重点理解因式分解概念的基础上,应有意识地培养学生知识迁移的数学能力,如:类比思想,逆向运算能力等。
学生的技能基础的分析:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础。
学生活动经验基础的分析:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具体方法,所以对于学生来说,寻求因式分解的方法是一个难点。
教学目标㈠、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
㈡、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
教学重点和难点教学重点:因式分解的概念及提公因式法。
教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
教学过程教学环节教师活动预设学生行为设计意图活动1:复习引入看谁算得快:用简便方法计算:(1)7/9 ×13-7/9 ×6+7/9 ×2= ;(2)-2.67×132+25×2.67+7×2.67= ;(3)992–1= 。
学生在计算是分为两类:一是正确应用因数分解的办法进行简便计算;二是不懂正确应用因数分解的办法进行简便计算,而采取实实在在计算办法进行计算。
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题1. P165的探究(略);2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?学生思考:从以上问题的解决中,你知道解决这些问题的关键是什么?引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知看谁算得准:计算下列式子:(1)3x(x-1)= ;(2)m(a+b+c)= ;(3)(m+4)(m-4)= ;(4)(y-3)2= ;(5)a(a+1)(a-1)= ;根据上面的算式填空:(1)ma+mb+mc= ;(2)3x2-3x= ;(3)m2-16= ;(4)a3-a= ;(5)y2-6y+9= 。
学生由整式的乘法的计算逆向得到因式分解(提公因式法)。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知比较以下两种运算的联系与区别:(1) a(a+1)(a-1)= a3-a(2) a3-a= a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
其中,把多项式中各项的公因式提取出来做为积的一个因式,多项式各项剩下部分做为积的另一个因式这种因式分解的方法叫做提公因式法。
辨一辨:下列变形是因式分解吗?为什么?(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2学生讨论、发言对因式分解,特别是提公因式法的认识、理解、看法,并总结出因式分解、提公因式法的定义。
通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知例题学习:P166例1、例2(略)在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业课本P170习题的第1、4大题。
学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)15.4.1提公因式法例题1.因式分解的定义2.提公因式法初中数学八年级教案二平方差公式一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999 (2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2初中数学八年级教案三分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解: = , = , = , = , = 。
六、随堂练习1.填空:(1) = (2) =(3) = (4) =2.约分:(1) (2) (3) (4)3.通分:(1) 和 (2) 和(3) 和 (4) 和4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) (2) (3) (4)七、课后练习1.判断下列约分是否正确:(1) = (2) =(3) =02.通分:(1) 和 (2) 和3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1) (2)八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1) (2) (3) (4)-2(x-y)23.通分:(1) = , =(2) = , =(3) = =(4) = =4.(1) (2) (3) (4)。