热休克蛋白的研究进展及其在疾病中的作用
- 格式:docx
- 大小:37.83 KB
- 文档页数:3
热休克蛋白70及其对精子影响作用的研究进展哈斯高娃,陈小辛,娜仁花(内蒙古农业大学动物科学学院,内蒙古自治区动物遗传育种与繁殖重点实验室,呼和浩特010018)中图分类号:S823.3文献标识码:A文章编号:1004-4264(2021)03-0020-04DOI:10.19305/ki.11-3009/S.2021.03.005微侑扫描二维码听独家语音介绍写作者在线交流开学债s®务)SiRW(OSID)摘要:分子伴侣是正常细胞和细胞损伤不同阶段蛋白质动态平衡的关键决定因素,热休克蛋白70(HSP70)是普遍存在的分子伴侣,具有多种细胞功能。
伴侣蛋白通过利用各种独特的机制来维持细胞中正确的蛋白质折叠,以防止分子间的异常相互作用,防止蛋白质聚集以及蛋白质重折叠等,且HSP70在细胞中与辅助伴侣蛋白协同互作,这些辅助伴侣蛋白由J-结构域蛋白和核昔酸交换因子组成,调节HSP70与伴侣蛋白循环。
本文对HSP70的结构、功能以及对精子功能的关系进行综述,对HSP70分子伴侣如何调控细胞功能以及精子功能的分子机制提供了新的见解。
关键词:分子伴侣;HSP70;蛋白质折叠;翻译后修饰为了生存,生物体必须能够在不断变化的环境中保持细胞的动态平衡,分子伴侣对这一过程有着至关重要的作用,它们有助于保护细胞蛋白质免受极端条件,如温度突然升高、氧化应激、接触重金属、缺氧和代谢功能障碍等的破坏⑴。
热休克蛋白(HSPs)位于细胞质(包括各种细胞器,如线粒体)、细胞核、细胞质膜等3个细胞区室,并在细胞外完成任务伺。
HSP参与一系列细胞过程,包括蛋白质折叠和重折叠、运输、移位、解聚和降解冏,而且还与人类的许多病理生理疾病相关,包括神经退行性疾病、癌症⑷和生物衰老同等。
收稿日期:2020-08-27基金项目:内蒙古农血大学动物科学学院标志性成果专项资金项目青年基金项目(DC1900006998);内蒙古自治区自然科学基金项目(2017MS0344)。
分子生物学知识:热休克蛋白的生物学功能及其应用热休克蛋白的生物学功能及其应用热休克蛋白(Heat shock protein,HSP)是由细胞在环境压力下诱导表达的一组蛋白质,广泛存在于原核和真核生物中。
热休克蛋白具有广泛的生物学功能,如参与蛋白质折叠、转运和降解等过程,以及细胞凋亡、细胞周期、抗氧化和免疫反应等生理活动。
热休克蛋白的应用已经扩展到多个领域,如生命科学、生物医学、工业等,成为了具有广泛应用价值的研究对象。
热休克蛋白的生物学功能概述1.参与蛋白质折叠热休克蛋白在基质中形成复合物,通过域域相互作用,协助折叠不稳定的蛋白质,促进其正确的形成。
它的作用机制包括预先侦测蛋白质表位,保护暴露的疏水表面,防止聚合和凝集,提高正确折叠的效率。
2.参与蛋白质转运热休克蛋白能够促使细胞质膜及细胞器膜上的转运蛋白摄取其所需要的细胞外物质,同时防止蛋白质在过程中的退化。
在细胞内,热休克蛋白也能够通过参与细胞器-细胞器和细胞器-细胞膜之间的蛋白质转运过程中,发挥重要的作用。
3.参与蛋白质降解热休克蛋白能够促进蛋白质的降解过程,而这些蛋白质可能已经表现出不同的功能甚至是对细胞毒性,但是热休克蛋白的存在维持了对这些危险蛋白质的控制。
对于细胞的清除过程中,热休克蛋白能够与修复酶、泛素结合酶等协同作用。
4.参与细胞凋亡热休克蛋白在细胞凋亡过程中发挥了重要的作用。
在高温、低氧等压力下,细胞会出现异常的分子,进而导致细胞死亡。
而热休克蛋白则能够促进细胞的存活,阻止异常凋亡的发生。
5.参与细胞周期热休克蛋白在细胞周期的各个阶段,包括G1、S、G2和M期都发挥了不同的作用。
其在染色体复制、有丝分裂期以及细胞增殖、细胞生长等环节中均发挥着重要的调控作用。
6.参与免疫反应热休克蛋白能够促进免疫反应的产生,通过激活T细胞和抗体的产生,对于抵御感染、癌症等疾病和外界压力起到了重要保护作用。
同时,热休克蛋白还能够促进白细胞的发育成熟,并强化其免疫力。
热休克蛋白90α 与胃癌的研究进展王鹏【期刊名称】《检验医学与临床》【年(卷),期】2018(015)016【总页数】4页(P2511-2514)【关键词】热休克蛋白;胃癌;抑制剂;客户蛋白【作者】王鹏【作者单位】内蒙古科技大学包头医学院第一附属医院检验科 ,内蒙古包头014010【正文语种】中文【中图分类】R446热休克蛋白(HSP)是广泛存在于细菌、动物和人体中的热应激蛋白质大家族,主要由热休克或其他一些应激源诱导而发生表达。
在生物体内主要能发挥协助蛋白质的折叠、转运、跨膜、稳定构象及细胞的信号传导、损伤保护等“分子伴侣”的功能[1-2]。
按相对分子质量分为HSP27、HSP60、HSP40、HSP70、HSP90,HSP110等[3-4]。
HSP90是HSPs家族中重要的成员之一,据研究显示,HSP90常用于在肿瘤中调控突变或高表达的“客户蛋白”,如蛋白激酶B(AKT)、肝细胞生长因子受体C-Met、人类表皮生长因子受体2(HER2)、细胞周期蛋白依赖性激酶4(CDK4)、表皮生长因子受体(EGFR)、雄激素受体(AR),同时,其在肿瘤细胞的增殖、分化、侵袭、凋亡等分子通路中发挥重要作用[5]。
HSP90α是HSP90的两种异构体形式之一,在细胞内外非常稳定并且发挥主要的“伴侣蛋白”作用。
胃癌是全球常见的恶性肿瘤之一,胃癌的早期诊断是提高诊断效率和治愈率的关键。
HSP90α的底物蛋白涉及几乎所有的细胞过程,其可能具有潜在的临床用途,并作为癌症诊断的生物标记物,用于评估疾病进展和癌症的治疗靶点,现将HSAP90α 与胃癌的研究进展综述如下。
1 HSP90α特性与功能HSP90主要位于细胞质中,以二聚体的形式存在,其基本结构由3部分组成:N端结构域(25 kDa)、中间域(40 kDa)、C端结构域(12 kDa)。
HSP90是一种三磷酸腺苷酶(ATP)依赖的分子伴侣,其家族成员依赖ATP分子内的ATP酶活性,有助于蛋白质折叠、蛋白质的转运。
热休克蛋白的生物学功能热休克蛋白是在细胞内通过避免蛋白质的变性和聚集以保护细胞应对各种压力的蛋白质家族。
热休克蛋白的主要功能是促进蛋白质折叠,其中许多分子的非常规折叠会导致蛋白质的变性和聚集。
在对许多时效性疾病(如阿尔茨海默症、帕金森病等)、癌症、自身免疫和感染疾病的研究中,热休克蛋白的重要作用得到了广泛的认识。
热休克蛋白的分类及功能热休克蛋白是一种高度保守的分子,在所有的生物体中均具有相同或相似的功能。
根据其分子大小,热休克蛋白被分为HSP90、HSP70、HSP60、HSP40、HSP27等大类。
其中,HSP70是目前研究最为深入的一种热休克蛋白。
HSP70的主要功能是促进蛋白质的折叠,并与聚集的蛋白质结合形成新的复合物。
此外,HSP70也可以作为细胞自噬和凋亡的调节因子,调节人体免疫系统的反应和天然免疫的效应。
HSP90的重要作用也得到了广泛的认识。
HSP90主要参与了一些信号传导和转录调控的过程。
也可以作为药物耐受性和恶性肿瘤抗性的重要标志物。
HSP90还可以在心血管系统中调节胆固醇的代谢以及肌动蛋白的调节。
此外,热休克蛋白的其他家族成员的功能,如HSP60、HSP40、HSP27,主要参与了细胞风险对应、信号转导以及细胞凋亡等一系列生物学过程。
热休克蛋白的调节机制及其生物学意义热休克蛋白的表达和调节是一个非常复杂和多元化的过程。
在细胞中,热休克蛋白的表达和功能通常受到多种分子信号调节。
例如,细胞因子和激素等内外因素的介入,ATP和Ca2+等离子体信号等均可以调节热休克蛋白的表达和功能。
热休克蛋白的存在和表达与人们的健康息息相关。
热休克蛋白的过表达通常被认为是许多疾病的标志之一。
例如,经常被抑制的热休克蛋白在癌症细胞中表达量的升高可以增加细胞对化疗药物的耐受性。
此外,大量研究表明,热休克蛋白与衰老、生殖和生殖过程以及不同的脑神经功能和精神障碍等生物学过程密切相关。
热休克蛋白与神经退行性疾病在中老年人群中,阿尔茨海默病是一种非常普遍的退行性疾病。
热休克蛋白在细胞应激中的作用随着人们对生物学认知的深入,人们对细胞应激及其应对机制的研究也越来越深入。
热休克蛋白(hsp)作为一种主要的细胞应激蛋白,在细胞的应激响应中发挥着至关重要的作用。
一、热休克蛋白的发现热休克蛋白是一群分子质量为10-150kDa的蛋白质家族,最早发现于20世纪60年代初,当时研究者在研究蛋白质在高温环境下的变化时,发现一些蛋白质在高温环境下的表达量会显著提高,后来这些蛋白质被命名为热休克蛋白。
二、热休克蛋白的分类及特点根据其分子质量的不同,热休克蛋白可以分为Hsp10、Hsp20、Hsp40、Hsp60、Hsp70、Hsp90等不同家族。
这些蛋白质一般以分子伸展为特征,能够形成空心球、环、筒等多种形态。
与其他蛋白相比,热休克蛋白表现出了一些独特的性质:1.它们是一种高度保守的蛋白质家族,其氨基酸序列在不同的物种中有着相似或相同的序列。
2.与大多数蛋白质类似,热休克蛋白也会出现时效性,它们跟随细胞的需要得以表达和消耗。
三、热休克蛋白的作用1.保护细胞膜结构细胞膜是细胞的外壳,可以让细胞保持形态和稳定。
然而,受到应激因素的影响,细胞膜容易出现结构上的改变。
热休克蛋白可以通过保护细胞膜结构来减轻这种影响。
研究发现,热休克蛋白可以与膜蛋白结合,使膜蛋白的结构更加稳定,从而保护细胞膜。
2.抑制蛋白质的聚集蛋白质聚集是很多疾病的主要表现,例如阿兹海默症等。
热休克蛋白和一些chaperonin蛋白质一起,可以帮助新合成的蛋白质正确折叠,并避免其聚集,从而减轻细胞受到的损害。
3.参与凋亡和细胞周期调节研究发现,热休克蛋白还能参与细胞的凋亡和细胞周期调节。
特别是在癌症研究中,因为癌细胞的生长和扩散受到热休克蛋白的参与调节,因此,热休克蛋白也被广泛应用于癌症的治疗和预防领域。
四、热休克蛋白在细胞应激中的作用1.热量应激在面对高温的环境时,细胞表现出一种反应,即热应激反应,这时热休克蛋白扮演了一个至关重要的角色。
热休克蛋白和其他蛋白质的折叠机制及其在疾病研究中的应用蛋白质是生物体中最重要的基本分子。
它们在细胞内扮演着重要的角色,担任结构和功能性酶,媒介信号传导和遗传信息的转录。
其中,热休克蛋白(Heat Shock Proteins,HSPs)是一类特殊的蛋白质,可以帮助其他蛋白质正确折叠,还可以参与细胞应激和废物清除过程。
本文将讲解热休克蛋白和其他蛋白质的折叠机制,并介绍它们在疾病研究中的应用。
一、蛋白质结构和折叠蛋白质是由氨基酸组成的长链分子,通过肽键相连。
氨基酸中的侧链决定了其性质和作用。
蛋白质的结构包括四级结构:原始结构、二级结构、三级结构和四级结构。
原始结构指的是未折叠的链状蛋白,而折叠就是将这条链按一定的方式排列,形成其它结构。
二级结构指的是氢键形成的一段螺旋、折叠或转角,三级结构指的是整个蛋白折叠成的立体结构,包括局部的螺旋和折叠和中心。
四级结构是由多个三级结构组成的高级结构或是多个蛋白质的结合体,例如酶和骨架蛋白。
正确的折叠是蛋白质发挥功能的前提。
折叠指的是蛋白质链在空间上的排列方式。
折叠由氢键、疏水作用、范德华力和离子相互作用等力驱动。
在细胞中,有许多分子机制和蛋白质互动来保证蛋白质正确地折叠。
二、热休克蛋白的折叠作用热休克蛋白,又称为热休克蛋白(HSP),名称中的“热休克”来源于它们在高温下的发现。
HSPs参与细胞应激和废物清除过程,并且作为非特异性蛋白质折叠机筛选程序的重要组成部分,可以在细胞内促进其他蛋白质的正确折叠并促进它们从热力休克中恢复正常。
HSPs主要存在于细胞的各个部位,包括核、胞质、细胞膜等。
不同类型的HSPs定位于不同的空间。
它们在细胞内可以在生理情况下存在,当细胞遇到环境压力时,HSPs会大量表达,促进折叠和细胞恢复。
人类有许多不同类型的HSPs,其中HSP70和HSP90是最学术探讨的两种。
三、折叠机制的失控和其在疾病中的作用蛋白质折叠失控是一些常见和致命疾病的根源。
热休克蛋白及其在细胞应激中的作用随着科技的进步和生物学的发展,人们对于细胞内部调节机制的了解越来越深入。
热休克蛋白作为一种重要的分子,正在为生命科学提供新的研究方向。
那么,热休克蛋白是什么呢?它在细胞应激中起着怎样的作用呢?一、热休克蛋白的概述热休克蛋白(Heat shock protein,HSP)是细胞内一类具有抗应激效应的蛋白质,在多种生命体中均有存在,包括人类、动物、植物和微生物等。
最早被描述的热休克蛋白是在高温条件下的哺乳动物细胞中发现的,因此被称为“热休克蛋白”。
但是,后来发现热休克蛋白并不仅仅在应对热应激时表达,也参与对其他不同类型的细胞应激进行调节。
在不同物种中,热休克蛋白的分类、命名和表达方式有所不同。
比如,热休克蛋白在人类中有多个亚型,包括HSPA1A、HSPA1B 和HSPA1L等,而在小麦中则存在18个不同的HSP蛋白。
二、热休克蛋白的作用热休克蛋白是一类具有分子伴侣作用的蛋白质,能够与其他蛋白质结合并协助其在细胞内的正确折叠和功能维持。
这种作用对于稳定细胞环境和维持正常生理功能有着重要的作用。
不仅如此,热休克蛋白还能通过调控细胞的生理反应来保障细胞对环境应激的适应性。
在细胞应激反应中,热休克蛋白具有保护细胞免受应激因素侵袭的作用。
如在高温、化学物质、放射线、缺氧等条件下,热休克蛋白的表达水平会明显增加,细胞受到应激时,热休克蛋白可以与激活的信号通路相互作用,参与到细胞生存和死亡的选择中。
此外,热休克蛋白还可调节免疫反应,以及参与细胞周期等重要生理过程。
可以说,热休克蛋白在细胞应激过程中扮演者一种核心的角色。
三、热休克蛋白与疾病由于热休克蛋白在细胞内具有重要的调节作用,因此与其相关的疾病也特别值得关注。
目前,人们已经发现,许多人类疾病的发生和发展与热休克蛋白的异常表达及其调节机制失调有关,如肿瘤、糖尿病、阿尔茨海默病等。
因此,研究热休克蛋白的生物学功能和作用机制,具有重要的临床意义。
热休克蛋白在细胞中的作用及其研究热休克蛋白(heat shock protein,HSP)是一类在细胞应对环境胁迫中表达增加的蛋白质,包括HSP70、HSP90、HSP60等,被广泛地研究和应用于基础医学、临床医学、生物工程、食品科学等领域。
1. 发现和命名热休克蛋白的发现始于20世纪60年代,当时研究者通过暴露哺乳动物细胞于高温(42-45℃)、化学物质等胁迫条件下,发现一些蛋白质的表达量明显增加。
这些蛋白质被称为“热休克蛋白”(heat shock protein,HSP),而其本质为细胞应对环境胁迫的一种防御机制。
2. 作用HSP具有多重功能,第一,它们能够保护细胞内其他蛋白质的稳定性和活性,在细胞受到高温、氧化等胁迫时防止其他蛋白质失活和降解。
第二,它们在细胞应对细菌和病毒感染、药物治疗等应激条件下发挥重要的免疫调节作用。
第三,它们参与了细胞生物学过程中的折叠、组装和质量控制。
第四,它们参与细胞周期的调节、凋亡、增殖和分化等生理过程,从而影响细胞的发育和功能。
3. 研究随着HSP的发现和功能的研究,科学家们开始探索其与各种疾病之间的关系,特别是癌症。
因为在癌细胞中通常存在着异常表达的HSP,这些蛋白质对于细胞的复制、增殖和侵袭等都具有促进作用。
因此,研究者们开始考虑利用HSP作为肿瘤免疫治疗中的一种干预手段。
4. 应用除了在癌症治疗中的应用之外,HSP还可以用于其他医学和生物技术领域。
例如,在神经系统疾病的治疗中,HSP可用于维护神经细胞的稳定性和减轻炎症反应。
在生物技术领域,由于HSP 的折叠、组装和稳定作用,它们可以用于制备各种蛋白质、肽和疫苗等。
总之,HSP作为一类应对环境胁迫的蛋白质,在细胞的生理和病理过程中发挥着至关重要的作用。
未来的研究和应用方向将进一步深入和扩展HSP的作用机制和临床应用。
热休克蛋白的研究进展及其在疾病中的作用
热休克蛋白(heat shock protein,HSP)是一类分子量介于10~120KDa的蛋白质,得名于它们最初被发现是在细胞受到高温等各种应激因素作用后表达的。
随着研究的逐步深入,人们逐渐认识到热休克蛋白具有很多其他功能。
本文就对热休克蛋白的研究进展及其在疾病中的作用进行一些介绍。
一、热休克蛋白的分类与作用机制
热休克蛋白可以根据分子量的大小被分为HSP100、HSP90、HSP70、HSP60、HSP40和小分子HSP等几个家族。
这些蛋白质的表达受到各种应激因素的调节,如热休克应激、氧化应激、营养缺乏等。
它们的共同特点是在细胞内形成大分子复合物,通过与其他蛋白分子相互作用,实现它们的功能。
热休克蛋白的主要作用有以下几个方面:
1.保护其他蛋白质的结构和功能。
当细胞受到热休克应激等各种应激因素的作用时,许多蛋白质的结构和功能都会受损。
热休克蛋白与这些蛋白质相互作用,形成复合物,能够保护它们的结构和功能,从而维持细胞内的稳态。
2.参与蛋白质的正确折叠。
蛋白质折叠状态的正确性对细胞正常功能的发挥至关重要。
热休克蛋白与一些蛋白质结合,调节其折叠状态,帮助其正确地折叠。
3.参与蛋白质的降解。
除了帮助蛋白质正确折叠,热休克蛋白也参与了蛋白质的降解过程。
当蛋白质的结构和功能发生严重损害时,热休克蛋白与其他蛋白分子共同协作,将其降解并清除。
4.参与细胞凋亡的调节。
在细胞死亡过程中,热休克蛋白能够调节一系列重要的信号通路,从而协调和控制细胞凋亡的发生。
二、热休克蛋白在疾病中的作用
1.热休克蛋白与肿瘤的关系
肿瘤细胞较正常细胞运用更多的能量、产生更多的代谢废物和不同于正常细胞
的抗氧化环境。
而热休克蛋白通过维护代谢稳态和减轻细胞内应激反应,使得肿瘤细胞得到保护。
许多的HSPs被认为是增强肿瘤耐受性和转化、粘附和侵袭能力的基因家族。
因此,热休克蛋白可能在肿瘤的生长和转移中扮演重要的角色。
许多研究表明,热休克蛋白在肿瘤的治疗过程中也是十分重要的。
许多抗癌药
物的疗效,往往与热休克蛋白的表达有关。
利用热休克蛋白作为药物的靶标,也成为了治疗肿瘤的一种新方法。
2.热休克蛋白与炎症性疾病的关系
炎症性疾病是一类由免疫系统对内部外部环境的异常反应而产生的一系列疾病。
人们逐渐发现,热休克蛋白能够通过抑制免疫细胞的活性、减少炎症细胞的分泌等几种方式,发挥一定的治疗作用。
例如,炎症性肠病(IBD)是指一类慢性炎症性肠炎疾病,包括克罗恩病和溃
疡性结肠炎。
已有多项研究表明,热休克蛋白能够通过抑制炎症细胞的活性、调节免疫反应等机制,对IBD的治疗具有一定的作用。
3.热休克蛋白与神经退行性疾病的关系
神经退行性疾病是一类由于神经系统的神经元数量减少和功能失常而产生的疾病。
例如阿尔茨海默病、帕金森病、亨廷顿病等。
近年来的研究表明,热休克蛋白能够通过抑制细胞中氧化应激物的产生、调节蛋白质的折叠等机制,对神经退行性疾病中的神经元损伤有一定的保护作用。
此外,热休克蛋白的表达也与神经退行性疾病的发生密切相关,通过调节其表达水平,可能为神经退行性疾病的治疗提供一种新的方法。
三、总结与展望
近年来,热休克蛋白的研究取得了很大进展。
通过对其作用机制的深入了解,人们更好地认识到了热休克蛋白的重要性和潜在治疗作用。
同时,热休克蛋白在许多疾病中的作用也逐渐得到了认识,这将为未来的疾病治疗提供一些新的思路。
未来,还需要进一步深入研究热休克蛋白在各种疾病中的具体作用机制,探寻其更为深入的治疗潜力。