工厂供电系统电气部分的设计
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
中北大学信息商务学院电力工程设计说明书姓名赵佶阳学号1503042132 学院自动控制系专业电气工程及其自动化题目厂降压变电所电气部分设计2016年6月29日中北大学课程设计任务书2015-2016 学年第二学期学院:中北大学信息商务学院专业:电气工程及其自动化学生姓名:赵佶阳学号:1503042132课程设计题目:厂降压变电所电气部分设计起迄日期: 6月20 日~ 6月30日课程设计地点:电气工程及其自动化专业教研室指导教师:秦鹏系主任:王忠庆下达任务书日期: 2016年 6 月20日附表:工厂负荷统计资料生活区照明300 0.7目录1引言 (1)1.1 工厂供电设计的一般原则 (1)1.2 工厂供电设计内容及步骤 (1)1.3 工厂供电的意义和要求 (2)2 负荷计算和无功功率补偿 (3)2.1负荷计算 (3)2.2 无功功率补偿 (5)3.变电所位置和型式的选择 (6)4 变电所主变压器的选择和主结线方案的选择 (7)4.1 变电所主变压器的选择 (7)4.2 变压器主接线方案的选择 (7)4.3两种主接线方案的技术经济比较 (8)5 短路电流的计算 (10)5.1 绘制计算电路 (10)5.2 确定短路计算基准值 (10)5.3 计算短路电路中各元件的电抗标幺值 (10)5.4 10KV侧三相短路电流和短路容量 (11)5.5 380KV侧三相短路电流和短路容量 (11)6 变电所一次设备的选择校验 (12)6.1 10kV侧一次设备的选择校验 (12)6.2 380V侧一次设备的选择校验 (13)7 变电所进出线以及邻近单位联络线的选择 (14)7.1 10kV高压进线和引入电缆的选择 (14)7.2 380V低压出线的选择 (15)7.3 作为备用电源的高压联络线的选择校验 (17)8 变压所的防雷保护 (18)8.1 变压所的防雷保护 (18)8.2 变电所公共接地装置的设计 (19)9心得体会 (20)附录 (22)参考文献 (23)1引言1.1 工厂供电设计的一般原则工厂供电设计必须遵循以下原则:(1)工厂供电设计必须遵守国家的有关法令、标准和设计规范,执行国家的有关方针政策,包括节约能源,节约有色金属和保护环境等技术经济政策。
工厂供电课题设计方案报告一想到工厂供电,脑海里瞬间浮现出无数的电线、变压器、配电柜,还有那些日夜运转的机器。
我闭上眼睛,仿佛能听到电流的嗡嗡声,感受到那种强大的能量。
好了,言归正传,下面是我对工厂供电课题的设计方案。
1.项目背景随着我国工业化的快速推进,工厂供电系统的重要性日益凸显。
一个稳定、高效的供电系统,不仅关系到工厂的生产效率,还直接影响到产品质量和安全生产。
因此,本项目旨在针对现有工厂供电系统存在的问题,提出一套切实可行的设计方案,以提高供电系统的稳定性和效率。
2.设计目标(1)确保供电系统的稳定性和可靠性,降低故障率。
(2)提高供电效率,降低能耗。
(3)满足工厂生产需求,适应未来发展。
3.设计方案(1)供电系统布局优化在设计之初,我们要充分考虑工厂的地理位置、占地面积、生产工艺等因素,进行合理的供电系统布局。
具体措施如下:①将高压供电线路尽量布置在工厂周边,减少对厂区内部的干扰。
②低压供电线路采用辐射式布局,确保供电半径合理,降低线损。
③适当增加配电柜的数量,缩短供电距离,提高供电效率。
(2)设备选型及配置①变压器:选择高效、低噪音的变压器,降低能耗,提高供电质量。
②电缆:选用优质电缆,降低线损,提高供电效率。
③配电柜:配置智能化的配电柜,实现远程监控和故障诊断。
④保护和控制系统:采用先进的保护和控制系统,提高供电系统的安全性和稳定性。
(3)供电系统智能化①实现供电系统的远程监控,实时掌握供电状态,及时发现并处理故障。
②建立供电系统数据库,对供电数据进行实时采集和分析,为优化供电策略提供依据。
③利用技术,实现供电系统的自适应调节,提高供电效率。
(4)节能措施①优化供电设备,提高设备效率,降低能耗。
②采用节能型变压器和电缆,降低线损。
③合理调整供电策略,减少无效供电。
④推广绿色能源,如太阳能、风能等,降低化石能源消耗。
4.实施步骤(1)项目启动:明确项目目标、任务分工和时间节点。
(2)调研分析:对现有供电系统进行调研,分析存在的问题和改进方向。
ʌ项目介绍ɔ某新建机械厂,初步设计其供配电系统电气部分,设计内容包括:选择高压配电所位置㊁配变电所的负荷计算及无功功率的补偿计算,车间变压器台数和容量㊁形式的确定,变配电所主接线方式的选择,高压配电线路接线方式的选择,高低压配电线路及导线截面积选择,短路计算和开关设备的选择,继电保护的整定计算,防雷保护与接地装置设计等㊂主要基础资料如下:1.负荷情况该机械厂主要生产长尾夹㊁牛头夹㊁圆形弹簧夹㊁山形弹簧夹㊁磁力夹㊁板夹㊁各式塑料夹㊁回形针㊁起钉器㊁书圈㊁磁力钩㊁书立等系列产品,设有模具车间㊁冲件车间㊁热处理车间㊁电泳车间㊁喷涂车间㊁发黑车间㊁电镀车间和包装车间㊂该厂大部分车间为三班制,年最大有功负荷利用小时数为5000h㊂车间负荷情况见表6-1㊂表6-1㊀车间负荷情况编号厂房名称设备容量/kW需要系数功率因数1模具车间4400.350.652冲件车间5500.500.703热处理车间6800.550.754电泳车间2800.400.755喷涂车间3200.500.756发黑车间2500.550.757电镀车间2400.500.708包装车间1100.750.809综合楼1600.750.902.供电电源情况按照该厂与当地电业部门签订的供用电协议规定,可从某35V/10kV地区变电站取得工作电源㊂该35V/10kV地区变距离本厂约为1km,10kV母线短路数据:S(3)k.max=340MVA㊁S(3)k.min=180MVA㊂要求该厂:①过电流保护整定时间不大于1.0s;②在工厂10kV电源侧进行电能计量;③功率因数应不低于0.92㊂3.工厂自然条件年最高气温为39ħ,年平均气温为23ħ,年最低气温为-5ħ,年最热月平均最高气温㊃261㊃为33ħ,年最热月平均气温为26ħ,年最热月地下0.8m处平均温度为25ħ㊂主导风向为南风,年雷暴日数为52㊂平均海拔为22m,地层以砂黏土为主㊂4.电费制度按两部电价制交纳电费,基本电价为20元/(kVA㊃月),电度电价为0.5元/kWh㊂ʌ项目目标ɔ专业能力目标掌握高压配电网的接线方式及接线特点方法能力目标理解工业企业供配电线路的结构形式并根据负荷等级选择电气主接线社会能力目标能根据企业实际情况设计电气主接线ʌ主要任务ɔ任务工作内容计划时间完成情况1工厂电力线路及接线方式的选择2工厂电力线路结构及敷设3导线和电缆的选择及计算4工厂电力线路电气安装图的绘制5工厂电力线路的运行与维护任务1 工厂电力线路及接线方式的选择ʌ任务导读ɔ工厂各配电系统,包括总降压变电所㊁配电所㊁车间变电所和高压用电设备以及主接线方式㊂当然,有的供配电系统的组成不一定全部包括以上几个,是否需要总降压变电所,是否建配电所,取决于工厂和电源间的距离㊁工厂的总负荷及其在各车间的分布,以及变电所间的相对位置,厂区内的配电方式和本地区电网的供电条件等㊂如果上述组成都是需要的,在工厂内部的供电系统也可能有各种组合方案,组合方案的变化必然会影响到投资费用和运行费用的变化㊂因此,进行不同的方案设计,选择合适的主接线方式,进行经济技术比较,得出可靠㊁合理㊁经济的方案㊂ʌ任务目标ɔ1.掌握工厂配电系统的接线方式及其特点㊂2.掌握车间低压放射式网络的接线方式㊂ʌ任务分析ɔ工厂电力线路按电压高低分为高压配电网络和低压配电网络㊂高压配电网络的作用是从总降压变电所向各车间变电所或高压用电设备供配电,低压配电网的作用是从车间变电所向各用电设备供配电,直观地表示了变配电所的结构特点㊁运行性能㊁使用电气设备的多少及前后安排等,对变配电所安全运行㊁电气设备选择㊁配电装置布置和电能质量都起着决定性的作用㊂ʌ知识准备ɔ工业企业供电网络包括厂区高压配电网络与车间低压配电网络两部分㊂高压配电网络指㊃361㊃从总降压变电所至各车间变电所或高压用电设备之间的6 10kV 高压配电系统;低压配电网络指从车间变电所至各低压用电设备的380V /220V 低压配电系统㊂选择接线方式主要考虑以下因素:1)供电的可靠性㊂2)有色金属消耗量㊂3)基建投资㊂4)线路的电能损失和电压损失㊂5)是否便于运行㊂6)是否有利于将来发展等㊂一㊁工厂配电系统接线方式工厂配电系统的基本接线方式有三种:放射式㊁树干式和环式㊂各工厂供电系统采用哪种接线方式,要根据负荷对供电可靠性的要求㊁投资大小㊁运行维护方便及长远规划等原则分析确定㊂1.放射式线路放射式线路又分为单回路放射式线路㊁双回路放射式线路和具有公共备用线路的放射式线路㊂单回路放射式线路是由工厂总变配电所6 10kV 母线上每一条回路直接向车间变配电所或高压设备供电,沿线不再接其他负荷㊂它的优点是线路敷设㊁保护装置简单,操作维护方便,易于实现自动化;缺点是从总变配电所出线较多,高压设备多,投资较大㊂特别是在任一线路上发生故障或检修时,该线路就要停电,因而供电可靠性不高,一般用于三级负荷图6-1㊀单回路放射式线路和部分次要的二级负荷供电,如图6-1所示㊂双回路放射式线路是对任一变配电所采用双回路线路供电的方式㊂其中,图6-2a 是单电源供电,图6-2b 是双电源供电㊂在双回路放射式线路中,当其中一条回路发生故障或检修时,可由另一条回路给全部负荷继续供电,提高了供电的可靠性,可用于二级负荷供电㊂但所需高压设备较多,投资也较大㊂图6-2㊀双回路放射式线路a)单电源供电㊀b)双电源供电㊃461㊃当采用如图6-3所示的具有公共备用线路的放射式线路供电时,如果任一回路线路发生故障时,只需经过短时的 倒闸操作 后,可由备用干线继续供电㊂这种线路供电可靠性较高,可适用于各级负荷供电㊂图6-3㊀具有公共备用线路的放射式线路图6-4㊀直接连接树干式线路2.树干式线路树干式线路是指线路分布像树干一样,既有主干,也有分支㊂它可分为直接连接树干式和串联型树干式两种形式㊂直接连接树干式线路如图6-4所示㊂从总变配电所引出的每路高压干线在厂区内沿车间厂房或道路敷设,每个车间变配电所或高压设备直接从干线上接出分支供电㊂这种线路的优点是配电设备少㊁投资小;缺点是干线发生故障或检修时会造成大面积停电;因而分支数目限制在5个以内,其供电可靠性差,只适用于三级负荷㊂3.高压环式接线高压环式接线实际上是两端供电的树干式接线,如图6-5所示㊂两路树干式接线尾端连接起来就构成了环式接线㊂这种接线方式运行灵活,供电可靠性高,线路检修时可切换电源,故障时可切除故障线段,缩短停电时间,可供二㊁三级负荷,在现代化城市电网中应用较广泛㊂由于闭环运行时继电保护整定较复杂,同时也为避免环式线路上发生故障时影响整个电网,因此,为了限制系统短路容量,简化继电保护,大多数环式线路采用 开环 运行方式,即环式线路中有一处开关是断开的㊂通常采用以负荷开关为主开关的高压环网柜作为配电设备㊂实际供配电系统的高压接线往往是几种接线方式的组合㊂究竟采用什么接线方式,应根据具体情况,考虑对供电可靠性的要求,经技术经济综合比较后才能确定㊂一般来说,对大中型工厂,高压配电系统宜优先考虑采用放射式接线,因为放射式接线的供电可靠性较高,便于运行管理,但放射式的投资较大㊂对于供电可靠性要求不高的辅助生产区和生活住宅㊃561㊃图6-5㊀高压环式接线区,可考虑采用树干式或环式配电㊂二㊁车间低压供电网络的接线方式1.低压放射式供电线路低压放射式供电线路如图6-6所示,其中图6-6a 为带集中负荷的一级放射式线路,图6-6b 为带分区集中负荷的两级放射式线路㊂放射式供电线路适用于车间负荷比较集中且负荷分布在车间不同方向㊁用电设备容量较大的条件下,如果车间有多台电动机传动的设备,虽然容量较小,亦可采用㊂它的特点是操作方便㊁灵活,任一干线故障时,不影响其他干线,但投资较大,施工复杂㊂图6-6㊀低压放射式供电线路a)一级放射式㊀b)两级放射式2.低压树干式供电线路低压树干式供电线路如图6-7所示㊂运行经验表明,只要施工质量符合要求,干线上分支点不超过5个时,这种供电方式是可靠的,且故障后容易恢复㊂它与放射式相比,可节省低压配电设备,缩短线路总长度,且施工简单㊂图6-8表示树干式供电线路的演变形式㊂图6-8a 为变压器 干线供电线路,广泛用于机械加工车间㊂当采用插接式母线时,它可以随工艺过程的改变任意移动用电设备而无需另外安装配电盘㊂图6-8b 为链环式供电线路,每条线路以串接3个配电箱为限;如果串接同一生产系统中的小容量电动机(不重要的用电设备),则以不超过5个为宜㊂3.低压混合式供电线路根据工业企业中的车间低压负荷分布特点,很少采用单一的放射式或树干式供电系统,一般多为混合式供电系统,如图6-9所示,车间内动力线路和照明线路应分开,以免相互影响㊂正常运行时,事故照明和工作照明同时投入以交流供电㊂当交流电发生故障时,则自动地将事故照明切换到蓄电池组或其他独立电源供电㊂对重要的用电设备,可以从两台分别运行的变压器低压母线分别引出线路交叉供电,或者在低压母线上装设自动投入装置,以保证㊃661㊃图6-7㊀低压树干式供电系统图6-8㊀低压树干式供电线路网络演变形式a)变压器干线式㊀b)链环式供电线路供电的可靠性㊂图6-9㊀低压混合式供电系统ʌ任务实施ɔ讨论ʌ项目介绍ɔ中某新建机械厂配电系统接线方式㊂姓名专业班级学号任务内容及名称1.任务实施目的2.任务完成时间:1学时3.任务实施内容及方法步骤4.分析结论指导教师评语(成绩)年㊀月㊀日㊃761㊃ʌ任务总结ɔ通过本任务的学习,让学生掌握放射式㊁树干式和环式三种工厂配电系统的基本接线方式的结构和特点,掌握低压放射式供电线路㊁低压树干式供电线路㊁低压混合式供电线路三种车间低压供电网络的接线方式的结构和特点㊂任务2 工厂电力线路结构及敷设ʌ任务导读ɔ工业企业电力线路有架空线路㊁电缆线路和车间线路㊂架空线路结构简单㊁成本低㊁易于检修及维护,因此被广泛采用,但采用架空线路时线路纵横交错,占地较大,影响厂区美化㊂电缆线路虽然具有成本高㊁投资大㊁维修不便等缺点,但是它具有运行可靠㊁可避免雷电危害和机械损伤㊁不卡地面㊁环境影响小㊁利于美化等优点,在现代化企业中应用越来越广泛㊂ʌ任务目标ɔ1.掌握工厂配电系统的接线方式及其特点㊂2.掌握车间低压放射式网络的接线方式㊂ʌ任务分析ɔ工业企业供配电线路经常采用的结构形式有三种:厂区架空线路㊁厂区电缆线路和车间户内配电线路㊂工厂企业内部电力线路按电压高低分为高压配电网络和低压配电网络㊂高压配电网络的作用是从总降压变电所向各车间变电所或高压用电设备供配电,低压配电网的作用是从车间变电所向各用电设备供配电,直观地表示了变配电所的结构特点㊁运行性能㊁使用电气设备的多少及前后安排等,对变配电所安全运行㊁电气设备选择㊁配电装置布置和电能质量都起着决定性作用㊂ʌ知识准备ɔ在工业企业中电能的输送和分配,是通过供配电线路实现的㊂工业企业内部供配电网络尽管供电半径小,但负荷类型多,操作频繁,厂房环境复杂(高温㊁多粉尘以及与管道㊁轨道交错等),配电线路总长通常超过企业受电线路,且具有不同于区域电力网的特点㊂工业企业供配电线路经常采用的结构形式有三种:厂区架空线路㊁厂区电缆线路和车间户内配电线路㊂一㊁厂区架空线路架空线路的优点是成本低㊁投资少㊁施工快㊁维护检修方便,易于发现和排除故障等;它的缺点是易受外界条件(雷雨㊁风雪及工业粉尘㊁气体等)影响,受厂区建筑布局限制,不能普遍采用㊂但由于架空线路比电缆线路节省1/2 4/5的投资,因此在工业企业中凡有可能都优先采用架空线㊂架空线路由导线㊁杆塔(包括横担)㊁绝缘子和金具构成㊂1.导线架空线路所采用的主要导电材料是铜绞线㊁铝绞线和钢芯铝绞线㊂铜绞线是较好的导电㊃861㊃材料,它具有较好的电导率[γ=53mS/m(1mS/m=1m/Ω㊃mm2)],机械强度高,抗拉强度大(σ=380MPa)㊂铝绞线的电导率较小(γ=32mS/m),抗拉强度也低(σ=160MPa)㊂但铝的资源比铜丰富,因此应尽量采用铝绞线㊂为了弥补铝绞线机械强度低的不足,在高压大档距的架空线路上,可以采用钢芯铝绞线㊂各电压级的电力网输送容量与距离都有一定的范围,例如,0.38kV电压级的输送功率为100kW以下,输送距离不超过0.6km;10kV电压级的输送功率为200 2000kW,输送距离为6 22km;35kV电压级的输送功率为2000 10000kW,输送距离为20 50km㊂导线敷设应保持相互足够距离,在风吹摇摆下仍能可靠绝缘㊂线间距离与线路电压㊁线路档距有关,并考虑所在地区的气候区类别,具体可查阅有关资料㊂架空线的档距指相邻两电杆的距离㊂不同电压架空线路的档距是不同的,如35kV一般为150m以上,6 10kV为80 120m,380V为50 60m㊂架空线对地面㊁水面以及其他跨越物均应保持足够安全距离,并应按最大弧垂(导线下垂距离)校验㊂此外,架空线对房屋建筑物以及与其他线路交叉时的最小距离也有要求,具体可查规程㊂2.杆塔及绝缘子架空线杆塔按材质划分,有木杆㊁水泥杆㊁铁塔三种,工业企业中常用水泥杆㊂杆塔从作用上可划分为六种形式,见表6-2,其应用示例如图6-10所示㊂表6-2㊀各种类型电杆的区别杆型用㊀途杆顶结构有无拉线直线杆㊀支持导线㊁绝缘子㊁金具等重量,承受侧面的风力;占全部电杆数的80%以上㊀单杆㊁针式绝缘子或悬式绝缘子或陶瓷担㊀无拉线有拉线的直线杆㊀除一般直线杆用途外,尚有用于防止大范围歪杆和不太重要的交叉跨越处㊀同直线杆,悬式绝缘子用固定式线夹㊀有侧面拉线或顺档拉线轻乘杆㊀能承受部分导线断线的拉力,用在跨越和交叉处(10kV及以下线路,不考虑断线)㊀负担要加强,采用双绝缘子或双陶瓷担固定㊀有拉线转角杆㊀用在线路转角处,承受两侧导线的合力㊀转角在30ʎ,可采用双担双针式绝缘子;45ʎ以上的采用悬式绝缘子㊁耐张线夹,6kV以下可采用蝶式绝缘子㊀有与导线反向拉线机反合力方向的拉线耐张杆㊀能承受一侧导线的拉力,用于限制断线事故影响范围和架线时紧张终端杆㊀承受全部导线的拉力,用于线路的首段或终端㊀双担悬式绝缘子㊁耐张线夹或蝶式绝缘子㊀有四面拉线㊀有与导线反向的拉线分支杆㊀用于10kV及以下由干线外分支线处,向一侧分支的为丁字形;向两侧分支的为十字形㊀上㊁下层分别由两种杆型构成,如丁字形上层不限,下层为终端等㊀根据需要加拉线㊃961㊃图6-10㊀各种杆塔应用地点及其用途各种电杆上的横担,目前多用70mmˑ70mmˑ6mm角钢制成,并根据线路电压以及杆线类型决定其长度㊂如10kV线路直线杆横担长为2.3 2.4m,低压横担长为1.5 1.7m㊂10kV大档距耐张杆,如果用双杆组成的Ⅱ型杆,则应用两根4m长的铁横担,夹固于两根电杆上㊂高压线路上常用的横担形式及支撑种类如图6-11和图6-12所示㊂图6-11㊀高压线路中常用的横担形式a)丁字形㊀b)叉股形㊀c)之字形㊀d)弓箭形图6-12㊀支撑种类a)扁形支撑㊀b)圆铁支撑㊀c)三角铁元宝支撑敷设导线用的瓷绝缘子,常用以下几种:1)1kV以下的线路,用PD-1㊁PD1-1型低压针式瓷绝缘子㊂㊃071㊃2)6 10kV线路,用P-6㊁P-10M型高压针式瓷绝缘子㊂3)10 35kV线路,用P-15M㊁P-35M型针式瓷绝缘子㊂4)35kV以上的线路,用X-4.5悬式瓷绝缘子串㊂各种瓷绝缘子外形如图6-13所示㊂图6-13㊀各种瓷绝缘子的外形图a)低压针式㊀b)高压针式㊀c)悬式3.架空线路设计架空线路设计内容包括确定路径㊁选定杆位㊁选择导线㊁确定杆型㊁绘制图样㊁开列清单和做出预算等项工作㊂路径的选择应力求线路最短,并尽可能避免交叉跨越,避开污秽环境㊂选定杆位时,首先确定首端㊁末端电杆及转角杆位置,并在它们之间按适当档距确定中间位置㊂若线路跨越范围内有遮挡物时,应保证足够的对地距离㊂总之,应设法使线路与跨越物保持尽可能大的距离㊂确定杆高,以规程要求的导线对地距离为基础,加上最高温度时的弧垂,得到横担对地高度,再加横担至杆顶的距离,便得到电杆在地面上部分的长度㊂电杆埋深约占电杆总高长度的1/6,按此比例求得电杆总长㊂目前常用的离心式钢筋混凝土圆杆有下列几种规格,可根据需要选用㊂1)拔梢整杆:梢径ϕ150mm,杆长分7m㊁8m㊁9m㊁10m等几种;梢径ϕ190mm,杆长分10m㊁11m㊁12m㊁15m等几种㊂2)分段梢杆:上段梢径ϕ190mm,段长分6m㊁9m等几种;下段梢径ϕ310mm,段长分6m㊁9m等几种㊂3)等径杆:上段直径ϕ300mm,段长分6m㊁9m等几种;下段直径:ϕ300mm,段长分6m㊁9m等几种㊂二㊁厂区电缆线路电缆线路虽然成本高㊁投资大,但它不受外界影响,运行可靠,在有腐蚀性气体和易燃㊁易爆的场所应用,尤为适宜㊂㊃171㊃1.电缆的选用工业企业常用电缆,依其绝缘材料的不同,大致可分为油浸纸绝缘和塑料绝缘两大类㊂油浸纸绝缘电力电缆耐压高㊁载流大㊁寿命长,目前应用广泛㊂但不能用于高低差距大的场合,以防浸渍的油下流㊂塑料绝缘电力电缆,以聚氯乙烯或交联聚乙烯为绝缘,并以聚氯乙烯制护套,能够节省大量铝或铅,而且重量轻㊁抗腐蚀,敷设时高低差距不受限制㊂但它耐压较低(聚氯乙烯绝缘可在6kV,利用交联聚乙烯作绝缘的电缆已有35kV产品),寿命稍短㊂此外,尚有橡胶绝缘电缆,与塑料绝缘电缆类似㊂电缆从防护外界损伤的角度,可分为铠装与无铠装两类㊂铠装能保护电缆免受机械外力损伤,其中钢带铠装能承受机械外力,但不能承受拉力;细钢丝铠装除能承受机械外力外,还可承受相当拉力,而粗钢丝铠装则可承受更大拉力㊂油浸纸绝缘电力电缆的最外层常以浸有沥青的黄麻保护,称为 外被层 ㊂在电缆埋地敷设时,它能抗腐蚀,起保护电缆作用㊂但因其易燃,室内敷设时应选用无外被层的 裸 电缆,以防火灾㊂此外,电缆外护层尚可加有聚乙烯塑料护套(如防腐型电缆)㊂在电缆型号中以不同的数字组合表示外护层的特点:若型号中有 0 表示无防护层; 1 表示麻被护层; 2 表示具有双钢带铠装; 3 表示细钢丝铠装; 5 表示粗钢丝铠装㊂例如,ZLL-30即纸绝缘铝芯护套裸细圆钢丝铠装电缆㊂根据上述电缆本身所具有的结构特点,选择电缆型号的主要原则是:1)电缆的额定电压应大于或等于所在网络的额定电压,电缆的最高工作电压不得超过其额定电压的1.15%㊂2)电力电缆应尽量采用铝芯,只有需要移动时或在振动剧烈的场所才用铜芯电缆㊂3)敷设在电缆构筑物内的电缆宜用裸铠装电缆㊁裸铝(铅)包电缆或塑料护套电缆㊂4)直接埋地敷设的电缆应选用有外被层的铠装电缆,在无机械损伤可能的场所,也可采用聚氯乙烯护套或(铅)包麻被电缆㊂5)周围有腐蚀性介质的场所,应视介质情况,分别采用不同的电缆护套㊂在有腐蚀性的土壤中,一般不采用电缆直埋,否则应采用有特殊防腐层的防腐型电缆㊂6)垂直敷设及高低差距较大时,应选用不滴流电缆或全塑电缆㊂7)移动式机械应选用重型橡套电缆(如YHC型);用于连接变压器气体继电器㊁温度表的线路,应选用船用橡胶绝缘耐油橡套电缆(CHY型)等有耐油能力的电缆㊂2.电缆的敷设电缆的敷设方式如图6-14所示㊂其中电缆隧道敷设方式(见图6-14a)虽然对电缆的敷设㊁维护都很方便,但投资高,除电缆并行根数很多以外一般很少采用;电缆排管敷设方法(见图6-14f)因为施工㊁检修困难,且散热差,除非在狭窄地段或与道路交叉处,一般也很少采用;悬挂在电缆吊架顶棚的电缆明敷(见图6-14d)主要用在车间内部,而当楼板下电缆很多时,可设电缆夹层敷设㊂通常在工业企业中广泛采用的电缆敷设方式,主要是直接埋地(见图6-14g)与电缆沟两种㊂电缆沟敷设,具有投资省㊁占地少㊁走向灵活且能容纳很多电缆的特点,但检修维护不甚方便㊂电缆沟又可分为户内电缆沟(见图6-14b)㊁户外电缆沟(见图6-14c)和厂区电缆沟(见图6-14e)三种㊂电缆均沿沟壁支架敷设㊂电缆直埋地下敷设施工简单,电缆散热好,但检修十分困难㊂由于它节省投资,除了并行根数太多或土壤中含酸碱物等场合外,厂区电缆经常是直埋敷设的㊂电缆敷设还应注意以下几点:1)油浸纸绝缘电缆的弯曲半径不得小于其外径的15倍,以免绝缘被撕裂㊂2)直埋电缆埋深不应小于0.7m,四周应以细沙或软土埋设;电缆与建筑物最小距离不应小于0.6m㊂3)高压电缆与各种管道净距离应不小于0.5m,否则应穿管保护;与热力管的净距应不小于2m,否则应加隔热层,与各种管道交叉或与铁路㊁公路交叉处,应穿管保护㊂4)电缆排管或电缆保护管的内径不应小于电缆外径的1.5倍㊂5)电缆金属外皮及金属电缆支架均应可靠接地㊂图6-14㊀电缆各种敷设方式构筑物的结构图a)电缆隧道㊀b)户内电缆暗沟㊀c)户外电缆暗沟d)电缆吊架㊀e)厂区电缆暗沟㊀f)电缆排管㊀g)电缆直埋壕沟三㊁车间低压线路车间低压线路有多种敷设方式,典型位置如图6-15所示㊂如果环境条件允许,以采用裸导线或绝缘线沿屋架㊁楼板㊁梁架㊁柱子或墙壁明敷设较为简便经济㊂可以用瓷夹或瓷绝缘子固定,也可用钢索悬吊㊂如果周围含有腐蚀导线或破坏绝缘的气体或粉尘(如潮气㊁酸硼蒸气㊁多尘环境),导线应尽可能装在建筑物外墙上,而车间内的导线则应避免与对导线绝缘有影响的墙壁或天花板接触,可以采用支架㊁挂钩或钢索悬挂等明敷设或穿管敷设㊂如果周围环境既有腐蚀性介质又有发生火灾或爆炸的危险,则应采用导线穿管暗敷设的线路㊂穿管暗敷设既能防止外界机械损伤,又比较美观㊂。
工厂电气系统安装项目1 工厂电气动力系统安装3.1.1施工技术准备1.识图1)设计说明(1)设计依据按照国家标准GB50052~95 《供配电系统设计规范》、GB50053—94《10kV及以下变电所设计规范》、GB50054—95《低压配电设计规范》等的规定,进行工厂供电设计必须遵循以下一般设计原则:a遵守规程、执行政策必须遵守国家的有关规程和标准,执行国家的有关方针政策,包括节约能源、节约有色金属等技术经济政策。
b安全可靠、先进合理应做到保障人身和设备的安全,供电可靠,电能质量合格,技术先进和经济合理,采用效率高、能耗低和性能较先进的电气产品。
c近期为主、考虑发展应根据工程特点、规模和发展规划,正确处理近期建设与远期发展的关系,做到远、近期结合,以近期为主,适当考虑扩建的可能性。
d全局出发、统筹兼顾必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件等,合理确定设计方案。
(2)设计范围工厂供电设计包括变配电所设计、配电线路设计和电气照明等。
a变配电所设计无论工厂总降压变电所或车间变电所,设计的内容都基本相同。
工厂高压配电所,则除了没有主变压器的选择外,其余的设计内容也与变电所设计基本相同。
变配电所的设计内容应包括:变配电所负荷的计算和无功功率的补偿,变配电所所址的选择,变电所主变压器台数和容量、型式的确定,变配电所主结线方案的选择,进出线的选择,短路计算及开关设备的选择,二次回路方案的确定及继电保护的选择与整定,防雷保护与接地和接零的设计,变配电所电气照明的设计等。
最后需编制设计说明书、设备材料清单及工程概(预)算,绘制变配电所主电路图、平剖面图、二次回路图及其它施工图纸。
b配电线路设计工厂配电线路设计分厂区配电线路设计和车间配电线路设计。
厂区配电线路设计,包括厂区高压供配电线路设计及车间外部低压配电线路的设计。
其设计内容应包括:配电线路路径及线路结构型式的确定,负荷的计算,导线或电缆及配电设备和保护设备的选择,架空线路杆位的确定及电杆与绝缘子、金具的选择,防雷保护与接地和接零的设计等。
通用电器厂供配电系统电气设计任务书一、设计要求:本设计要求根据该厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求对该变电所进行设计。
本设计只作电气初步设计,不作施工设计。
设计内容包括1)主变台数、容量、类型选择;2)确定电气主接线方案及高低压设备和进出线;3)确定电气布置方案;4)短路电流计算;5)主要电器设备及导线选择和校验。
二、负荷情况三、供电电源情况在金工车间东侧1.5M处,有一座IOKV配电所,先用IKM的架空线路,后改为电缆线路至本厂变电所,其出口断路器的型号为SNIO-IO I I型,此断路器配备有定时限过电流保护和电流速断保护,定时限过电流保护整定的动作时间为1.7s。
四、气象、地质水文资料本所所在地区平均海拔1000M,年最高气温40度,年最低气温一lO度,年平均气温20度,年最热月平均气温30度,年最热月地下0.8m处平均温度为22度。
当地主导风向为东北风,年雷暴日约30天,土壤性质以砂质粘土为主,土壤电阻率为100 m。
五、电费制度该厂与当地供电部门达成协议,在工厂变电所高压侧计量电能,设专用计量柜,按两部制电费制度交纳电费。
每月基本电费按主变压器容量计为18元/KVA,动力电费为0.2元/Kwh,照明电费为0.5元/KWh。
该厂最大负荷时功率因数不得低于0.9。
此外,电力用户需按新装变压器容量计算,一次性地向供电部门交纳供电贴费:6~1OKV为800元/KVA。
确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,按要求写出设计说明书,绘出设计图样。
工厂车间设计平面图表4—2金工车间设备明细表说明书一)负荷计算(1)金工车间负荷计算:1. 车床Pe=7.125*14=99.75kwk=0.25 cosφ=0.5 tanφ=1.73d有功功率负荷30P=*d k Pe=0.25*99.75=24.94kw无功功率负荷30P*tanφ=43.15kvarQ=302. 桥式起重机Pe=2N P Nεd k =0.15 tan φ=1.73 cos φ=0.530P =*d k Pe =0.15*82.2=12.33kw30Q =30P * tan φ=12.33*1.73=21.33kvar3. 金工车间照明车间面积:(60*24)㎡=1440㎡ 设备容量 Pe =112*(440)w=17.28kwd k =1 tan φ=0 cos φ=1.030P =*d k Pe =1*17.28=17.28kw30Q =30P * tan φ=0(2)全厂低压侧负荷:30(2)P =0.9∑30P =0.9*(24.94+12.33+17.28+250+80+20+20)=382.1kw30(2)Q =0.9∑30Q =0.9*(43.5+21.33+110+90+20+15)=269.53kvar30(2)S =变压器损耗PT ∆=0.015*30(2)S =0.015*467.6=7.01KW QT ∆=0.06*30(2)S =0.06*467.6=28.06kvar (3)补偿前全厂总的负荷:30(1)P =30(2)P + PT ∆=382.1+7.01=389.11Kw30(1)Q =30(2)Q + QT ∆=269.53+28.06=297.59Kvar30(1)S ==489.86Kvacos φ=30(1)P /30(1)S =389.11/489.86=0.79<0.9 (4)需要电容补偿c Q =30p '*(tan φ-tan 'φ)=389.11*(0.776-0.484)=113.62kvar选择BWF10.5-30-1型电容器进行补偿 n=113.62/30=3.787 取n=4 则实际补偿为 c Q =30*4=120kvar (5)补偿后的计算负荷:30(1)Q '=30(1)Q -C Q =297.59-120=177.59kvar(1)S 'cos 'φ=30(1)P /30(1)S '=389.11/427.72=0.91>0.9计算电流:30(1)I = (1)S '(6)变压器的选择根据S30=427.72 kva 可选择500V 。
一矿工厂供电设计(含全套图纸)本文档旨在概述矿工厂供电设计的目标和重要性。
供电设计是矿工厂建设中至关重要的一环。
合理且稳定的供电方案可以确保矿工厂正常运行,提高生产效率,同时减少设备故障和安全风险。
供电设计需要综合考虑矿工厂的用电需求、电力系统的容量和负荷,以及可靠性和安全性的要求。
本文档将提供一套完整的矿工厂供电设计图纸,包括电力系统布置图、线路图和设备配置图,以配合供电设计的实施和施工。
供电设计图纸是供电方案的具体表现,对于电力工程师和施工人员来说具有指导作用,能帮助他们理解和实施供电设计方案。
供电设计的目标是确保满足矿工厂的用电需求,同时提供稳定、可靠、安全的电力供应。
通过合理的布局和配置,避免电力系统的过载和短路,保持电力负荷的平衡和合理分配,还需要考虑地质、气象条件对电力系统的影响,以避免自然灾害等因素对供电系统的影响。
一个好的供电设计方案不仅需满足以上要求,还需要考虑未来的扩展和升级,以适应矿工厂的业务发展和用电需求的增加。
因此,在供电设计过程中,需要考虑矿工厂的规模与用电需求的匹配,选择适当的设备和线缆,确保供电系统具有可扩展性和可靠性。
正确认识和实施矿工厂供电设计对于矿工厂的正常运行和生产效率至关重要,同时也能降低安全事故的发生率。
本文档提供的矿工厂供电设计图纸将为电力工程师、施工人员和其他相关人员提供宝贵的参考和指导,帮助他们实施和完善矿工厂供电设计方案。
供电需求分析详细描述矿工厂的供电需求,包括负荷需求、备用电源要求等。
根据矿工厂的运营需求和设备使用情况,以下是供电需求的分析:负荷需求:矿工厂的负荷需求较大,包括矿山设备、矿石破碎设备、运输设备等。
这些设备的使用过程中需要大量的电能供应,因此需要确保供电系统具备足够的负荷承载能力。
备用电源要求:考虑到矿工厂的重要性和连续运营的需求,备用电源是必不可少的。
在供电系统正常运行时,备用电源可以作为紧急备用电力供应,确保矿工厂在紧急情况下仍能够正常运作。
工厂供配电系统课程设计一、课程目标知识目标:1. 学生能够理解工厂供配电系统的基础知识,包括电力系统的组成、电力传输和分配的基本原理。
2. 学生能够掌握供配电系统的设备及其功能,如变压器、断路器、保护装置等。
3. 学生能够了解工厂供配电系统的运行维护原则和安全操作规程。
技能目标:1. 学生能够运用所学知识,分析和解决工厂供配电系统中的一般故障。
2. 学生能够设计简单的供配电系统,并进行初步的系统优化。
3. 学生能够运用相关软件或工具进行供配电系统的模拟和分析。
情感态度价值观目标:1. 学生能够认识到供配电系统在工厂生产中的重要性,培养对电力工程职业的热爱和责任感。
2. 学生能够在团队协作中发挥个人优势,养成相互尊重、共同进步的良好品质。
3. 学生能够关注供配电系统的技术发展,树立环保意识和节能观念。
课程性质:本课程为实践性较强的专业课程,结合理论教学和实验操作,培养学生具备实际操作和解决问题的能力。
学生特点:学生处于高年级阶段,已具备一定的电气基础知识和动手能力,对复杂系统有较高的探究兴趣。
教学要求:教师需注重理论与实践相结合,鼓励学生参与实验和实际操作,提高学生的实践技能和创新能力。
通过课程学习,使学生达到预定的学习成果。
二、教学内容本课程教学内容主要包括以下几部分:1. 工厂供配电系统基础知识- 电力系统的基本组成和运行原理- 电力传输和分配的基本过程- 供配电系统中常用设备(如变压器、断路器、保护装置等)的结构、原理及功能2. 工厂供配电系统设计- 供配电系统设计原则和流程- 设计中所涉及的电气设备选型和参数计算- 供配电系统的优化与经济性分析3. 工厂供配电系统运行与维护- 系统运行维护的基本原则和安全操作规程- 常见故障分析与处理方法- 系统运行中的节能措施和环保要求4. 实践操作与软件应用- 实际操作训练,如设备接线、故障排查等- 相关软件(如CAD、ETAP等)在供配电系统设计和分析中的应用教学内容根据课程目标和教学要求进行安排,进度如下:1. 基础知识部分(2课时)2. 设计部分(4课时)3. 运行与维护部分(3课时)4. 实践操作与软件应用部分(3课时)本课程所使用的教材为《工厂供电》相关章节,内容涵盖了上述教学大纲中的各个方面。
工厂供电设计工厂供电设计一、工厂供电设计的概述工厂供电设计是指根据工厂的用电需求,进行用电负荷计算和供电线路设计的过程。
一个合理的供电设计可以保证工厂的正常运行,并提高用电的安全性和可靠性。
二、工厂用电负荷计算工厂用电负荷计算是工厂供电设计的第一步。
它需要根据工厂的生产设备、照明设施、空调系统等各项用电设备进行详细的调查和统计。
1. 生产设备的用电计算生产设备是工厂最主要的用电负荷来源,其用电量的计算需要结合设备的功率、使用时间和使用频率等因素进行综合分析。
一般情况下,生产设备的用电功率可以通过设备的额定功率加上一定的修正系数得到。
2. 照明设施的用电计算照明设施是工厂的常规用电设备,其用电量的计算需要根据照明灯具的功率和数量等因素进行综合估算。
在计算过程中,可以考虑采用节能灯具和自动控制系统来降低照明设施的用电负荷。
3. 空调系统的用电计算空调系统是工厂的重要用电设备,其用电量的计算需要结合空调设备的制冷量、运行时间和效率等因素进行综合分析。
在计算过程中,可以考虑采用节能空调设备和优化空调系统布局来降低空调系统的用电负荷。
三、工厂供电线路设计工厂供电线路设计是根据工厂的用电负荷,设计合适的供电线路,以满足工厂各个用电设备的供电需求。
1. 供电线路的选取供电线路的选取需要根据工厂的用电负荷和供电距离等因素进行综合考虑。
一般情况下,较小的工厂可以采用单回路供电系统,较大的工厂可以考虑采用双回路供电系统。
此外,还需要考虑供电线路的线径、电缆材料和敷设方式等因素。
2. 供电线路的布置供电线路的布置需要根据工厂的用电设备位置和供电距离等因素进行合理安排。
一般情况下,可以采用环路供电方式,将供电线路分成多个回路,以减少供电线路的长度和电流负荷。
3. 供电线路的保护供电线路的保护是确保供电系统安全可靠的重要环节。
常见的供电线路保护设备包括断路器、保险丝、接地装置等。
在设计过程中,需要根据供电线路的负荷特性和故障状况等因素,确定合适的保护设备和保护方案。
某学校生活区工厂供电设计某学校生活区工厂供电设计一、引言随着学校生活区工厂规模的逐步扩大,对供电系统的需求也越来越大。
为了提供可靠、安全、高效的电力供应,设计一个合理的供电系统至关重要。
本文将针对某学校生活区工厂的供电需求和特点,进行供电系统的设计和优化。
二、工厂用电需求分析1. 用电设备种类及功率:生活区工厂涉及到的电气设备种类繁多,包括制造设备、照明设备、通风设备、机械设备等。
根据实际情况统计了各类设备的数量和功率,用于后续的负荷计算和供电系统容量设计。
2. 用电负荷特点:生活区工厂的用电负荷存在较大的峰值和波动性,特别是在生产高峰期和特定工序需要大量用电的情况下,容易出现瞬时过载和功率因数下降的问题。
因此,在供电系统设计中需要考虑到这些特点,结合合理的负荷预测和平衡负荷的方案,保证供电系统的稳定运行。
三、供电系统设计1. 供电模式选择:根据实际情况,可采用直供电模式或者间接供电模式。
直供电模式指的是将电源直接连接到工厂用电负荷上,效率高,损耗小;间接供电模式指的是通过变压器进行电压转换,然后再供给用电负荷。
根据工厂的用电特点和需求,选择合适的供电模式。
2. 主线路设计:主线路是指从供电局或变电站到供电点的线路。
在设计主线路时,需考虑到电源的稳定性、容量和供电负载的要求。
根据实际情况,可以采用并联供电模式或备用模式,确保可靠供电的同时,最大限度地减小线路损耗。
3. 变压器配置:变压器是供电系统中的重要组成部分,用于将高压电源转换为低压电源,并提供给工厂的用电负荷。
根据负荷需求和功率因数要求,确定变压器的容量和配置数量,避免过载和电压波动问题。
4. 配电柜设计:配电柜是用于将电源进行分配、控制和保护的设备。
在设计配电柜时,需根据工厂用电设备的功率分布和负荷特点,合理规划电路布置和回路划分,保证供电系统的安全性和可靠性。
5. 运维管理系统设计:为了实现供电系统的高效运营和管理,可以引入监控系统、远程控制和智能电表等技术手段,实时监测和管理电能的使用情况,减少能源浪费和电力损耗。
机械工厂供配电系统电气设计设计毕业设计(论文)题目名称:机械工厂供配电系统电气设计题目类别:毕业设计学生姓名:吴友为学院(系):电子信息学院专业班级:电气11103班指导教师:常秀莲老师时间:2015.3.23—2015.6.6目录长江大学毕业设计(论文)任务书 (I)毕业设计开题报告 (III)长江大学毕业论文(设计)指导教师评审意见 (IX)长江大学毕业论文(设计)评阅教师评语 (X)长江大学毕业论文(设计)答辩记录及成绩评定 (XI)摘要 (XII)abstract (XIII)前言 (1)第一章机械工厂主接线方案的选择 (2)1.1电气主接线的概况 (2)1.1.1车间和小型工厂变电所的主接线图 (3)1.2选择工厂主接线方案 (8)第二章工厂的电力负荷及其计算 (8)2.1负荷分级及供电电源措施 (8)2.1.1工厂电力负荷的分级 (8)2.1.2各级负荷的供电措施 (9)2.2工厂计算负荷的确定 (9)2.2.1负荷计算的目的和意义 (9)2.2.2负荷计算的方法 (10)2.2.3各车间负荷计算如下 (11)2.2.4机械工厂的负荷统计与计算 (12)2.3功率因数的补偿计算 (14)2.3.1功率因数对供电系统的影响 (14)2.3.2功率因数的补偿 (14)第三章厂用主电源供电电压等级的确定 (15)第四章主变压器及三个和用变压器的确定 (16)4.1变电所主变压器台数的选择 (16)4.2变电所主变压器容量选择 (16)第五章短路电流计算 (17)5.1短路的基本概念 (17)5.1.1短路的原因 (17)5.1.2短路的后果 (17)5.1.3短路的形成 (18)5.2三相短路电流计算的目的 (18)5.3短路电流的计算 (18)5.3.1绘制短路电流计算图 (19)第六章机械工厂车间的配电 (20)6.1低压配电线路的接线方式 (20)6.2方案比较 (21)第七章主要电气设备的选择与校验 (22)7.1 电气设备选择的一般规定 (22)7.1.1 一般原则 (22)7.1.2 有关的几项规定 (22)7.3 高压电气设备选择 (23)7.3.1 断路器的选择与校验 (23)7.3.2 隔离开关的选择及校验 (26)7.3.3电流互感器的选择及校验 (27)7.3.4 电压互感器的选择及校验 (31)7.3.5 母线与电缆的选择及校验 (32)7.3.6 熔断器的选择 (34)7.3.7避雷器的选择 (35)第八章变电所进出线与邻近单位联络线的选择 (35)8.1 10KV高压进线和引入电缆的选择 (35)8.1.1.10KV高压进线的选择校验 (35)8.1.2由高压配电室至主变的一段引入电缆的选择校验 (35)8.2 380V低压出线的选择 (36)8.2.1金工一车间 (36)8.2.2装配车间 (36)8.2.3金工二车间 (37)8.2.4冷作车间 (37)8.2.5工具机修车间 (37)8.2.6仓库 (37)8.2.7.户外照明 (37)8.2.8器件选择总栏表 (37)第九章变电所二次回路方案选择及继电保护的整定 (39)9.1二次回路方案选择 (39)9.1.1二次回路电源选择 (39)9.1.2高压断路器的控制和信号回路. 409.1.3电测量仪表与绝缘监视装置 (40)9.1.4电测量仪表与绝缘监视装置 (40)9.2继电保护的选择 (40)9.2.1变压器继电保护 (41)参考文献 (44)致谢 (45)附录:机械工厂供电系统电气设计原始资料: (46)附录:总电路图 (47)长江大学毕业设计(论文)任务书学院(系)电信学院专业电气工程班级电气11103班学生姓名吴友为指导教师/职称常秀莲讲师1.毕业设计(论文)题目:机械工厂供配电系统电气设计2.毕业设计(论文)起止时间:2015年3月23日~2015年6月6 日3.毕业设计(论文)所需资料及原始数据(指导教师选定部分)机械工厂供电系统电气设计原始资料《电力工程电气设计手册》电气一次部分、电气二次部分、《工厂供电》、《电力工程电气设备手册》上册、下册及相关资料和参考书籍4.毕业设计(论文)应完成的主要内容(1) 设计厂用电电气主接线方案(2) 机械厂供电系统负荷的计算(3) 厂用主电源供电电压等级的确定(4) 主变压器及厂用变压器的确定(5) 短路电流计算(6) 主要电气设备的选择与校验(7) 厂用变电所主要保护设计5.毕业设计(论文)的目标及具体要求说明书:厂用电电气主接线方案的拟定;厂用主电源供电电压等级的确定全厂继电保护的配置计算书:机械厂供电系统负荷的计算;短路电流计算;电气设备的选择及校验图纸:电气主接线图1张6、完成毕业设计(论文)所需的条件及上机时数要求一台计算机, windowsXP系统,Auto CAD绘图软件,上机150机时任务书批准日期 2015 年 3 月 10 日教研室(系)主任(签字) 任务书下达日期 2015 年 3 月 15 日指导教师(签字) 完成任务日期年月日学生(签名)长江大学毕业设计开题报告题目名称:机械工厂供配电系统电气设计院(系):电子信息学院专业班级:吴友为学生姓名:电子信息学院指导老师:常秀莲老师辅导老师:常秀莲老师开题报告日期: 2015.3.28机械工厂供配电系统电气设计学院(系)电信学院专业电气工程班级电气11103班学生姓名吴友为指导教师/职称常秀莲讲师一、题目来源毕业设计二、设计目的和意义在工厂里生产的连续性强,生产机械集中,对供电质量的要求很高,某些对供电系统可靠性要求很高的工厂即使在极短时间内停电,也会引起重大设备损坏,或引起大量产品报废,则可能对工业生产造成严重的后果。
工厂供电系统电气部分的设计
【摘要】本文基于工厂电气系统中对供电电能的稳定性与可靠性的要求,根据工厂负荷分布情况对供电系统中输配电各方面要求和指标作出了全面而系统的分析。
通过对工厂电气系统的负荷、总的功率因数、最大可能短路时电流的准确推导和计算,以此为根据搭配合理有效的接线方式设计、保护装置设计及设备容量选择等各方面因素综合,实现工厂供电系统稳定、可靠、优质、经济地运行。
【关键词】计算负荷;功率补偿;短路电流;保护装置;接线方案
电能是一种清洁的二次能源,随着对其控制、调节和测量技术的日渐成熟,电能已经成为现代工业生产和国民经济建设中主要的能源和动力的来源。
电能既可以很方便地由热能、风能、机械能等能量变换而来,又可以通过电网方便地输送和供给受电系统使用。
然而,一方面供电系统突然中断对工业生产和国民生活可能造成很严重的后果,因此,保证供电系统的稳定性和可靠性显得日益突出。
另一方面节约能源是供电系统最重要的工作之一,而且能源节约对国家长期经济发展和建设具有十分重要的战略意义。
1 供电系统的基本设计要点
为合理有效地选择供电系统中各电气设备、导线电缆以及供配电方式,准确的把握整个系统的负荷分布、功率因数以及最大可能电流(即短路时电流)十分必要;
1.1 负荷计算
要使的工厂电气系统的各部分电气设备得以正常的运行,其中电气元器件和线缆必须选择合理,供电系统除了必须提供稳定适宜的工作电压以及频率外,还有一个重要的指标就是满足负荷电流的要求。
负荷计算有多种基本方法,其中最常用的是需要系数法。
1.2 无功功率补偿
功率因数是供电部门考核的一项重要经济性能指标。
用户的功率因数过低时会使大量的无功功率在电网中往复来回并在输电线路中被损耗掉,从而降低了输配电效益。
提高功率因数不仅对供电企业有利,同样也有利于受电单位。
通常,供电单位对受电系统的功率因数要求为最大负荷时一次侧不低于0.90,又由于变压器和电力线路中存在各种损耗,故一般取0.92。
提高功率因数的具体措施:确定需要补偿的容量后选用合理的补偿装置进行人工补偿;选择得当容量的电动机机组和变压器组、尽量防止电机设备的轻载或空载、增大电气系统设备元器件的检修频率、尽量使用同步电机取代其他形式电动机。
1.3 短路电流的计算
短路发生的原因,设备绝缘层的损坏,误操作,自然灾害等不可抗拒因素;短路的形式有三相短路,两相短路,单相短路,两两接地短路等;短路产生的后果,短路电流远大于正常电流,系统中发生短路时会产生极大的电动力和极高的温度,致使电气设备受到损害和破坏;短路时系统中的电压陡降,严重影响到用电设备的正常运行;短路时系统中的保护装置动作,将故障部分切除,造成停电事故;严重的短路会影响到电网的稳定性;发生不对称短路时,短路电流将产生很强的交变电磁场,形成电磁干扰。
可见,一旦出现短路事故对整个供电系统的危害极其严重,因此尽可能地减小短路事故的发生率在整个工厂电气系统中显得特别必要。
电力系统中,发生单相短路的概率最大三相短路的概率最小;然而发生三相短路情况时的电流幅值最大,因而常以三相短路电路时的电流值为短路电流的计算值。
2 供电系统的保护装置设计
为保证工厂供电系统的正常运行,必须在系统中安装各种不同类型的电气保护装置,主要包括过电流保护和过电压保护。
2.1 过电流保护
熔断器的保护方式,适用于高低压供电系统;低压断路器的保护方式,对于低压电气系统的可靠性和可操作性有比较高要求时可以适用;继电器的保护方式,适用于对供电系统可靠性和可操作性要求较高的高压供电系统。
过电流保护装置的基本要求:选择性,速动性,可靠性,灵敏度。
首先,线路设计应该注意其合理布局和密集性分析。
由于工厂油污较大,容易导致线路老化变形,甚至出现线路的裸露,严重影响企业的安全生产运营。
线路在设计时应充分考虑其合理走向,保证走向的安全性。
另外,由于企业生产过程中温度较高,线路布局过于密集容易产生磁力效应,从而影响生产的安全。
合理的线路布局设计加上合理性的密集度设计能从根本上保证企业电气系统的安全。
其次,线路设计时应保证足够的防火空间。
由于电气系统线路设计的隐蔽性,决定了其防火空间的有限性,而有限的防火空间下,一旦发生火灾等灾害就会导致大面积的灾害形成,危害企业的整体安全。
因此,在企业电气系统设计时应注意保障足够的防火和救灾空间。
在企业电气系统设计时应注意保障足够的电气操作空间,一方面可以保障电气在运行过程中的安全性和电气自身寿命的延长,另一方面也可以保障在维修电气系统时可以有足够的空间进行维护。
足够的操作空间使得电气系统之间的距离拉大,其相互的磁力影响减小,对于维修人员及电气操作人员的身体健康有重要的意义。
因此,在设计企业电气系统时应注意保证足够的操作性空间。
2.2 过电压保护
过电压指电气设备或线路所承载的电压大大超出额定电压,严重危害设备正常工作的情况。
供电系统中过电压分为内部过电压和雷电过电压两大类。
(1)内部过电压的产生由供电系统内部的开关操作、负荷剧变或故障等原因引起。
经验表明,供电系统内部过电压的电压值一般低于系统正常运行时额定电压的4倍,所以系统内部过电压对整个受电系统的影响不大。
(2)雷电过电压亦称外部过压,当工厂电气系统受到外部自然界的强烈的电磁坏境干扰,如雷击而引起的过压,其致使供电系统的瞬时电压幅值有可能达到几十万千伏,瞬时电流的幅值也有可能增至十几万安,因此这种情况下整个工厂电气系统中的设备和元器件以及线缆都存在极大的危害,必须要尽量加以防范。
雷电过压的两种基本形式:直接雷击和间接雷击。
(3)雷电过电压的保护设备主要有闪接器和避雷器。
3 供电系统电气部分的主接线方式的设计
主接线也称主电路,表示供配电系统中对电能进行的输送和分配的电路。
其基本性能指标:安全、可靠、灵活、经济。
高压供配电接线:高压供配电部分担负从电力系统受电并向各车间变电所供配电的任务。
如图1所示,为具有一定代表性的高压供配电接线方案。
3.1 变电所常用的主接线方式
变压器组___线路接线法,当变电所只存在单独供电线路与唯一变压器时,可用这种接线法处理。
单母线接线法,常用于对电能聚集和输配;其具体又可以分为分段和不分段两种接线方式。
桥式接线,指在两路供电进线之间跨接一个断路器。
3.2 总降压变电所与独立变电所主接线方式
单电源进线的总降压变电所主接线;双回路电源进线总降压变电所主接线。
单电源进线独立变电所主接线;双电源进线独立变电所主接线
3.3 车间和小型工厂变电所的主接线方式
只装有一台主变压器的小型变电所主接线;装有两台主变压器的小型变电所主接线。
总之,工厂供电系统的设计是一项综合各方面因素在内的系统性工程。
理论值的准确计算为电气设备容量和线缆截面的合理选择提供了重要的理论参考和依据,初步保证了工厂供电系统电气部分的稳定性和可靠性;优化的主接线方式和无功功率补偿后的工厂供电系统,一方面保证了供电系统的稳定运行,另一方面也节省了部分开支,为企业和供电部门带来了一定的经济效益。
在保证供电系统安全性和可靠性的前提下兼顾供电的质量和经济性原则是今后工厂系统供电
设计者努力的方向。
参考文献:
[1]刘介才.工厂供电[M].北京:机械工业出版社,2009.。