2021高考物理一轮复习第六章动量和动量守恒定律实验八验证动量守恒定律学案新人教版
- 格式:doc
- 大小:622.50 KB
- 文档页数:10
第1讲 动量 动量定理[A 组 基础题组]一、单项选择题1.下列解释正确的是( )A .跳高时,在落地处垫海绵是为了减小冲量B .在码头上装橡皮轮胎,是为了减小渡船靠岸过程受到的冲量C .动量相同的两个物体受相同的制动力作用,质量小的先停下来D .人从越高的地方跳下,落地时越危险,是因为落地时人受到的冲量越大解析:跳高时,在落地处垫海绵是为了延长作用时间减小冲力,不是减小冲量,故选项A 错误;在码头上装橡皮轮胎,是为了延长作用时间,从而减小冲力,不是减小冲量,故选项B 错误;动量相同的两个物体受相同的制动力作用,根据动量定理Ft =mv ,可知运动时间相等,故选项C 错误;人从越高的地方跳下,落地前瞬间速度越大,动量越大,落地时动量变化量越大,则冲量越大,故选项D 正确。
答案:D2.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量方向为弧中点指向圆心B .小球所受支持力的冲量为0C .小球所受重力的冲量大小为m 2gRD .小球所受合力的冲量大小为m 2gR解析:小球受到竖直向下的重力和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,故A 错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,故B 错误;小球在运动过程中只有重力做功,所以根据机械能守恒定律可得mgR =12mv B 2,故v B =2gR ,根据动量定理可得I 合=Δp =mv B =m 2gR ,故C 错误,D 正确。
答案:D3.一小球从水平地面上方无初速度释放,与地面发生碰撞后反弹至速度为零。
假设小球与地面碰撞没有机械能损失,运动时的空气阻力大小不变,则下列说法正确的是( ) A .上升过程中小球动量改变量等于该过程中空气阻力的冲量 B .小球与地面碰撞过程中,地面对小球的冲量为零 C .下落过程中小球动能的改变量等于该过程中重力做的功D .从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功解析:根据动量定理可知,上升过程中小球动量改变量等于该过程中重力和空气阻力的合力的冲量,选项A 错误;小球与地面碰撞过程中,由动量定理得Ft -mgt =mv 2-(-mv 1),可知地面对小球的冲量Ft 不为零,选项B 错误;下落过程中小球动能的改变量等于该过程中重力和空气阻力做功的代数和,选项C 错误;由能量守恒关系可知,从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功,选项D正确。
实验八 验证动量守恒定律目标要求 1.理解动量守恒定律成立的条件,会利用不同案例验证动量守恒定律.2.知道在不同实验案例中要测量的物理量,会进行数据处理及误差分析.实验技能储备一、实验原理在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等.二、实验方案及实验过程案例一:研究气垫导轨上滑块碰撞时的动量守恒 1.实验器材气垫导轨、数字计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2.实验过程(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨,如图所示.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度. (4)改变条件,重复实验: ①改变滑块的质量;②改变滑块的初速度大小和方向. (5)验证:一维碰撞中的动量守恒. 3.数据处理(1)滑块速度的测量:v =ΔsΔt ,式中Δs 为滑块上挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. (2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. 案例二:研究斜槽末端小球碰撞时的动量守恒 1.实验器材斜槽、小球(两个)、天平、复写纸、白纸、圆规、铅垂线等.2.实验过程(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)安装:按照如图甲所示安装实验装置.调整固定斜槽使斜槽底端水平.(3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下铅垂线所指的位置O.(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N,如图乙所示.(6)验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理:将实验器材放回原处.3.数据处理验证的表达式:m1·OP=m1·OM+m2·ON.三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”.2.案例提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨水平.(2)若利用平抛运动规律进行验证:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.考点一 教材原型实验考向1 研究气垫导轨上滑块碰撞时的动量守恒例1 (2022·全国甲卷·23)利用图示的实验装置对碰撞过程进行研究.让质量为m 1的滑块A 与质量为m 2的静止滑块B 在水平气垫导轨上发生碰撞,碰撞时间极短,比较碰撞后A 和B 的速度大小v 1和v 2,进而分析碰撞过程是否为弹性碰撞.完成下列填空:(1)调节导轨水平;(2)测得两滑块的质量分别为0.510 kg 和0.304 kg.要使碰撞后两滑块运动方向相反,应选取质量为________ kg 的滑块作为A ;(3)调节B 的位置,使得A 与B 接触时,A 的左端到左边挡板的距离s 1与B 的右端到右边挡板的距离s 2相等;(4)使A 以一定的初速度沿气垫导轨运动,并与B 碰撞,分别用传感器记录A 和B 从碰撞时刻开始到各自撞到挡板所用的时间t 1和t 2;(5)将B 放回到碰撞前的位置,改变A 的初速度大小,重复步骤(4).多次测量的结果如下表所示;1 2 3 4 5 t 1/s 0.49 0.67 1.01 1.22 1.39 t 2/s 0.15 0.21 0.33 0.40 0.46 k =v 1v 20.31k 20.330.330.33(6)表中的k 2=________(保留2位有效数字); (7)v 1v 2的平均值为______(保留2位有效数字); (8)理论研究表明,对本实验的碰撞过程,是否为弹性碰撞可由v 1v 2判断.若两滑块的碰撞为弹性碰撞,则v 1v 2的理论表达式为__________________(用m 1和m 2表示),本实验中其值为________________(保留2位有效数字),若该值与(7)中结果间的差别在允许范围内,则可认为滑块A 与滑块B 在导轨上的碰撞为弹性碰撞. 答案 (2)0.304 (6)0.31 (7)0.32(8)v 1v 2=m 2-m 12m 10.34 解析 (2)用质量较小的滑块碰撞质量较大的滑块,碰后运动方向相反,故选质量为0.304 kg 的滑块作为A .(6)由于两段位移大小相等,根据表中的数据可得k 2=v 1v 2=t 2t 1=0.210.67=0.31.(7)v 1v 2的平均值为k =0.31+0.31+0.33+0.33+0.335=0.32. (8)弹性碰撞时满足动量守恒和机械能守恒,可得m 1v 0=-m 1v 1+m 2v 2 12m 1v 02=12m 1v 12+12m 2v 22 联立解得v 1v 2=m 2-m 12m 1,代入数据可得v 1v 2=0.34.考向2 研究斜槽末端小球碰撞时的动量守恒例2 (2023·福建省莆田二中模拟)在验证动量守恒定律的实验中,请回答下列问题:(1)实验记录如图乙所示,为测定A 球不碰B 时做平抛运动的落点的平均位置,把刻度尺的零刻度线跟记录纸上的O 点对齐,图乙给出了小球A 落点附近的情况,可得A 的平均落点到O 点的距离应为________cm.(2)小球A 下滑过程中与斜槽轨道间存在摩擦力,这对实验结果________产生误差(填“会”或“不会”).(3)实验装置如图甲所示,A 球为入射小球,B 球为被碰小球,以下有关实验过程中必须满足的条件正确的是________.A .入射小球的质量m A 可以小于被碰小球的质量mB B .实验时需要测量斜槽末端到水平地面的高度C .入射小球每次不必从斜槽上的同一位置由静止释放D .斜槽末端的切线必须水平,小球放在斜槽末端处,且应恰好静止(4)如果碰撞过程中系统机械能也守恒,根据图中各点间的距离,下列式子成立的有________. A .m A ∶m B =ON ∶MPB .m A ∶m B =OP ∶MPC .m A ∶m B =OP ∶(MN -OM )D .m A ∶m B =ON ∶(MN -OM ) 答案 (1)65.50 (2)不会 (3)D (4)AD解析 (1)小球A 落点,应该取多次落点的平均落点,即用尽量小的圆把这些落点圈起来的圆心的位置,由题图乙可得距离应为65.50 cm.(2)在题图甲装置中,只要保证小球A 到达底端的速度相同即可,轨道有无摩擦对实验结果不会产生误差.(3)入射小球的质量m A 不可以小于被碰小球的质量m B ,否则A 球碰后反弹,故A 错误;在实验中不需要小球的下落高度,只要能保证高度相同,即可知道两小球下落时间相同,故B 错误;入射小球每次必从斜槽上的同一位置由静止释放,才能保证每次碰前的速度均相同,故C 错误;斜槽末端的切线必须水平,小球放在斜槽末端处,应能保持静止,故D 正确. (4)两球碰撞后,小球做平抛运动,由于小球抛出点的高度相等,它们在空中做平抛运动的时间t 相等,小球做平抛运动的初速度v A =OP t ,v A ′=OM t ,v B ′=ONt由动量守恒定律得m A v A =m A v A ′+m B v B ′则m A OP t =m A OM t +m B ON t ,m A m B =ON OP -OM =ON MP ,故A 正确,B 错误;由系统机械能守恒得12m A v A 2=12m A v A ′2+12m B v B ′2,代入速度表达式整理得m A (OP 2-OM 2)=m B ON 2,又由m Am B =ONOP -OM,联立解得OP +OM =ON ,故OM =PN ,由几何关系得MN -OM =MN -PN =MP ,则m A ∶m B =ON ∶MP =ON ∶(MN -OM ),故D 正确,C 错误.考点二 探索创新实验考向1 实验装置的创新例3 如图为验证动量守恒定律的实验装置,实验中选取两个半径相同、质量不等的小球,按下面步骤进行实验:①用天平测出两个小球的质量分别为m 1和m 2;②安装实验装置,将斜槽AB 固定在桌边,使槽的末端切线水平,再将一斜面BC 连接在斜槽末端;③先不放小球m 2,让小球m 1从斜槽顶端A 处由静止释放,标记小球在斜面上的落点位置P ; ④将小球m 2放在斜槽末端B 处,仍让小球m 1从斜槽顶端A 处由静止释放,两球发生碰撞,分别标记小球m 1、m 2在斜面上的落点位置;⑤用毫米刻度尺测出各落点位置到斜槽末端B 的距离.图中M 、P 、N 三点是实验过程中记下的小球在斜面上的三个落点位置,从M 、P 、N 到B 的距离分别为s M 、s P 、s N .依据上述实验步骤,请回答下面问题:(1)两小球的质量m 1、m 2应满足m 1________m 2(填“>”“=”或“<”);(2)小球m 1与m 2发生碰撞后,m 1的落点是图中________点,m 2的落点是图中________点; (3)用实验中测得的数据来表示,只要满足关系式________________,就能说明两球碰撞前后动量是守恒的;(4)若要判断两小球的碰撞是否为弹性碰撞,用实验中测得的数据来表示,只需比较________与________是否相等即可. 答案 (1)> (2)M N (3)m 1s P =m 1s M +m 2s N (4)m 1s P m 1s M +m 2s N解析 (1)为了防止入射小球碰撞后反弹,一定要保证入射小球的质量大于被碰小球的质量,故m 1>m 2;(2)碰撞前,小球m 1落在题图中的P 点,由于m 1>m 2,当小球m 1与m 2发生碰撞后,m 1的落点是题图中M 点,m 2的落点是题图中N 点;(3)设碰前小球m 1的水平初速度为v 1,当小球m 1与m 2发生碰撞后,小球m 1落到M 点,设其水平速度为v 1′,m 2落到N 点,设其水平速度为v 2′,斜面BC 与水平面的倾角为α,由平抛运动规律得s M sin α=12gt 2,s M cos α=v 1′t ,联立解得v 1′=gs M cos 2 α2sin α,同理可得v 2′=gs N cos 2α2sin α,v 1=gs P cos 2 α2sin α,因此只要满足m 1v 1=m 1v 1′+m 2v 2′,即m 1s P =m 1s M +m2s N.(4)如果小球的碰撞为弹性碰撞,则满足12m1v12=12m1v1′2+12m2v2′2代入以上速度表达式可得m1s P=m1s M+m2s N故验证m1s P和m1s M+m2s N相等即可.考向2实验方案的创新例4某物理兴趣小组设计了如图甲所示的实验装置.在足够大的水平平台上的A点放置一个光电门,其右侧摩擦很小,可忽略不计,左侧为粗糙水平面.当地重力加速度大小为g.采用的实验步骤如下:A.在小滑块a上固定一个宽度为d的窄挡光片;B.用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b;C.a和b间用细线连接,中间夹一被压缩了的轻短弹簧(与a、b不连接),静止放置在平台上;D.细线烧断后,a、b瞬间被弹开,向相反方向运动;E.记录滑块a通过光电门时挡光片的遮光时间t;F.小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h 及平台边缘铅垂线与B点之间的水平距离s;G.改变弹簧压缩量,进行多次测量.(1)用游标卡尺测量挡光片的宽度,如图乙所示,则挡光片的宽度为________ mm.(2)针对该实验装置和实验结果,同学们做了充分的讨论.讨论结果如下:①该实验要验证“动量守恒定律”,则只需验证a、b弹开后的动量大小相等,即________=________(用上述实验所涉及物理量的字母表示);②若该实验的目的是求弹簧的最大弹性势能,则弹簧的弹性势能为________(用上述实验所涉及物理量的字母表示);③改变弹簧压缩量,多次测量后,该实验小组得到x a与1t2的关系图像如图丙所示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为________(用上述实验数据字母表示).答案 (1)3.80 (2)①m a dt m b sg 2h②m a d 22t 2+m b s 2g 4h ③d 22kg解析 (1)挡光片的宽度d =3 mm +16×0.05 mm =3.80 mm.(2)①要验证“动量守恒定律”,则应该验证m a v a =m b v b ,由滑块a 通过光电门可求v a =d t ,由b 球离开平台后做平抛运动,根据h =12gt 2,s =v b t ,整理可得v b =sg2h,因此需验证的表达式为m a dt=m b sg 2h ;②弹性势能大小为E p =12m a v a 2+12m b v b 2,代入数据整理得E p =m a d 22t2+m b s 2g 4h ;③根据动能定理可得μmgx a =12m v a 2,而v a =d t ,联立整理得x a =d 22μg ·1t 2,故k =d 22μg ,可得平台A 点左侧与滑块a 之间的动摩擦因数μ=d 22kg.课时精练1.(2023·云南省昆明一中高三检测)某实验小组在进行“验证动量守恒定律”的实验,入射球与被碰球半径相同、质量不等,且入射球的质量大于被碰球的质量.(1)用游标卡尺测量直径相同的入射球与被碰球的直径,测量结果如图甲所示,则直径为________cm ;(2)实验中,直接测定小球碰撞前、后的速度是不容易的,但是可以通过仅测量________(填选项前的字母),间接地解决这个问题; A .小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的水平位移D.小球的直径(3)实验装置如图乙所示,先不放B球,使A球从斜槽上某一固定点C由静止滚下,再把B 球静置于水平槽前端边缘处,让A球仍从C处由静止滚下.记录纸上的O点是铅垂线所指的位置,M、P、N分别为落点的痕迹,未放B球时,A球落地点是记录纸上的________点;放上B球后,B球的落地点是记录纸上的________点;(4)释放多次后,取各落点位置的平均值,测得各落点痕迹到O点的距离:OM=13.10 cm,OP=21.90 cm,ON=26.04 cm.用天平称得入射小球A的质量m1=16.8 g,被碰小球B的质量m2=5.6 g.若将小球质量与水平位移的乘积作为“动量”,请将下面的表格填写完整.(结果保留三位有效数字)根据上面表格中的数据,你认为能得到的结论是____________________________;(5)实验中,关于入射小球在斜槽上释放点的高低对实验影响的说法中正确的是________.A.释放点越低,小球受阻力越小,入射小球速度越小,误差越小B.释放点越低,两球碰后水平位移越小,水平位移测量的相对误差越小,两球速度的测量越准确C.释放点越高,两球相碰时,相互作用的内力越大,碰撞前后动量之差越小,误差越小D.释放点越高,入射小球对被碰小球的作用力越大,轨道对被碰小球的阻力越小答案(1)2.14(2)C(3)P N(4)3.66×10-3在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒(5)C解析(1)球的直径d=21 mm+4×0.1 mm=21.4 mm=2.14 cm.(2)小球离开轨道后做平抛运动,因为小球抛出点的高度相等,它们在空中的运动时间相等,小球的水平位移与小球抛出的初速度成正比,可以用小球的水平位移代替其初速度,所以C 正确.(3)A球和B球相撞后,B球的速度增大,A球的速度减小,所以碰撞后A球的落地点距离O 点最近,B球的落地点距离O点最远,所以P点是未放B球时A球的落地点,N点是放上B 球后B球的落地点.(4)碰后“总动量”p ′=m 1OM +m 2ON =0.016 8×0.131 0 kg·m +0.005 6×0.260 4 kg·m ≈3.66×10-3 kg·m则可知碰撞前、后“总动量”近似相等,在实验误差允许范围内,可认为系统在碰前和碰后的“动量”守恒.(5)入射小球的释放点越高,入射球碰撞前的速度越大,相撞时内力越大,阻力的影响相对越小,可以较好地满足动量守恒的条件,也有利于减小测量水平位移时的相对误差,从而使实验的误差减小,C 正确.2.某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速运动,他设计的具体装置如图甲所示.在小车A 后连着纸带,电磁打点计时器所用的电源频率为50 Hz ,长木板下垫着小木片用以补偿阻力.(1)若已得到打点纸带,测得各计数点间距如图乙所示,A 为运动起始的第一点,则应选________段来计算A 车的碰前速度,应选________段来计算A 车和B 车碰后的共同速度.(以上两空均选填“AB ”“BC ”“CD ”或“DE ”)(2)已测得小车A 的质量m 1=0.40 kg ,小车B 的质量m 2=0.20 kg ,由以上测量结果可得,碰前总动量为______ kg·m/s ;碰后总动量为____ kg·m/s(结果保留小数点后3位).由上述实验结果得到的结论是:________________________________________________________. 答案 (1)BC DE (2)0.420 0.417 A 、B 碰撞过程中,在误差允许范围内,系统动量守恒 解析 (1)小车A 碰前运动稳定时做匀速直线运动,所以选择BC 段计算A 碰前的速度;两小车碰后粘在一起仍做匀速直线运动,所以选择DE 段计算A 和B 碰后的共同速度. (2) 碰前小车A 的速度为v 0=BC t =0.105 05×0.02m/s =1.050 m/s 则碰前两小车的总动量为p =m 1v 0+0=0.40×1.050 kg·m/s =0.420 kg·m/s 碰后两小车的速度为v =DE t =0.069 55×0.02m/s =0.695 m/s则碰后两小车的总动量为p ′=(m 1+m 2)v =(0.40+0.20)×0.695 kg·m/s =0.417 kg·m/s由上述实验结果得到的结论是:A 、B 碰撞过程中,在误差允许范围内,系统动量守恒.3.(2023·福建福州市模拟)某地中学生助手设计了一个实验演示板做“探究碰撞中的不变量”的实验,主要实验步骤如下:①选用大小为120 cm ×120 cm 的白底板竖直放置,悬挂点为O ,并标上如图所示的高度刻度;②悬挂点两根等长不可伸长的细绳分别系上两个可视为质点的A 摆和B 摆,两摆相对的侧面贴上双面胶,以使两摆撞击时能合二为一,以相同速度一起向上摆;③把A 摆拉到右侧h 1的高度,释放后与静止在平衡位置的B 摆相碰.当A 、B 摆到最高点时读出摆中心对应的高度h 2;回答以下问题:(1)若A 、B 两摆的质量分别为m A 、m B ,则验证动量守恒的表达式为________(用上述物理量字母表示).(2)把A 摆拉到右侧的高度为0.8 m ,两摆撞击后一起向左摆到的高度为0.2 m ,若满足A 摆质量是B 摆质量的________倍,即可验证系统动量守恒,从而可以得出A 摆碰前初动能为碰后两摆损失机械能的________倍.答案 (1)m A h 1=(m A +m B )h 2(2)1 2解析 (1)由机械能守恒定律可得m A gh 1=12m A v 12,得碰前速度v 1=2gh 1,由(m A +m B )gh 2=12(m A +m B )v 22,得碰后速度v 2=2gh 2,根据动量守恒可知需要验证的表达式为m A h 1=(m A +m B )h 2.(2)把数据代入上述验证表达式可得m A =m B ,即若满足A 摆的质量是B 摆的质量的1倍,即可验证系统动量守恒;根据动量守恒定律有m A v 1=(m A +m B )v 2,根据能量守恒定律有12m A v 12=12(m A +m B )v 22+ΔE ,联立解得ΔE =14m A v 12,即A 摆碰前初动能为碰后两摆损失机械能的2倍.4.(2023·云南省昆明一中模拟)现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A、B两个滑块,滑块A右侧带有一弹簧片,左侧与连接打点计时器(图中未画出)的纸带相连;滑块B左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间.实验测得滑块A(包括弹簧片)的质量m1=0.310 kg,滑块B(包括弹簧片和遮光片)的质量m2=0.108 kg,遮光片的宽度d=1.00 cm,打点计时器所用交流电的频率f=50.0 Hz.将光电门固定在滑块B的右侧,启动打点计时器,给滑块A一向右的初速度,使它与B相碰.碰后光电计时器显示的时间为Δt B=3.500 ms,碰撞前后打出的纸带如图(b)所示.根据图(b)中所标数据,可分析推断出碰撞发生在________间,A滑块碰撞前的速度为________ m/s,B滑块碰撞前的速度为________ m/s, A滑块碰撞后的速度为________ m/s,B 滑块碰撞后的速度为________ m/s.(结果保留三位有效数字)答案EF 2.0000.970 2.86解析由于A滑块与气垫导轨间的摩擦力非常小,所以除了碰撞过程,A滑块运动过程因摩擦力产生的加速度非常小,在相同时间内相邻位移的差值也非常小,根据图(b)中所标数据,可看出只有EF间的位移相比相邻间的位移变化比较明显,故碰撞发生在EF间;A滑块碰撞前的速度为v A=s FGT =4.00×10-20.02m/s=2.00 m/s, B滑块碰撞前的速度为0,A滑块碰撞后的速度为v A′=s DET =1.94×10-20.02m/s=0.970 m/s,B滑块碰撞后的速度为v B′=dΔt B=1.00×10-23.500×10-3m/s≈2.86 m/s.5.某同学利用如图所示的装置进行“验证动量守恒定律”的实验,操作步骤如下:①在水平桌面上的适当位置固定好弹簧发射器,使其出口处切线与水平桌面相平;②在一块长平木板表面先后钉上白纸和复写纸,将该木板竖直并贴紧桌面右侧边缘.将小球a向左压缩弹簧并使其由静止释放,a球碰到木板,在白纸上留下压痕P;③将木板向右水平平移适当距离,再将小球a向左压缩弹簧到某一固定位置并由静止释放,撞到木板上,在白纸上留下压痕P2;④将半径相同的小球b放在桌面的右边缘,仍让小球a从步骤③中的释放点由静止释放,与b球相碰后,两球均撞在木板上,在白纸上留下压痕P1、P3.(1)下列说法正确的是________.A.小球a的质量一定要大于小球b的质量B.弹簧发射器的内接触面及桌面一定要光滑C.步骤②③中入射小球a的释放点位置一定相同D.把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平(2)本实验必须测量的物理量有________.A.小球的半径rB.小球a、b的质量m1、m2C.弹簧的压缩量x1,木板距离桌子边缘的距离x2D.小球在木板上的压痕P1、P2、P3分别与P之间的竖直距离h1、h2、h3(3)用(2)中所测的物理量来验证两球碰撞过程中动量是否守恒,当满足关系式________时,则证明a、b两球碰撞过程中动量守恒.答案(1)AD(2)BD(3)m1h2=m1h3+m2h1解析(1)小球a的质量一定要大于小球b的质量,以防止入射球碰后反弹,选项A正确;弹簧发射器的内接触面及桌面不一定要光滑,只要a球到达桌边时速度相同即可,选项B错误;步骤②③中入射小球a的释放点位置不一定相同,但是步骤③④中入射小球a的释放点位置一定要相同,选项C错误;把小球轻放在桌面右边缘,观察小球是否滚动来检测桌面右边缘末端是否水平,选项D正确.(2)小球离开桌面右边缘后做平抛运动,设其水平位移为L,则小球做平抛运动的时间t=L v0小球的竖直位移h =12gt 2 联立解得v 0=L g 2h碰撞前入射球a 的水平速度v 1=L g 2h 2碰撞后入射球a 的水平速度v 2=L g 2h 3碰撞后被碰球b 的水平速度v 3=Lg 2h 1 如果碰撞过程系统动量守恒,则m 1v 1=m 1v 2+m 2v 3 即m 1·Lg 2h 2=m 1·L g 2h 3+m 2·L g 2h 1, 整理得m 1h 2=m 1h 3+m 2h 1 则要测量的物理量是:小球a 、b 的质量m 1、m 2和小球在木板上的压痕P 1、P 2、P 3分别与P 之间的竖直距离h 1、h 2、h 3,故选B 、D. (3)由以上分析可知当满足关系式m 1h 2=m 1h 3+m 2h 1时,则证明a 、b 两球碰撞过程中动量守恒.。
目标要求内容要求说明1.动量和冲量理解冲量和动量.2.动量定理和动量守恒定律通过理论推导和实验,理解动量定理和动量守恒定律,能用其解释生产生活中的有关现象.知道动量守恒定律的普适性.3.弹性碰撞和非弹性碰撞通过实验,了解弹性碰撞和非弹性碰撞的特点.定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象.4.实验八验证动量守恒定律第1讲动量定理及其应用一、动量、动量变化、冲量1.动量(1)定义:物体的质量与速度的乘积.(2)表达式:p =m v .(3)方向:动量的方向与速度的方向相同.2.动量的变化(1)因为动量是矢量,动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 的方向相同.(2)动量的变化量Δp ,一般用末动量p ′减去初动量p 进行矢量运算,也称为动量的增量.即Δp =p ′-p .3.冲量(1)定义:力与力的作用时间的乘积叫做力的冲量.(2)公式:I=Ft.(3)单位:N·s.(4)方向:冲量是矢量,其方向与力的方向相同.判断正误(1)物体质量不变时,运动的速度变化,其动量一定变化.(√)(2)当物体受力方向与运动方向垂直时,该力的冲量为0.(×)(3)某个恒力对物体做功为0时,冲量不为0.(√)(4)做匀速圆周运动的物体动量不变.(×)二、动量定理1.内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受合力的冲量.2.公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的理解(1)动量定理反映了力的冲量与动量变化量之间的因果关系,即合力的冲量是原因,物体的动量变化量是结果.(2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和.(3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义.自测(2018·全国卷Ⅱ·15)高空坠物极易对行人造成伤害.若一个50g的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2ms,则该鸡蛋对地面产生的冲击力约为() A.10N B.102N C.103N D.104N答案C解析设每层楼高约为3m,则下落高度约为h=3×25m=75m,由mgh=12m v2及(F-mg)t=m v结合牛顿第三定律知鸡蛋对地面的冲击力F′=F=m2ght mg≈103N.1.对动量的理解(1)动量的两性①瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻或位置而言的.②相对性:动量的大小与参考系的选取有关,通常是指相对地面的动量.(2)动量与动能的比较动量动能物理意义描述机械运动状态的物理量定义式p =m v E k =12m v 2标矢性矢量标量变化因素物体所受冲量外力所做的功大小关系p =2mE kE k =p 22m对于给定的物体,若动能发生了变化,动量一定也发生了变化;而动量发生变化,动能不一定发生变化.它们都是相对量,均与参考系的选取有关,高中阶段通常选取地面为参考系2.对冲量的理解(1)冲量的两性①时间性:冲量不仅与力有关,还与力的作用时间有关,恒力的冲量等于该力与该力的作用时间的乘积.②矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致;对于作用时间内方向变化的力来说,冲量的方向与相应时间内物体动量改变量的方向一致.(2)作用力和反作用力的冲量:一定等大、反向,但作用力和反作用力做的功之间并无必然联系.(3)冲量与功的比较冲量功定义作用在物体上的力和力的作用时间的乘积作用在物体上的力和物体在力的方向上的位移的乘积单位N·s J公式I =Ft (F 为恒力)W =Fl cos α(F 为恒力)标矢性矢量标量意义①表示力对时间的累积②是动量变化的量度①表示力对空间的累积②是能量变化多少的量度都是过程量,都与力的作用过程相联系题型1对动量和冲量的定性分析例1关于物体的动量,下列说法中正确的是()A .运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大答案A解析动量具有瞬时性,任一时刻物体动量的方向,与该时刻物体的速度方向相同,选项A 正确;加速度不变,则物体速度的变化率恒定,物体的速度均匀变化,故其动量也均匀变化,选项B错误;物体动量的大小由物体质量及速度大小共同决定,不是由物体的速度唯一决定的,故物体的动量大,其速度不一定大,选项C错误;惯性由物体质量决定,物体的动量越大,其质量并不一定越大,惯性也不一定越大,故选项D错误.变式1(2019·江苏宿迁市期中)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,这样做可以()A.减小球对手的冲量B.减小球对手的冲击力C.减小球的动量变化量D.减小球的动能变化量答案B解析先伸出两手迎接,手接触到球后,两手随球引至胸前,这样可以增加球与手接触的时间,根据动量定理有-Ft=0-m v,解得F=m vt,当时间增大时,球动量的变化率减小,作用力减小,而冲量和动量的变化量都不变,动能的变化量也不变,所以B正确.题型2对动量和冲量的定量计算例2(多选)(2019·湖北宜昌市四月调研)一质量为m的运动员托着质量为M的重物从下蹲状态(图1甲)缓慢运动到站立状态(图乙),该过程重物和人的肩部相对位置不变,运动员保持乙状态站立Δt时间后再将重物缓慢向上举,至双臂伸直(图丙).甲到乙、乙到丙过程重物上升高度分别为h1、h2,经历的时间分别为t1、t2,重力加速度为g,则()图1A.地面对运动员的冲量为(M+m)g(t1+t2+Δt),地面对运动员做的功为0B.地面对运动员的冲量为(M+m)g(t1+t2),地面对运动员做的功为(M+m)g(h1+h2) C.运动员对重物的冲量为Mg(t1+t2+Δt),运动员对重物做的功为Mg(h1+h2)D.运动员对重物的冲量为Mg(t1+t2),运动员对重物做的功为0答案AC解析因运动员将重物缓慢上举,则可认为是平衡状态,地面对运动员的支持力为:(M +m )g ,整个过程的时间为(t 1+t 2+Δt ),根据I =Ft 可知地面对运动员的冲量为(M +m )g (t 1+t 2+Δt );因地面对运动员的支持力没有位移,可知地面对运动员做的功为0,选项A 正确,B 错误;运动员对重物的作用力为Mg ,作用时间为(t 1+t 2+Δt ),根据I =Ft 可知运动员对重物的冲量为Mg (t 1+t 2+Δt ),重物的位移为(h 1+h 2),根据W =Fl cos α可知运动员对重物做的功为Mg (h 1+h 2),选项C 正确,D 错误.变式2(多选)如图2所示,一个物体在与水平方向成θ角的拉力F 的作用下匀速前进了时间t ,则()图2A .拉力对物体的冲量大小为FtB .拉力对物体的冲量大小为Ft sin θC .摩擦力对物体的冲量大小为Ft sin θD .合外力对物体的冲量大小为零答案AD解析拉力F 对物体的冲量大小为Ft ,故A 项正确,B 项错误;物体受到的摩擦力F f =F cosθ,所以,摩擦力对物体的冲量大小为F f t =Ft cos θ,故C 项错误;物体匀速运动,则合外力为零,所以合外力对物体的冲量大小为零,故D 项正确.1.对动量定理的理解(1)中学物理中,动量定理研究的对象通常是单个物体.(2)Ft =p ′-p 是矢量式,两边不仅大小相等,而且方向相同.式中Ft 是物体所受的合外力的冲量.(3)Ft =p ′-p 除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.(4)由Ft =p ′-p ,得F =p ′-p t =Δpt ,即物体所受的合外力等于物体的动量的变化率.2.解题基本思路(1)确定研究对象.在中学阶段用动量定理讨论的问题,其研究对象一般仅限于单个物体.(2)对物体进行受力分析.可先求每个力的冲量,再求各力冲量的矢量和——合力的冲量;或先求合力,再求其冲量.(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号.(4)根据动量定理列方程,如有必要还需要补充其他方程,最后代入数据求解.例3(2018·江苏卷·12C(3))如图3所示,悬挂于竖直弹簧下端的小球质量为m ,运动速度的大小为v ,方向向下.经过时间t ,小球的速度大小为v ,方向变为向上.忽略空气阻力,重力加速度为g ,求该运动过程中,小球所受弹簧弹力冲量的大小.图3答案2m v +mgt解析取向上为正方向,根据动量定理m v -(-m v )=I 且I =(F -mg )t解得I F =F t =2m v +mgt .变式3(2020·山东临沂市质检)材料相同、质量不同的两滑块,以相同的初动能分别在水平面上运动直到停止,则()A .质量大的滑块运动时间长B .质量小的滑块运动位移大C .质量大的滑块所受摩擦力的冲量小D .质量小的滑块克服摩擦力做功多答案B解析以初速度方向为正方向,根据动能定理可知:-μmgx =0-E k ,即两滑块克服摩擦力做的功相等,且质量较小的滑块运动位移较大,选项B 正确,D 错误;根据动量定理:-μmgt =0-p ,p =2mE k ,则t =1μg2E km,可知质量大的滑块运动时间短,选项A 错误;根据动量定理可知摩擦力的冲量等于动量的变化量,即:I =Δp =-2mE k ,则质量大的滑块摩擦力的冲量大,故C 错误.变式4(2019·江西南昌市4月第二次模拟)用水平力拉一物体,使物体在水平地面上由静止开始做匀加速直线运动,t 1时刻撤去拉力F ,物体做匀减速直线运动,到t 2时刻停止.其速度—时间图象如图4所示,且α>β,若拉力F 做的功为W 1,冲量大小为I 1;物体克服摩擦阻力F f 做的功为W 2,冲量大小为I 2.则下列选项正确的是()图4A.W1>W2;I1>I2B.W1<W2;I1>I2C.W1<W2;I1<I2D.W1=W2;I1=I2答案D解析全过程由动能定理得:W1-W2=0,则W1=W2;由动量定理得:I1-I2=0,则I1=I2,故D正确.例4一高空作业的工人质量为60kg,系一条长为L=5m的安全带,若工人由静止不慎跌落时安全带的缓冲时间t=1s(工人最终静止悬挂在空中),则缓冲过程中安全带受的平均冲力是多少?(g取10m/s2,忽略空气阻力的影响)答案1200N,方向竖直向下解析解法一分段列式法:设工人刚要拉紧安全带时的速度为v1,则由v12=2gL,得v1=2gL经缓冲时间t=1s后速度变为0,取向下的方向为正方向,对工人由动量定理知,工人受两个力作用,即拉力F和重力mg,所以(mg-F)t=0-m v1,解得F=mgt+m v1t将数值代入得F=1200N.由牛顿第三定律知,工人对安全带的平均冲力F′=F=1200N,方向竖直向下.解法二全程列式法:由L=12gt02得,工人自由下落时间为t0=2Lg,在整个下落过程中对工人应用动量定理,重力的冲量大小为mg(2Lg+t),拉力F的冲量大小为Ft.初、末动量都是零,取向下为正方向,由动量定理知mg(2Lg+t)-Ft=0解得F=mg(2Lg+t)t=1200N由牛顿第三定律知工人对安全带的平均冲力F′=F=1200N,方向竖直向下.变式5在水平力F =30N 的作用下,质量m =5kg 的物体由静止开始沿水平面运动.已知物体与水平面间的动摩擦因数μ=0.2,若F 作用6s 后撤去,撤去F 后物体还能向前运动多长时间?(g 取10m/s 2)答案12s 解析解法一分段处理选物体为研究对象,对于撤去F 前物体做匀加速运动的过程,受力情况如图甲所示,F f =μmg ,初速度为零,末速度为v .取水平力F 的方向为正方向,根据动量定理有(F -μmg )t 1=m v -0;对于撤去F 后,物体做匀减速运动的过程,受力情况如图乙所示,初速度为v ,末速度为零,根据动量定理有-μmgt 2=0-m v .联立解得:t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6s =12s.解法二研究全过程选物体作为研究对象,研究整个运动过程,这个过程的初、末状态的速度都等于零.取水平力F 的方向为正方向,根据动量定理有(F -μmg )t 1+(-μmg )t 2=0解得t 2=F -μmg μmg t 1=30-0.2×5×100.2×5×10×6s =12s.1.研究对象常常需要选取流体为研究对象,如水、空气等.2.研究方法隔离出一定形状的一部分流体作为研究对象,然后列式求解.3.基本思路(1)在极短时间Δt 内,取一小柱体作为研究对象.(2)求小柱体的体积ΔV =v S Δt (3)求小柱体质量Δm =ρΔV =ρv S Δt(4)求小柱体的动量变化Δp =v Δm =ρv 2S Δt (5)应用动量定理F Δt =Δp 例5(2019·全国卷Ⅰ·16)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3km/s ,产生的推力约为4.8×106N ,则它在1s 时间内喷射的气体质量约为()A .1.6×102kgB .1.6×103kgC .1.6×105kgD .1.6×106kg答案B解析设1s 时间内喷出的气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理有Ft =m v -0,则m =Ft v =4.8×106×13×103kg =1.6×103kg ,选项B 正确.变式6(2019·陕西宝鸡市高考模拟检测(二))超强台风“山竹”的风力达到17级超强台风强度,风速60m/s 左右,对固定建筑物破坏程度巨大.请你根据所学物理知识推算固定建筑物所受风力(空气的压力)与风速(空气流动速度)大小的关系.假设某一建筑物垂直风速方向的受力面积为S ,风速大小为v ,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,风力F 与风速大小v 的关系式为()A .F =ρS vB .F =ρS v 2C .F =12ρS v 3D .F =ρS v 3答案B解析设t 时间内吹到建筑物上的空气质量为m ,则m =ρS v t ,对m ,根据动量定理有-F ′t=0-m v =0-ρS v 2t ,解得F ′=ρS v 2,由牛顿第三定律可得风力F =F ′=ρS v 2,故B 正确,A 、C 、D 错误.1.(动量定理定性分析问题)(多选)从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是()A .掉在水泥地上的玻璃杯动量大,掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥上的玻璃杯动量变化快,掉在草地上的玻璃杯动量变化慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时作用时间长答案CD2.(动量和冲量的理解)(2019·江苏南京、盐城市一模)一只质量为5.4kg的保龄球,撞上一只原来静止、质量为1.7kg的球瓶.此后球瓶以3.0m/s的速度向前飞出,而保龄球以1.8m/s 的速度继续向前运动,假设它们相互作用的时间为0.05s.求:(1)碰撞后保龄球的动量大小;(2)碰撞时保龄球与球瓶间的相互作用力的大小.答案(1)9.72kg·m/s(2)102N解析(1)碰撞后对保龄球p1=M v1=5.4×1.8kg·m/s=9.72kg·m/s.(2)取碰撞后球瓶的速度方向为正方向,对球瓶:Δp=m v-0=1.7×3.0kg·m/s=5.1kg·m/s,由动量定理有:F·Δt=Δp,代入数据求得F=102N.3.(动量定理的基本应用)(2019·江苏省四星级高中一调)某质量为m的运动员从距蹦床h1高处自由落下,接着又能弹起h2高,运动员与蹦床接触时间为t,在空中保持直立.重力加速度为g.取竖直向上为正方向,忽略空气阻力.求:(1)运动员与蹦床接触时间内,所受重力的冲量I;(2)运动员与蹦床接触时间内,受到蹦床平均弹力的大小F.答案(1)mgt,方向竖直向下(2)m(2gh1+2gh2)t+mg解析(1)以竖直向上为正方向,由动量的定义式I=Ft,得重力的冲量为:I G=-mgt,负号表示方向竖直向下;(2)设运动员下落h1高度时的速度大小为v1,弹起时速度大小为v2,则有:v12=2gh1,v22=2gh2由动量定理有:-mgt+Ft=m v2-(-m v1)解得:F=m(2gh1+2gh2)t+mg.4.(应用动量定理处理“流体模型”)(2020·湖北武汉市调研)运动员在水上做飞行表演,他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中,如图5所示.已知运动员与装备的总质量为90kg,两个喷嘴的直径均为10cm,重力加速度大小g=10m/s2,水的密度ρ=1.0×103kg/m3,则喷嘴处喷水的速度大约为()图5A.2.7m/s B.5.4m/s C.7.6m/s D.10.8m/s答案C解析设Δt时间内一个喷嘴中有质量为m的水喷出,忽略水的重力的冲量,对两个喷嘴喷出的水由动量定理有:FΔt=2m v,m=ρvΔt·πd24,因运动员悬停在空中,则F=Mg,联立并代入数据解得:v≈7.6m/s,故C正确.1.关于动量和动能,下列说法中错误..的是()A.做变速运动的物体,动能一定不断变化B.做变速运动的物体,动量一定不断变化C.合外力对物体做功为零,物体动能的增量一定为零D.合外力的冲量为零,物体动量的增量一定为零答案A解析做变速运动的物体,速度大小不一定变化,则动能不一定变化,故A错误;做变速运动的物体,速度发生变化,动量一定不断变化,故B正确;合外力对物体做功为零,由动能定理,物体动能的增量一定为零,故C正确;合外力的冲量为零,由动量定理,物体动量的增量一定为零,故D正确.2.如果一物体在任意相等的时间内受到的冲量相同,则此物体的运动不可能...是() A.匀速圆周运动B.自由落体运动C.平抛运动D.竖直上抛运动答案A解析如果物体在任意相等的时间内受到的冲量都相同,由I=Ft可知,物体受到的力是恒力,则物体可能做自由落体运动、平抛运动或竖直上抛运动,故B、C、D正确;物体做匀速圆周运动,所受合外力方向不断变化,合力为变力,不能满足在任何相等时间内,合外力的冲量相等,故不可能为匀速圆周运动,故A错误.3.(2019·广西钦州市4月综测)“飞针穿玻璃”是一项高难度的绝技表演,曾引起质疑.为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是() A.测出玻璃厚度和飞针穿越玻璃前后的速度B.测出玻璃厚度和飞针穿越玻璃所用的时间C.测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D.测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度答案D解析在“飞针穿玻璃”的过程中,对飞针,由动量定理有:-F t=m v2-m v1,结合牛顿第三定律可知,应测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度,故D正确,A、B、C错误.4.(2020·福建泉州市质检)如图1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d四个点位于同一圆周上,a在圆周最高点,d在圆周最低点,每根杆上都套着质量相等的小滑环(图中未画出),三个滑环分别从a、b、c三个点同时由静止释放.关于它们下滑的过程,下列说法正确的是()图1A.重力对它们的冲量相同B.弹力对它们的冲量相同C.合外力对它们的冲量相同D.它们动能的增量相同答案A解析这是“等时圆”,即三个滑环同时由静止释放,运动到最低点d点的时间相同,由于三个环的重力相等,由公式I=Ft分析可知,三个环重力的冲量相同,故A正确;从c处下滑的小滑环受到的弹力最大,运动时间相等,则弹力对从c处下滑的小滑环的冲量最大,故B错误;从a处下滑的小滑环的加速度最大,受到的合力最大,则合力对从a处下滑的小滑环的冲量最大,故C错误;重力对从a处下滑的小滑环做功最多,其动能的增量最大,故D 错误.5.(2019·广东广州市4月综合测试)如图2,广州塔摩天轮位于塔顶450米高空处,摩天轮由16个“水晶”观光球舱组成,沿着倾斜的轨道做匀速圆周运动,则坐于观光球舱中的某游客()图2A.动量不变B.线速度不变C.合外力不变D.机械能不守恒答案D解析坐于观光球舱中的某游客线速度的大小不变,但方向不断改变,可知线速度不断改变,动量也不断变化;由于向心加速度方向不断变化,可知合外力大小不变,但方向不断改变,选项A、B、C错误;由于动能不变,重力势能不断变化,可知机械能不守恒,选项D正确.6.(多选)一质量为2kg的物块在合外力F的作用下由静止开始沿直线运动.F随时间t变化的图线如图3所示,则()图3A.t=1s时物块的速率为1m/sB.t=2s时物块的动量大小为4kg·m/sC.t=3s时物块的动量大小为5kg·m/sD.t=4s时物块的速度为零答案AB解析F-t图线与时间轴围成的面积表示合外力F的冲量,可知在0~1s、0~2s、0~3s、0~4s内合外力冲量分别为2N·s、4N·s、3N·s、2N·s;根据动量定理I=mΔv可知,物块在1s、2s、3s、4s末的速率分别为1m/s、2m/s、1.5m/s、1m/s;由p=m v可知,物块在1s、2s、3s、4s时的动量大小分别为2kg·m/s、4kg·m/s、3kg·m/s、2kg·m/s,A、B正确.7.(2019·广东省“六校”第三次联考)开学了,想到又能够回到校园为梦想而拼搏,小明同学开心得跳了起来.假设小明质量为m,从开始蹬地到离开地面用时为t,离地后小明重心最大升高h,重力加速度为g,忽略空气阻力.以下说法正确的是()A.从开始蹬地到到达最高点的过程中,小明始终处于失重状态B.在t时间内,小明机械能增加了mghC .在t 时间内,地面对小明的平均支持力为F =m 2gh tD .在t 时间内,地面对小明做功mgh答案B 解析从开始蹬地到到达最高点的过程中,经历了向上加速和减速的过程,所以小明先超重后失重,故A 错误;小明离开地面后,只受重力作用,机械能守恒,重心最大升高h ,可知小明离开地面时的机械能为mgh ,故B 正确;取向上为正方向,在时间t 内,由动量定理得:F t -mgt =m v -0,离开地面到最高点有:mgh =12m v 2,联立解得:F =m 2gh t+mg ,故C 错误;在时间t 内,地面对小明的支持力并没有在力的方向上发生位移,做功为0,故D 错误.8.(2020·山西晋中市模拟)质量相等的A 、B 两物体放在同一水平面上,分别受到水平拉力F 1、F 2的作用从静止开始做匀加速直线运动.经过时间t 0和4t 0速度分别达到2v 0和v 0时,分别撤去F 1和F 2,两物体都做匀减速直线运动直至停止.两物体速度随时间变化的图线如图4所示.设F 1和F 2对A 、B 两物体的冲量分别为I 1和I 2,F 1和F 2对A 、B 两物体做的功分别为W 1和W 2,则下列结论正确的是()图4A .I 1∶I 2=12∶5,W 1∶W 2=6∶5B .I 1∶I 2=6∶5,W 1∶W 2=3∶5C .I 1∶I 2=3∶5,W 1∶W 2=6∶5D .I 1∶I 2=3∶5,W 1∶W 2=12∶5答案C 解析由题可知,两物体匀减速运动的加速度大小都为v 0t 0,根据牛顿第二定律,匀减速运动中有F f =ma ,则摩擦力大小都为m v 0t 0.由题图可知,匀加速运动的加速度分别为2v 0t 0、v 04t 0,根据牛顿第二定律,匀加速运动中有F -F f =ma ,则F 1=3m v 0t 0,F 2=5m v 04t 0,故I 1∶I 2=F 1t 0∶4F 2t 0=3∶5;对全过程运用动能定理得:W 1-F f x 1=0,W 2-F f x 2=0,得W 1=F f x 1,W 2=F f x 2,v -t 图线与时间轴所围成的面积表示运动的位移,则位移之比为6∶5,整个运动过程中F 1和F 2做功之比为W 1∶W 2=x 1∶x 2=6∶5,故C 正确.9.(2020·河南郑州市调研)质量为1kg 的物体静止放在足够大的水平桌面上,物体与桌面间的动摩擦因数为μ=0.4.有一大小为5N 的水平恒力F 作用于物体上,使之加速前进,经3s 后撤去F .求物体运动的总时间.(g 取10m/s 2)答案3.75s 解析物体由静止开始运动到停止运动的全过程中,F 的冲量为Ft 1,摩擦力的冲量为F f t .选水平恒力F 的方向为正方向,根据动量定理有Ft 1-F f t =0①又F f =μmg ②联立①②式解得t =Ft 1μmg,代入数据解得t =3.75s.10.(2016·全国卷Ⅰ·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.答案(1)ρv 0S (2)v 022g -M 2g 2ρ2v 02S 2解析(1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变.该时间内,喷出水柱高度Δl =v 0Δt ①喷出水柱质量Δm =ρΔV ②其中ΔV 为水柱体积,满足ΔV =ΔlS ③由①②③可得:喷泉单位时间内喷出的水的质量为Δm Δt=ρv 0S (2)设玩具底板相对于喷口的高度为h由玩具受力平衡得F 冲=Mg ④其中,F 冲为水柱对玩具底板的作用力由牛顿第三定律:F 压=F 冲⑤其中,F 压为玩具底板对水柱的作用力,设v ′为水柱到达玩具底面时的速度由运动学公式:v ′2-v 02=-2gh ⑥在很短Δt 时间内,冲击玩具的水柱的质量为Δm Δm =ρv 0S Δt ⑦由题意可知,在竖直方向上,对该部分水柱应用动量定理(F 压+Δmg )Δt =Δm v ′⑧由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为F 压Δt =Δm v ′⑨由④⑤⑥⑦⑨可得h =v 022g -M 2g2ρ2v 02S 2。
第2节动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。
(2)Δp=0(系统总动量变化为零)。
(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。
3.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。
(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。
(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。
二、碰撞、反冲和爆炸1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。
(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。
(3)分类:2.(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。
(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。
3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。
(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。
1.思考辨析(正确的画“√”,错误的画“×”)(1)系统所受合外力的冲量为零,则系统动量一定守恒。
(√)(2)动量守恒是指系统在初、末状态时的动量相等。
(×)(3)物体相互作用时动量守恒,但机械能不一定守恒。
(√)(4)在爆炸现象中,动量严格守恒。
(×)(5)在碰撞问题中,机械能也一定守恒。
(×)(6)反冲现象中动量守恒、动能增加。
(√)2.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。
动量守恒定律与动量守恒的实验验证动量守恒定律是物理学中重要的基本定律之一。
它指出,在一个被称为孤立系统的系统中,当没有外力作用时,系统的总动量保持不变。
这个定律可以通过实验进行验证,本文将介绍几个实验来验证动量守恒定律。
首先,让我们考虑一个简单的实验。
假设有两个相互对撞的小球,它们的质量分别为m1和m2,初速度分别为v1和v2。
根据动量守恒定律,我们可以得出如下公式:m1 * v1 + m2 * v2 = m1 * v1' + m2 * v2'其中,v1'和v2'分别表示对撞后两个小球的速度。
通过实验可以发现,如果没有外力作用,对撞前后的总动量保持不变,即左侧和右侧的两项之和相等。
为了验证这个定律,我们可以设计一个实验。
首先,将一个小球放在桌子上,给它一个初速度v1。
然后,我们在小球前方放置一个静止的小球,两者发生弹性碰撞。
通过测量碰撞前后两个小球的速度,可以验证动量守恒定律是否成立。
实验结果应该显示,碰撞前后的总动量保持不变。
另一个实验是利用气垫式空气轨道进行验证。
空气轨道是一种物理实验装置,可以减小摩擦力对运动物体的影响。
我们可以在空气轨道上放置两个小球,并给它们一个初速度。
当两个小球碰撞后,测量它们的速度,并计算碰撞前后的总动量。
实验结果应该显示,总动量守恒。
此外,动量守恒定律的实验验证还可以通过利用弹簧系统进行。
我们可以设计一个包含弹簧的实验装置,通过拉伸或压缩弹簧,使一个小球在直线上作往复运动。
通过观察小球在运动中的速度和位置的变化,可以验证动量守恒定律的成立。
这些实验验证了动量守恒定律的准确性。
动量守恒定律的实验验证不仅深化了我们对动量守恒定律的认识,也为物理学的发展提供了重要的实验依据。
总之,动量守恒定律是一个基本的物理定律,可以通过实验进行验证。
几个简单的实验,如弹性碰撞实验、气垫式空气轨道实验和弹簧系统实验,能够验证动量守恒定律的准确性。
通过这些实验,我们可以深入理解动量守恒定律在物理世界中的应用。
第2讲动量守恒定律主干梳理对点激活知识点动量守恒定律及其应用Ⅱ1.几个相关概念(1)系统:在物理学中,将相互作用的几个物体所组成的物体组称为系统。
(2)内力:系统内各物体之间的相互作用力叫做内力。
(3)外力:系统以外的其他物体对系统的作用力叫做外力。
2.动量守恒定律(1)内容:如果一个系统错误!不受外力,或者错误!所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①p=错误!p′,系统相互作用前的总动量p等于相互作用后的总动量p′。
②m1v1+m2v2=错误m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1=错误-Δp2,相互作用的两个物体动量的增量等大反向。
④Δp=错误!0,系统总动量的增量为零。
(3)适用条件①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
②近似守恒:系统受到的合外力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
③某方向守恒:系统在某个方向上所受合外力为零时,系统在该方向上动量守恒。
知识点弹性碰撞和非弹性碰撞Ⅰ1.碰撞碰撞是指物体间的相互作用持续时间错误!很短,而物体间相互作02很大的现象。
2.特点在碰撞现象中,一般都满足内力错误!远大于外力,可认为相互碰撞的系统动量守恒。
3.分类动量是否机械能是否守恒守恒弹性碰撞守恒错误!守恒非弹性碰撞守恒有损失完全非弹性碰守恒损失错误!最大撞4.散射微观粒子相互接近时并不像宏观物体那样“接触”,微观粒子的碰撞又叫做散射.知识点反冲爆炸Ⅰ1.反冲现象(1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用的过程中系统的动能错误!增大,且常伴有其他形式的能向动能的转化。
(2)02远小于物体间的相互作用力,可认为系统的动量守恒,可利用动量守恒定律来处理。
2.爆炸问题爆炸与碰撞类似,物体间的相互作用力很大,且错误!远大于系统所受的外力,所以系统动量错误!守恒,爆炸过程中位移很小,可忽略不计,爆炸后物体从相互作用前的位置以新的动量开始运动。
1.装有炮弹的火炮总质量为m1,炮弹的质量为m2,炮弹射出炮口时对地的速率为v。
,若炮管与水平地面的夹角为θ,则火炮后退的速度大小为A.m2v。
/m1 B.—m2V o/(m1一m2)C.m2v ocosθ/ (m1一m2) D.m2v ocosθ/m12.运送人造地球卫星的火箭开头工作后,火箭做加速运动的缘由是来A.燃料推动空气,空气的反作用力推动火箭B.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热四周空气,空气膨胀推动火箭3.跳高运动员在跳高时总是跳到沙坑里或跳到海绵垫上,这样做是为了A.减小运动员的动量变化B.减小运动员所受的冲量C.延长着地过程的作用时间D.减小着地时运动员所受的平均冲力4.质量为m的物体以初速υ0做竖直上抛运动。
不计空气阻力,从抛出到落回抛出点这段时间内,以下说法正确的是:A.物体动量变化大小是零B.物体动量变化大小是2mυ0C.物体动量变化大小是mυ0D.重力的冲量为零5.以下说法正确的是A.物体速度发生变化,必定有外力对其做功;B.物体动能发生变化,动量确定变化C.物体动量发生变化,物体的动能必定变化D.物体受到合外力的冲量不为零,物体的速率必定发生变化6.一木块静止在光滑水平面上,一粒子弹水平射入木块,在这个过程中A.系统动量守恒,子弹动量变化的大小与木块动量变化的大小相等。
B.子弹的动能损失与木块的动能增加相等。
C.子弹与木块之间的相互作用力,对子弹与对木块的冲量大小相等。
D.子弹与木块之间的相互作用力,对子弹做的功与对木块做的功相等。
7.两球A、B在光滑水平面上沿同始终线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2 m/s。
当A追上B并发生碰撞后,两球A、B速度的可能值是A.v A′=5 m/s,v B′=2.5 m/sB.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/sD.v A′=7 m/s,v B′=1.5 m/s8.如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同始终线运动,则A、B组成的系统动能损失最大的时刻( ) A.A开头运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时9.质量M=100kg的小船静止在安静水面上,船的两端站着质量分别为40kg和60kg的游泳者甲和乙,在同一水平线上甲向左乙向右同时相对于岸3m/s的水平速度跃入水中,如图所示,是小船的运动速率和方向为A.小于1m/s,向左B.大于1m/s,向左C.小于1m/s,向右D.大于1m/s,向右10.如图所示,在光滑水平面上,有一质量为M=3kg的薄板和质量为m=1kg的物块,均以v=4m/s的速度朝相反方向运动,它们之间存在磨擦,薄板足够长,某时刻观看到物块正在做加速运动,则该时刻木板的速度可能是A.3.0m/sB.2.4m/sC.2.8m/sD.1.8m/s11.如图所示,静止在光滑水平面上的物体A和B 质量分别为m和2m ,它们之间用轻弹簧相连,在极短时间内对物体A作用一水平向右的冲量I,可知A.物体A马上具有速度且mIVA=B.物体B马上具有速度且mIVB2=C.当A与B之间的距离最小时,A的速度为0,B的速度为mIVB2'=D.当A与B之间的距离最小时,弹簧的弹性势能mIEP32=12.小车AB静置于光滑的水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥,AB车质量为M,长为L,质量为m的木块C放在小车上,用细绳连结于小车的A端并使弹簧压缩,开头时AB与C都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C离开弹簧向B端冲去,并跟B端橡皮泥粘在一起,以下说法中正确的是A.假如AB车内表面光滑,整个系统任何时刻机械能都守恒B.整个系统任何时刻动量都守恒C.当木块对地运动速度为v时,小车对地运动速度为MmvD.AB车向左运动最大位移小于MmL13.如图所示,打桩机锤头质量为M,从距桩顶h高处自由下落,打在质量为m的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深化泥土的距离为S,那么在木桩下陷过程中泥土对木桩的平均阻力是多少?14.如图所示,质量M=0.040kg的靶盒A静止在光滑水平导轨上的O点,水平轻质弹簧一端栓在固定挡板P上,另一端与靶盒A连接。
实验八验证动量守恒定律ZHI SHI SHU LI ZI CE GONG GU知识梳理·自测巩固一、实验目的验证动量守恒定律。
二、实验原理在一维碰撞中,测出物体的质量m和碰撞前、后物体的速度v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前、后动量是否守恒。
三、实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。
方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。
方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案四:斜槽、小球(两个)、天平、复写纸、白纸等。
四、实验步骤方案一:利用气垫导轨完成一维碰撞实验(如图所示)1.测质量:用天平测出滑块质量。
2.安装:正确安装好气垫导轨。
3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前、后的速度(①改变滑块的质量。
②改变滑块的初速度大小和方向)。
4.验证:一维碰撞中的动量守恒。
方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图所示)1.测质量:用天平测出两小球的质量m1、m2。
2.安装:把两个等大小球用等长悬线悬挂起来。
3.实验:一个小球静止,拉起另一个小球,放下时它们相碰。
4.测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图所示)1.测质量:用天平测出两小车的质量。
2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。
3.实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。
4.测速度:通过纸带上两计数点间的距离及时间由v =Δx Δt算出速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
方案四:利用斜槽上滚下的小球验证动量守恒定律(如图所示)1.测质量:用天平测出两小球的质量,并选定__质量大__的小球为入射小球。
2.安装:按照上图所示安装实验装置。
调整固定斜槽使__斜槽底端水平__。
3.铺纸:白纸在下,复写纸在上且在适当位置铺放好。
记下重垂线所指的位置O 。
4.放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次。
用__圆规__画尽量小的圆把所有的小球落点圈在里面。
圆心P 就是小球落点的平均位置。
5.碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从__斜槽同一高度自由__滚下,使它们发生碰撞,重复实验10次。
用步骤4的方法,标出碰后入射小球落点的平均位置M 和被撞小球落点的平均位置N 。
如图所示。
6.验证:连接ON ,测量线段OP 、OM 、ON 的长度。
将测量数据填入表中。
最后代入__m 1·OP =m 1·OM +m 2·ON __,看在误差允许的范围内是否成立。
7.结束:整理好实验器材放回原处。
五、数据处理1.速度的测量方案一:滑块速度的测量:v =Δx Δt,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间。
方案二:摆球速度的测量:v =2gh ,式中h 为小球释放时(或碰撞后摆起的)高度,h 可用刻度尺测量(也可由量角器和摆长计算出)。
方案三:小车速度的测量:v =Δx Δt,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出。
2.验证的表达式方案一、二、三:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′方案四:m 1·OP =m 1·OM +m 2·ON六、注意事项1.前提条件碰撞的两物体应保证“水平”和“正碰”。
2.方案提醒(1)若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平。
(2)若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一竖直面内。
(3)若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力。
(4)若利用斜槽小球碰撞应注意:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一位置由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变。
HE XIN KAO DIAN ZHONG DIAN TU PO核心考点·重点突破考点一 教材原型实验例1 (2019·河北邢台联考)在验证动量守恒定律的实验中,请回答下列问题。
(1)实验记录如图甲所示,先不放B 球,则A 球做平抛运动的水平位移是图中的__OP __;放上B 球,则B 球被碰后做平抛运动的水平位移是图中的__ON __;_(两空均填“OM ”“OP ”或“ON ”);为测定A 球不碰B 时做平抛运动的落点的平均位置,把刻度尺的零刻度线跟记录纸上的O 点对齐,图乙给出了小球A 落点附近的情况,可得落点到O 点的距离应为__65.5(65.2~65.8均可)__cm 。
(2)小球A 下滑过程中与斜槽轨道间存在摩擦力,这对实验结果__不会__产生误差(填“会”或“不会”)。
(3)实验装置如图甲所示,A 球为入射小球,B 球为被碰小球,以下有关实验过程中必须满足的条件,正确的是__D__。
A .入射小球的质量m A ,可以小于被碰小球的质量m BB .实验时需要测量斜槽末端到水平地面的高度C .入射小球每次不必从斜槽上的同一位置由静止释放D .斜槽末端的切线必须水平,小球放在斜槽末端处,应能静止(4)如果碰撞过程中系统动能守恒,根据图中各点间的距离,下列式子成立的有__A__。
A .m A ∶mB =ON ∶MPB .m A ∶m B =OM ∶MPC .m A ∶m B =OP ∶MND .m A ∶m B =OM ∶MN[解析] 本题考查探究动量守恒定律实验的实验步骤、数据处理、误差分析。
(1)仅放A 球时,A 球做平抛运动的水平位移是题图中的OP ;B 球被碰后做平抛运动的水平位移是题图中的ON ;将小球A 的落点用尽可能小的圆圈在一起,则圆的圆心即为小球A 的平均落点,由题图乙知,小球A 落点到O 点的距离为65.5 cm(65.2~65.8均可)。
(2)只要小球A 每次从同一位置由静止释放,小球每次到达斜槽末端的速度都相同,因此小球A 下滑过程中与斜槽轨道间存在摩擦力对实验结果不会产生误差。
(3)实验中入射小球不能被反弹,因此入射小球的质量m A 要大于被碰小球的质量m B ,选项A 错误;由于小球做平抛运动时下落高度相同,所以小球下落的时间相同,因此实验时不需要测量斜槽末端到水平地面的高度,选项B 错误;为保证入射小球每次做平抛运动的初速度相同,入射小球每次必须从斜槽上的同一位置由静止释放,选项C 错误;为保证小球做平抛运动,斜槽末端的切线必须水平,小球放在斜槽末端处,应能静止,选项D 正确。
(4)如果碰撞过程中系统动量守恒,由动量守恒定律得m A ·OP t =m A ·OM t +m B ·ON t,即m A ·OP =m A ·OM +m B ·ON ,解得m A ∶m B =ON ∶MP ,选项A 正确,B 、C 、D 错误。
〔类题演练1〕(2019·山东微山二中质检)气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上运动时可视为没有摩擦。
我们可以用两个光电门以及滑块A 和B 来探究动量守恒定律,实验装置如图所示,采用的实验步骤如下:a .用天平分别测出滑块A 、B 的质量m A 、m Bb .调整气垫导轨,使导轨水平c .给B 一个水平向左的初速度,记录B 通过光电门2的挡光时间t Bd .B 与静止在导轨上的A 发生碰撞后,记录A 向左运动通过光电门1的挡光时间t A 和B 向右运动通过光电门2的挡光时间t ′B(1)实验中测得滑块B 上遮光条的宽度为d B ,还应测量的物理量是__滑块A 上遮光条的宽度d A __。
(2)利用上述测量的实验数据,得出关系式__m B d B t B =m A d A t A -m Bd B t ′B __成立,即可验证动量守恒定律。
[解析] 本题考查利用气垫导轨和光电门探究动量守恒定律。
(1)实验需要测出滑块通过光电门的速度,故还应测量的物理量是滑块A 上遮光条的宽度d A 。
(2)由动量守恒定律知,若关系式m B d B t B =m A d A t A -m Bd B t ′B 成立,即可验证动量守恒定律。
考点二 实验拓展创新验证动量守恒实验创新主要是两种途径:(1)用新器材实现实验方式的创新,比如使用气垫导轨来减少摩擦力对实验的影响。
(2)从实验模型角度进行创新,因此所有满足动量守恒定律的模型均可以用来验证动量守恒。
例2 (2019·东北三省三校模拟)某学习小组通过下图甲实验装置来验证动量守恒定律。
A 是固定在水平桌面上的光滑斜槽,斜槽末端与水平桌面平行,B 是气垫导轨,C 是光电门,D 是带有凹槽的滑块(凹槽内粘有胶带,小球进入凹槽立即粘在胶带上),滑块上方有一窄挡光片。
实验前将斜槽固定在水平桌面上,调整气垫导轨的高度,使滑块凹槽与斜槽末端在同一高度处,同时调整气垫导轨水平。
多次改变小球释放高度h 。
得到挡光片通过光电门的时间t ,作出h -1t2图象。
小球质量为m ,滑块总质量为M ,挡光片宽度为d ,重力加速度为g 。
(1)用螺旋测微器测量挡光片的宽度,如图乙所示,宽度d =__2.150__ mm ; (2)只要满足关系式h =__(m +M m )2d 22g ·1t 2__(请用题中所给的物理量来表示),就可以说明在误差允许范围内碰撞过程动量守恒;(3)如果(2)问中关系式对应的h -1t2图象是一条过原点的__倾斜直线__(填“倾斜直线”或“抛物线”),同样可以验证碰撞过程动量守恒。
[解析] 本题考查利用完全非弹性碰撞和光电门探究动量守恒定律。
(1)挡光片的宽度d =2.0 mm +15.0×0.01 mm=2.150 mm 。
(2)设小球到达斜槽底端时的速度为v 0,小球从静止释放至到达斜槽底端的过程中,由动能定理得mgh =12mv 20,小球与滑块粘在一起的速度为v =d t,由动量守恒定律得mv 0=(M +m )v ,由以上三式解得h =(m +M m )2d 22g ·1t 2,即只要满足关系式h =(m +M m )2d 22g ·1t 2,就可以说明在误差允许范围内碰撞过程动量守恒。