第十一章小干扰稳定性分析
- 格式:ppt
- 大小:1.70 MB
- 文档页数:152
电力系统小干扰稳定性研究方法综述张松兰【摘要】随着各种新能源接入电力系统,电网规模不断扩大形成开放互联电网,各种小干扰作用到电力系统会影响电力系统的稳定性。
介绍了电力系统数学模型表述形式及稳定性判据,阐述了小干扰电力系统稳定性分析方法和稳定域的分析方法,最后对该领域的发展趋势进行了展望。
%With various new energies linked into the power system,the power grid is expanded continuously to form the open Internet grid,so small disturbance can affect the stability of power system.The paper makes an introduction to mathematical model form of power system and mechanism of small signal stabili-ty,elaborates the analytical methods of stability and stability domain,and forecasts the development tend-ency of the field finally.【期刊名称】《西安航空技术高等专科学校学报》【年(卷),期】2017(035)001【总页数】5页(P53-57)【关键词】电力系统;稳定性;小扰动;综述【作者】张松兰【作者单位】芜湖职业技术学院电气工程学院,安徽芜湖 241006【正文语种】中文【中图分类】TM712电力系统在实际运行中会受到各种不确定性因素的影响,如负荷的波动、系统元件参数的变化、线路网络拓扑结构的变化等[1]。
尤其是风力发电新能源的接入,由于风速、风向具有随机性和不确定性,其作为一种扰动注入电力系统会对电力系统安全稳定运行产生较大影响。
小干扰电压稳定性实用分析方法研究作者:何达庭来源:《科学与财富》2019年第28期摘要:电压稳定是电力系统正常运行的基本要求,小干扰电压稳定性对电力系统运行存在明显的影响。
为此本文对小干扰电压稳定性实用分析方法进行研究,介绍几种常见的小干扰电压稳定性分析方式,找出实用性较高的分析方法对其分析过程进行介绍,为提高小干扰电压稳定性方案的提出提供参考。
关键词:小干扰电压;稳定性;特征值引言:小干扰电压稳定性实用分析的主要参数有特征值、灵敏度、裕度等。
常用方法包括数值仿真分析法、线性模型分析法、稳定域分析法等,其中线性模型分析法中的特征值分析法,算法简单、由于操作,因此本文将对其进行重点介绍。
1小干扰电压稳定性实用分析方法1.1数值仿真分析法数值仿真分析法在电力系统电压稳定性分析中的应用非常普遍,该方法依靠暂态稳定仿真分析软件,对小干扰电压稳定性进行定性分析。
数值仿真分析法依托专业软件进行分析的方式比较便利,但在具体应用时也面临明显的限制。
首先,分析结果的可靠性会受到扰动及时域响应观测值的严重影响,若无法实现以上参数的合理化选择,分析系统中的核心震荡模式就无法被有效应用。
该方法分析的主要依据为时域响应,单一性过高,其结果的可靠程度也备受怀疑。
其次,为了尽可能提高系统振荡程度,计算时间常要持续到几十秒以上。
过程中涉及到的计算量非常庞大。
最后,数值仿真分析法只能找到小干扰电压失稳的时间,但对其失稳的类型的确认无法实现。
也就是说,依靠数值仿真分析得到结果,无法发挥辅助提升小干扰电压稳定程度方案制定的作用。
1.2线性模型分析法线性模型分析法使用微分方程、代数方程等线性模型,对小干扰电压稳定性进行分析。
该方法又可分为特征值分析法和频域分析法两种。
其中,特征值分析法采用的线性模型为空间状态模型,而频域分析法则依靠传递函数矩阵进行分析。
1.2.1特征值分析法特征值分析法的理論基础是李雅普诺夫定律,它将整个电力系统当做一个线性模型,并利用状态空间法将模型转化为线性系统。
小水电群对主网的小干扰稳定性分析对富含小水电群的地区电网进行小干扰稳定性分析,由于小水电数目众多,容量不等,故采用简单有效的加权法进行小水电等值,采用多机电力系统的特征值分析方法,应用电力系统计算分析综合程序对研究地区电网小干扰稳定进行了分析研究,给出了电网可能存在的弱阻尼的振荡模式,并为下一步整定电力系统稳定器参数提出指导性建议。
标签:小水电;加权等值;振荡模式;小干扰稳定1 引言电力系统中发电机经输电线路并联运行时,在扰动下会发生发电机转子间的相对摇摆,并在缺乏阻尼时引起持续振荡,即通常说的电力系统低频振荡。
此时,输电线上功率也发生相应振荡,其振荡频率很低,一般在0.2~2.5 Hz间。
低频振荡常出现在长距离、重负荷输电线上,地区电网在长期的发展建设过程中,也曾发生过局部区域的低频振荡问题,随着电网网架结构的不断加强,一些振荡问题已逐步消除。
但是,由于现代快速、高增益倍数励磁系统的广泛应用,其对系统的负阻尼效应使得电网的低频振荡问题又逐渐显露出来[1]。
2小水电群的等值建模在研究一个水电丰富的地区电网时,由于网络结构复杂,电网电压等级跨度大,节点数众多,若要对所有的网络节点和元件进行详细仿真,其计算量会非常大,因此我们在对主网进行仿真时往往需要将低电压等级的网络和元件进行等效。
而分布式小水电通常是通过110kV或220kV及以下的网络上网的,为了深入研究低压配电网中广泛接入的分布式电源对电网的影响,有必要在对这些分布式小水电的并网运行外特性进行分析的基础上,构建能满足适合主网仿真需要的等值模型[2]。
本论文所研究的小水电群所处的网络大部分是辐射状网络,电气距离较小,故可将经同一变电站上网的小水电机组近似划分为一个同调机群。
国内现有的动态等值程序中同调发电机的动态聚合主要采用了频域聚合的算法,这种方法假设发电机及其控制系统的传递函数可分为若干环节分别聚合,且线性部分和非线性部分可分别聚合,但由于同调发电机聚合较复杂,因此对于大系统,等值时间较长。
电力系统小干扰稳定性分析方法探讨作者:刘桂栋来源:《科技传播》2012年第20期摘要有关电力系统小干扰稳定性分析方法,本文就此进行了较为详细的介绍,并就各种方法进行了相应的探讨,在此基础上,把这些方法在应用上的优点、缺点以及能够适用的场合,进行了较为详细的分析关键词电力系统;小干扰稳定性分析方法;振荡模型中图分类号TM7 文献标识码A 文章编号 1674-6708(2012)77-0029-020引言不同地区之间电力系统进行多重互联,有其利的一面,也有其弊的一面;借助于互联电力系统,不仅可以把有关输电的经济性大大提高,还可以把有关输电的可靠性大幅度提高,这是有利的一面;不利主要体现在,这种互联电网同时也会把很多新的动态问题诱发出来,从而使系统失去稳定的概率大大提高。
电力系统要维持安全运行必须满足一些基本要求,例如电压、频率以及小干扰都要具有相应的稳定性,而且这种稳定性应该是一种动态的稳定性,有关这些基本要求所处地位的特殊性及重要性,正随着电力系统的快速发展,逐渐受到人们的认识和重视。
20世纪70年代以来,因为小干扰稳定性的失去而带来电压崩溃或者系统震荡这种严重事故,都曾经发生在世界上很多国家的电力系统中,从而给这些国家经济的正常发展带来了巨大的威胁,致使经济出现极大的损失。
正是基于此,促使人们对有关电力系统小干扰稳定性这个问题的研究,明显要比上个世纪末来得重视,并且相应的投入也明显增多了;在今天,进行相关电力系统的规划以及为保障电力系统的安全运行,一定要重视对小干扰稳定性进行较为详细的分析,并且要把有关这个稳定性分析作为规划电力系统、保障电力系统安全运行的一个重要内容来对待。
1 有关电力系统小干扰稳定性的分析方法总体看来,有关电力系统小干扰稳定性的分析方法,主要有以下这几种。
1.1 数值仿真方法以下(I)式为一组微分方程,可用来描述电力系统,因为电力系统的扰动具有特定性,根据这个特定性,结合相关数值计算方法(非线性方程)可以把系统变量v ( t )有关其完整的时间响应准确计算出来。
电力系统小干扰稳定性分析【摘要】本文主要研究电力系统小干扰稳定性分析。
阐述了电力系统小干扰稳定性对电力系统的重大意义,对电力系统小干扰稳定性的分析方法进行了总结归纳,并对各种方法的主要原理和适应性进行了详细分析,希望能够为电力系统小干扰稳定性的分析工作提供帮助。
【关键词】电力系统;小干扰稳定性不同地区之间的电力系统的多重互联能够大大提高输电的经济性,但是这种互联电网会把很多动态问题诱发出来,系统更加复杂化,降低了稳定性。
电力系统的安全运行需要满足一定的基本条件要求,例如电压、频率和小干扰等都需要有着相当的稳定性,并且这种稳定性应该是动态的,这些稳定性随着现代社会对电网的依赖越来越大而逐渐被人们重视起来。
从上个世纪70年代开始,小干扰稳定性的失去就已经造成了很多严重的事故,对相关国家造成了严重的经济损失。
为了保证电力系统的稳定性,保证其安全稳定运行,有必要对电力系统的小干扰稳定性进行分析,保障电力系统的安全运行。
一、电力系统小干扰稳定性分析方法1.数值仿真法。
使用一组微分方程来描述电力系统,根据电力系统扰动的特定性结合相关的数值计算方法计算系统变量及其完整的时间响应[1]。
小干扰稳定性问题的本质是不能被时域响应最大程度的体现出来,造成系统稳定性下降的原因即便使用模拟仿真也不能够很好的找出来,也就无从找寻改进措施。
2.线性模型基础上的分析方法。
这种方法是利用线性模型研究小干扰稳定性,使用微分方程和积分方程描述系统动态行为的变化,在稳态运行点现化,获得线性模型[2]。
目前主流的电力系统小干扰稳定性分析方法就是基于线性模型的,目前来看主要有特征性分析方法和领域分析两种,前一种以状态空间模型为描述基础,后一种是基于函数矩阵的方法。
二、特征分析法目前大多数电力系统分析软件都是暂态稳定仿真进行操作的,但是实际中相当多的限制条件约束了这种应用。
相关结果受到选择的扰动或者时域响应观测量的很大影响,选择不合理时系统中的一些关键模式将不能被扰动触发,并且如果选择不合理,进行响应的观察时很多震荡模式中不明显的响应可能就是若阻尼模式[3]。
大规模风电场接入电力系统的小干扰稳定性研究一、概述随着全球能源结构的转型和可持续发展理念的深入人心,风力发电作为一种清洁、可再生的能源形式,在全球能源结构中的比重逐渐上升。
特别是在我国,风电场的建设和运营规模已经达到了前所未有的高度。
大规模风电场的接入对于电力系统的稳定性提出了严峻的挑战。
小干扰稳定性作为电力系统稳定运行的关键因素,其研究对于确保风电场与电力系统的安全、高效运行具有重大的理论价值和现实意义。
小干扰稳定性是指在电力系统中,由于各种微小扰动(如风、负荷波动等)引起的系统振荡能够被有效控制并保持在稳定状态的能力。
在大规模风电场接入电力系统的背景下,风电场的运行特性、风电机组的控制策略以及电网的结构等因素都可能对系统的小干扰稳定性产生影响。
深入研究风电场接入对电力系统小干扰稳定性的影响机理,探索有效的稳定控制策略,对于保障电力系统的安全稳定运行具有重要的实践意义。
本文旨在通过对大规模风电场接入电力系统的小干扰稳定性进行深入研究,分析风电场对系统小干扰稳定性的影响机理,提出相应的稳定控制策略。
建立风电场及电力系统的数学模型,通过理论分析和仿真计算,研究风电场接入对系统小干扰稳定性的影响规律。
针对不同类型的风电机组,研究其控制策略对小干扰稳定性的影响,并提出相应的优化方案。
结合实际工程案例,验证所提稳定控制策略的有效性和可行性。
本文的研究内容不仅有助于深化对风电场接入电力系统小干扰稳定性问题的认识,也为风电场和电力系统的规划、设计、运行和维护提供了重要的理论支持和实践指导。
同时,本文的研究成果对于推动我国风电产业的健康发展,促进能源结构的优化升级,实现绿色低碳发展具有重要的战略意义。
1. 研究背景:介绍大规模风电场接入电力系统的现状和发展趋势,阐述小干扰稳定性研究的重要性和紧迫性。
随着全球能源结构的转型和环境保护的需求,风力发电作为清洁、可再生能源的一种,正受到越来越广泛的关注和应用。
大规模风电场的接入电力系统已成为全球能源结构转型的重要组成部分,其在全球能源供应中的地位日益提升。
小干扰稳定的鲁棒性能指标及分析莫逆,杨素,刘锋,梅生伟(清华大学 电力系统及发电设备安全控制和仿真国家重点实验室 北京100084)摘 要:本文借助鲁棒性能分析方法,通过选取恰当的扰动和评价输出信号,构成电力系统小干扰稳定的鲁棒分析模型,提出采用系统从扰动输入到评价输出信号的2/H H ∞范数组合作为小干扰稳定的评价指标,全面反映系统抑制振荡的能力。
为验证该指标的正确性,本文选取4机2区域系统作为测试系统,与现有指标进行了对比研究,测试结果表明:本文提出的2/H H ∞组合物理意义清晰,直观有效,能全面反映系统的小干扰稳定性,显示出应用上的优越性。
系统测试还表明:该指标可有效地应用于系统小干扰稳定性能的评估、控制器安装位置选择,以及指导控制器参数调整等方面。
关键词:小干扰稳定;低频振荡;2/H H ∞组合指标0 引言随着现代电力系统规模日益增大,低频振荡问题时有发生,严重威胁电网的安全稳定,因此,电力系统的小干扰稳定研究一直是各国学者长期关注的问题。
目前小干扰稳定研究最主要的指标是线性化系统状态矩阵的特征值和阻尼比。
系统的特征值与系统的各种振荡模式对应,特征值实部的符号决定了系统的小干扰稳定性,而阻尼比则体现了某个振荡模式下的系统阻尼能力[1,4]。
为了保证整个系统稳定性,研究小干扰稳定需要考虑所有振荡模式的阻尼,同时也必须考虑控制模式以及其他特征值。
通常的控制设计方案只以振荡模式阻尼比为控制目标,有可能在改善一个模式的阻尼时引起其他模式的性能恶化。
因此,如何实现多阻尼控制策略之间的相互协调在理论和工程两方面都是一个具有重要意义的课题。
鲁棒性分析方法中的2/H H ∞指标是从控制系统中提出,本质是定量描述系统输入输出增益,换句话说,是衡量系统对输入的抑制能力。
其中,H ∞指标表示系统对最坏输入的抑制能力,而2H 指标则描述系统对全部频段输入的平均抑制能力[2,3]。
借鉴这一观点,本文提出采用2/H H ∞组合指标综合评价系统的小干扰稳定性能。