2016届高考数学理仿真押题专题03不等式与线性规划(原卷版)
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
专题03 不等式与线性规划(仿真押题)2017年高考数学(理)命题猜想与仿真押题1.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( )A.c a <b aB.b -a c >0C.b 2c <a 2cD.a -c ac<0 2.已知不等式ax 2-bx -1≥0的解集是⎣⎡⎦⎤-12,-13,则不等式x 2-bx -a <0的解集是( ) A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝⎛⎭⎫13,12D.⎝⎛⎭⎫-∞,13∪⎝⎛⎭⎫12,+∞ 3.若正数x ,y 满足x +y =1,且1x +a y≥4对任意的x ,y ∈(0,1)恒成立,则a 的取值范围是( ) A . (0,4]B .[4,+∞)C . (0,1]D .[1,+∞)4.已知函数f (x )=ax 2+bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (-x )的图象可以为( )5.设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是( )A .6B .4 2C .2 2D .2 66.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则z =y -1x +1的取值范围是( )A.⎣⎡⎦⎤-1,13 B. ⎣⎡⎦⎤-12,13 C.⎣⎡⎭⎫-12,+∞ D.⎣⎡⎭⎫-12,1 7.设a ,b 为实数,则“a <1b 或b <1a”是“0<ab <1”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( ) A .-3B .2C .3D .8 9.若x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .[-4,2]B .(-4,2)C .[-4,1]D .(-4,1)10.若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A.⎝⎛⎭⎫-235,+∞ B.⎣⎡⎦⎤-235,1 C .(1,+∞) D .(-∞,-1) 11.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0y ≥x 4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5]B .[2,6]C .[2,10]D .[3,11] 12.已知函数f (x )=4x -14x +1,若x 1>0,x 2>0,且f (x 1)+f (x 2)=1,则f (x 1+x 2)的最小值为( ) A .14B .45C .2D .413.已知a ,b 都是正实数,且2a +b =1,则1a +2b的最小值是________. 14.对于实数x ,当且仅当n ≤x <n +1,n ∈N *时, [x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集是________.15.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0bx 2-3x ,x <0为奇函数,则不等式f (x )<4的解集为________. 16.设不等式组⎩⎪⎨⎪⎧x ≥0x +2y ≥42x +y ≤4所表示的平面区域为D ,则可行域D 的面积为________.1.若点A (m ,n )在第一象限,且在直线x 3+y 4=1上,则mn 的最大值是( ) A.3 B.4 C.7 D.12 2.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( )A.1B.2C.3D.43.已知约束条件⎩⎪⎨⎪⎧x -2y +1≤0,ax -y ≥0,x ≤1表示的平面区域为D ,若区域D 内至少有一个点在函数y =e x 的图象上,那么实数a 的取值范围为( )A.[e ,4)B.[e ,+∞)C.[1,3)D.[2,+∞)4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于________.5.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.6.已知函数f (x )=2x x 2+6. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值;(2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围.7.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.8.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2.(1)证明:a >0;(2)若z =a +2b ,求z 的取值范围.9.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1<0对任意实数x 恒成立,求实数a 的取值范围.10.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .(1)求函数g (x )的解析式;(2)解不等式g (x )≥f (x )-|x -1|.11.若当a ∈[1,3]时,不等式ax 2+(a -2)x -2>0恒成立,求实数x 的取值范围.12.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1,记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明: x 2f (x )+x [f (x )]2≤14. 13.若对一切x >2均有不等式x 2-2x -8≥(m +2)x -m -15成立,求实数m 的取值范围.14.某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的,是面积为200平方米的十字形地带.计划在正方MNPQ 上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.(1)设总造价是S 元,AD 长为x 米,试建立S 关于x 的函数关系式;(2)当x 为何值时,S 最小?并求出最小值.。
第2讲 不等式及线性规划一、选择题1.(2015·天津卷)设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析 由|x -2|<1得1<x <3,由x 2+x -2>0,得x <-2或x >1,而1<x <3⇒x <-2或x >1,而x <-2或x >1⇒/ 1<x <3,所以,“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,选A.答案 A2.(2015·临汾模拟)若点A(m ,n)在第一象限,且在直线x 3+y 4=1上,则mn 的最大值是( )A .3B .4C .7D .12解析 因为点A(m ,n)在第一象限,且在直线x 3+y 4=1上,所以m ,n ∈R +,且m 3+n 4=1,所以m 3·n4≤(m 3+n42)2⎝ ⎛⎭⎪⎫当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤⎝ ⎛⎭⎪⎫122=14,即mn ≤3,所以mn 的最大值为3.答案 A3.(2015·广东卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A.315 B .6 C.235D .4解析 不等式组所表示的可行域如下图所示,由z =3x +2y 得y =-32x +z2,依题意当目标函数直线l :y =-32x +z 2经过A ⎝ ⎛⎭⎪⎫1,45时,z 取得最小值,即z min =3×1+2×45=235,故选C.答案 C4.已知正数x ,y 满足x +22xy ≤λ(x +y)恒成立,则实数λ的最小值为( )A .1B .2C .3D .4解析 ∵x >0,y >0,∴x +2y ≥22xy(当且仅当x =2y 时取等号). 又由x +22xy ≤λ(x +y)可得λ≥x +22xyx +y ,而x +22xy x +y ≤x +(x +2y )x +y=2,∴当且仅当x =2y 时,⎝ ⎛⎭⎪⎫x +22xy x +y max=2.∴λ的最小值为2.答案 B5.(2015·衡水中学期末)已知约束条件⎩⎪⎨⎪⎧x -2y +1≤0,ax -y ≥0,x ≤1表示的平面区域为D ,若区域D 内至少有一个点在函数y =e x的图象上,那么实数a 的取值范围为( ) A .[e ,4) B .[e ,+∞) C .[1,3)D .[2,+∞)解析 如图:点(1,e)满足ax -y ≥0,即a ≥e.答案 B二、填空题6.(2015·福建卷改编)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于________.解析 如图,可行域为阴影部分,线性目标函数z =2x -y 可化为y =2x -z ,由图形可知当y =2x -z 过点⎝⎛⎭⎪⎫-1,12时z 最小,z min =2×(-1)-12=-52.答案 -527.(2015·浙江卷)已知函数f(x)=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f(f(-3))=________,f(x)的最小值是________.解析 f(f(-3))=f(1)=0,当x ≥1时,f(x)=x +2x -3≥22-3,当且仅当x =2时,取等号;当x <1时,f(x)=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f(x)的最小值为22-3.答案 0 22-38.(2015·日照模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 解析 由已知,得xy =9-(x +3y),即3xy =27-3(x +3y)≤⎝ ⎛⎭⎪⎫x +3y 22,令x +3y =t ,则t 2+12t -108≥0, 解得t ≥6或t ≤-18(舍),即x +3y ≥6.答案 6三、解答题 9.已知函数f(x)=2xx 2+6. (1)若f(x)>k 的解集为{x|x <-3,或x >-2},求k 的值; (2)对任意x >0,f(x)≤t 恒成立,求t 的取值范围. 解 (1)f(x)>k ⇔kx 2-2x +6k <0.由已知{x|x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3,-2. 由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f(x)=2x x 2+6=2x +6x ≤226=66,当且仅当x =6时取等号.由已知f(x)≤t 对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎡⎭⎪⎫66,+∞. 10.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.解 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k ≤202=10, 当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a)2-4a 2(a 2+64)≥0⇔a ≤6.所以当a 不超过6千米时,可击中目标.11.已知函数f(x)=13ax 3-bx 2+(2-b)x +1在x =x 1处取得极大值,在x =x 2处取得极小值,且0<x 1<1<x 2<2. (1)证明:a >0;(2)若z =a +2b ,求z 的取值范围. (1)证明 求函数f(x)的导数 f′(x)=ax 2-2bx +2-b.由函数f(x)在x =x 1处取得极大值, 在x =x 2处取得极小值,知x 1、x 2是f′(x)=0的两个根, 所以f′(x)=a(x -x 1)(x -x 2). 当x <x 1时,f(x)为增函数,f′(x)>0,由x -x 1<0,x -x 2<0得a >0.(2)解 在题设下,0<x 1<1<x 2<2等价于⎩⎪⎨⎪⎧f′(0)>0,f′(1)<0,f′(2)>0,即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0,化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上的三条直线:2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A ⎝ ⎛⎭⎪⎫47,67,B(2,2),C(4,2). z 在这三点的值依次为167,6,8.所以z 的取值范围为⎝⎛⎭⎪⎫167,8.。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后.关闭Word文档返回原板块。
高效演练1.(考向一)(2015·威海一模)已知a,b∈R,下列四个条件中,使a〉b成立的必要而不充分的条件是()A。
a〉b—1 B.a>b+1C.|a|>|b|D。
2a〉2b【解析】选A。
因为a〉b,b>b—1,所以a〉b—1,但当a>b-1时,a〉b未必成立。
2。
(考向二)(2015·德州一模)若直线2ax+by—2=0(a,b∈R)平分圆x2+y2—2x-4y—6=0,则+的最小值是()A。
1 B.5 C。
4 D.3+2【解析】选D。
直线平分圆,则必过圆心。
圆的标准方程为(x—1)2+(y-2)2=11.所以圆心C(1,2)在直线上⇒2a+2b—2=0⇒a+b=1。
所以+=(a+b)=2+++1=3++≥3+2。
3.(考向一)设f(x)=则不等式f(x)〈2的解集为()A.(,+∞)B。
(-∞,1)∪[2,)C.(1,2]∪(,+∞)D。
(1,)【解析】选B。
原不等式等价于或即或解得2≤x〈或x<1。
4.(考向三)(2015·北京高考)若x,y满足则z=x+2y的最大值为()A。
0 B。
1 C。
D.2【解析】选D.作出可行域及l0:x+2y=0如图所示,把(1,0)代入l0,可知l0的右上方为正,所以向上平移l0,过点(0,1)时z=x+2y取最大值2。
5.(考向二)(2015·烟台模拟)设x,y均为正数,且+=1,则xy的最小值为()A。
4 B。
4 C。
9 D。
16【解析】选D.由+=1得xy=8+x+y,所以xy≥8+2,解得≥4,所以xy≥16,即xy的最小值为16.6。
(考向三)(2015·聊城一模)若不等式组表示的平面区域是一个锐角三角形,则实数k的取值范围是________.【解析】画出表示的平面区域如图,由于直线y=kx+5过点(0,5),当k=0时,直线y=kx+5与直线x=2垂直,当k=—1时,直线y=kx+5与直线x—y+5=0垂直,要使平面区域为锐角三角形,应有—1<k<0。
山东省高考数学(理科)专题练习不等式与线性规划【高考题、模拟题重组练】 一、基本不等式1.(2016·日照一模)若实数x ,y 满足0xy >,则22x yx y x y+++的最大值为( ))()2,+∞1+∞)( 2,)15.(2016·滨州一模)已知x,y满足2,2,8,xyx y≥⎧⎪≥⎨⎪+≤⎩时,(0)x yzba ba=≥>+的最大值为2,则a b+的最小值为________.=A-2+A-+4 tan A-22)+tan -2+4≥24+4=8,当且仅当故tan A tan B tan C 的最小值为8.] 二、线性规划问题5.C[作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.] 6.B[根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程7.C[作出线段AB ,如图所示.-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.]9.216 000[设生产A 产品x 件,B 产品y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).y⎩⎪⎨+x ,x .故选D.] log 2ab +b -+12b -32y ≤0,----=6z =x +1y +2的最小值为.由题意作出其平面区域如图,7.D[作出不等式组对应的平面区域如图,22.作出可行域,如图所示的阴影部分⎣⎦。
第 2 讲不等式与线性规划考情解读 1.在高考取主要考察利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考察求最值问题,线性规划主要考察直接求最优解和已知最优解求参数的值或取值范围问题.2.多与会合、函数等知识交汇命题,以选择、填空题的形式表现,属中档题.1.四类不等式的解法(1)一元二次不等式的解法先化为一般形式 ax2+bx+ c>0( a≠0),再求相应一元二次方程 ax2+ bx+ c= 0(a≠0)的根,最后依据相应二次函数图象与 x 轴的地点关系,确立一元二次不等式的解集.(2)简单分式不等式的解法①变形 ?f x>0(<0) ? f(x)g(x)>0(<0) ;g x②变形 ?f x≥ 0( ≤?0)f( x)g(x) ≥ 0( ≤且0)g(x) ≠ 0.g x(3) 简单指数不等式的解法①当 a>1 时, a f(x)>a g(x)? f(x)>g(x);②当 0< a<1 时, a f(x) >a g(x)? f(x)<g(x).(4)简单对数不等式的解法①当 a>1 时, log a f(x)>log a g(x) ? f(x)>g(x)且 f( x)>0 , g(x)>0;②当0< a<1 时, log a f( x)>log a g(x)? f(x)<g(x)且 f(x)>0,g(x)>0.2.五个重要不等式(1)|a| ≥0,a2≥ 0(a∈R ).(2)a2+b2≥2ab(a、b∈R ).a+ b(3)2≥ ab(a>0, b>0).a+ b 2(4) ab≤(2) (a, b∈R).(5)a2+ b2 a+ b2ab(a>0, b>0) .2≥2≥ ab≥a+ b3.二元一次不等式(组 )和简单的线性规划(1)线性规划问题的相关观点:线性拘束条件、线性目标函数、可行域、最优解等.(2)解不含实质背景的线性规划问题的一般步骤:①画出可行域;②依据线性目标函数的几何意义确立最优解;③求出目标函数的最大值或许最小值.4.两个常用结论(1) ax2a>0,+ bx+ c>0( a≠0)恒建立的条件是<0.2a<0,(2) ax+ bx+ c<0( a≠0)恒建立的条件是<0.热门一一元二次不等式的解法例 1(1)(2013 安·徽 )已知一元二次不等式f(x)<0 的解集为x|x<-1或x>1,则 f(10x)>0 的解集2为 ()A . { x|x<- 1 或 x>- lg 2}B . { x|- 1<x<- lg 2}C. { x|x>- lg 2}D . { x|x<- lg 2}(2) 已知函数f(x)= (x- 2)(ax+ b)为偶函数,且在 (0,+∞)单一递加,则 f(2- x)>0 的解集为 ()A . { x|x>2 或 x<- 2}B . { x|- 2< x<2}C. { x|x<0 或 x>4} D . { x|0<x<4}思想启示答案(1)D (1) 利用换元思想,设(2)C10x= t,先解f(t)>0.(2) 利用f(x)是偶函数求b,再解f(2 -x)>0.分析(1) 由已知条件0<10x<12,解得x<lg 12=- lg 2.(2)由题意可知 f(- x)= f(x).即 (- x- 2)(- ax+ b) = (x-2)(ax+b) ,(2a- b)x= 0 恒建立,故 2a-b= 0,即 b= 2a,则 f(x)= a(x- 2)(x+ 2).又函数在 (0,+∞)单一递加,所以 a>0.f(2 -x)>0 即 ax(x- 4)>0 ,解得 x<0 或 x>4.应选 C.思想升华二次函数、二次不等式是高中数学的基础知识,也是高考的热门,“三个二次”的相互转变表现了转变与化归的数学思想方法.(1)不等式x-1≤0的解集为 ()2x+ 1A . (-12, 1]1B .[-2,1]1C . (-∞,- 2)∪ [1,+ ∞)1D . (-∞,- 2]∪ [1,+ ∞)(2) 已知 p :? x 0∈ R , mx 02+1≤0,q :? x ∈ R , x 2+ mx + 1>0.若 p ∧ q 为真命题,则实数 m 的取 值范围是 ()A . (-∞,- 2)B . [- 2,0)C . (-2,0)D . [0,2]答案 (1)A (2)C分析(1) 原不等式等价于 (x - 1)(2x + 1)<0 或 x -1= 0,即- 1<x<1 或 x = 1,2 所以不等式的解集为 (- 1, 1],选 A.2(2) p ∧ q 为真命题,等价于 p ,q 均为真命题.命题 p 为真时, m<0;命题 q 为真时, 2= m -4<0 ,解得- 2<m<2. 故 p ∧ q 为真时,- 2<m<0. 热门二 基本不等式的应用例 2(1)(2014 ·湖北 )某项研究表示:在考虑行车安全的状况下,某路段车流量 F( 单位时间内经过丈量点的车辆数,单位:辆 /时) 与车流速度 v(假定车辆以同样速度 v 行驶,单位:米 /秒 )、均匀车长 l(单位:米 )的值相关,其公式为 F = 276 000v.v + 18v + 20l①假如不限制车型, l = 6.05,则最大车流量为 ________辆 /时;②假如限制车型, l =5,则最大车流量比①中的最大车流量增添 ________辆 /时.(2)(2013 山·东 )设正实数 x ,y ,z 知足 x 2- 3xy + 4y 2-z =0,则当xy获得最大值时,2+ 1-2的最zx yz大值为 ( )9A .0B .1C.4 D .3思想启示(1) 把所给 l 值代入,分子分母同除以 v ,结构基本不等式的形式求最值; (2) 重点是找寻xyz 获得最大值时的条件.答案(1) ① 1 900 ② 100 (2)B76 000v分析 (1) ① 当 l = 6.05 时, F = v 2+ 18v + 121=76 000≤76 000=76 000= 1 900.v +121+ 182121+ 1822+ 18v v ·v当且仅当 v = 11 米 /秒时等号建立,此时车流量最大为1 900 辆 /时.② 当 l = 5 时, F = 2 76 000v=76 000 ≤ 76 000=76 000= 2 000.v + 18v + 10010010020+ 18v + v + 18 2 v ·v + 18当且仅当 v = 10 米/ 秒时等号建立, 此时车流量最大为 2 000 辆 /时.比 ①中的最大车流量增添100 辆 /时.(2) 由已知得 z = x 2- 3xy + 4y 2, (*)则xy= 2 xy2=1≤1,当且仅当 x = 2y 时取等号,把 x = 2y 代入 (*) 式,得 z = 2y 2,z x - 3xy + 4yx4yy + x - 3所以 2+1- 2= 1+1-12 =-1-1 2+ 1≤1,x y z y y yy所以当 y = 1 时, 2x + 1y - 2z 的最大值为 1.思想升华在利用基本不等式求最值时,要特别注意“拆、拼、凑 ”等技巧,使其知足基本不等式中 “正 ”(即条件要求中字母为正数 )、 “定 ”(不等式的另一边一定为定值 )、 “等 ”(等号获得的条件 )的条件才能应用,不然会出现错误.(1) 若点 A(m , n)在第一象限,且在直线x+ y = 1 上,则 mn 的最大值为 ________.3 42(2) 已知对于 x 的不等式 2x + x - a ≥7在 x ∈ (a ,+ ∞)上恒建立,则实数 a 的最小值为 ()35A .1 B.2 C .2 D.2答案 (1)3 (2)B分析(1) 由于点 A(m , n)在第一象限,且在直线x + y= 1 上,所以 m , n>0 ,且 m +n= 1.3434m n m + nm n13m n 1所以3 4 2, n =2 时,取等号 ).所以·≤( 2 ) ( 当且仅当3== ,即 m = ·≤ ,即 mn ≤3,3 442 23 4 4 所以 mn 的最大值为 3.2= 2(x - a)+ 2 + 2a(2)2x + x - ax - a≥2·x - a2+ 2a = 4+ 2a ,x - a3由题意可知4+ 2a ≥7,得 a ≥ ,2即实数 a 的最小值为 3,应选 B.2热门三简单的线性规划问题例 3(2013 ·湖北 )某旅游社租用A、B 两种型号的客车安排900 名客人旅游, A、B 两种车辆的载客量分别为36 人和 60 人,租金分别为 1600 元 /辆和 2400 元 /辆,旅游社要求租车总数不超出 21 辆,且 B 型车不多于 A 型车 7 辆.则租金最少为 ()A .31 200 元B.36 000 元C. 36 800 元D.38 400 元思想启示经过设变量将实质问题转变为线性规划问题.答案C分析设租 A 型车 x 辆, B 型车 y 辆时租金为 z 元,x+ y≤21y-x≤7则 z= 1 600x+ 2 400y, x、 y 知足36x+ 60y≥900,x,y≥0, x、 y∈N画出可行域如图直线 y=-2x+z过点 A(5,12) 时纵截距最小,3 2 400所以 z min= 5×1 600+ 2 400 ×12= 36 800,故租金最少为36 800 元.思想升华(1)线性规划问题一般有三种题型:一是求最值;二是求地区面积;三是确立目标函数中的字母系数的取值范围.(2)解决线性规划问题第一要找到可行域,再注意目标函数所表示的几何意义,利用数形联合找到目标函数的最优解.(3)对于应用问题,要正确地设出变量,确立可行域和目标函数.x>0(1) 已知实数 x, y 知足拘束条件4x+3y≤4,则 w=y+1的最小值是 ()y≥0xA.-2 B.2 C.-1 D.12x-y+ 1>0 ,(2)(2013北·京 )设对于 x、 y 的不等式组 x+m<0,表示的平面地区内存在点P(x0, y0),y-m>0知足 x0- 2y0= 2,求得 m 的取值范围是 ()A.-∞,4 B. -∞,133C. -∞,-2D. -∞,-533答案 (1)D (2)C分析(1) 画出可行域,如下图.y + 1表示可行域内的点(x , y)与定点 P(0,- 1)连线的斜率,察看图形可知PA 的斜率最小w = x为 -1-0= 1,应选 D.0-1(2) 当 m ≥0 时,若平面地区存在, 则平面地区内的点在第二象限, 平面地区内不行能存在点 P(x 0,y 0)知足 x 0- 2y 0= 2,所以 m<0.如下图的暗影部分为不等式组表示的平面地区.1要使可行域内包括y = 2x - 1 上的点,只要可行域界限点11 2(- m ,m)在直线 y = 2x - 1 的下方即可,即 m<-2m - 1,解得 m<- 3.1.几类不等式的解法一元二次不等式解集的端点值是相应一元二次方程的根,也是相应的二次函数图象与x 轴交点的横坐标,即二次函数的零点;分式不等式可转变为整式不等式 (组 )来解;以函数为背景的不等式可利用函数的单一性进行转变.2.基本不等式的作用二元基本不等式拥有将“积式 ”转变为 “和式 ”或将 “和式 ”转变为 “积式 ”的放缩功能,经常用于比较数 (式 )的大小或证明不等式或求函数的最值或解决不等式恒建立问题.解决问题的重点是弄清分式代数式、函数分析式、不等式的结构特色,选择好利用基本不等式的切入点,并创建基本不等式的应用背景,如经过“代换 ”、“拆项 ”、 “凑项 ”等技巧,改变原式的结构使其具备基本不等式的应用条件.利用基本不等式求最值时要注意 “一正、二定、三相等 ”的条件,三个条件缺一不行.3.线性规划问题的基本步骤(1) 定域 —— 画出不等式 (组)所表示的平面地区, 注意平面地区的界限与不等式中的不等号的对应;(2) 平移 —— 画出目标函数等于 0 时所表示的直线 l ,平行挪动直线, 让其与平面地区有公共点,依据目标函数的几何意义确立最优解,注意要娴熟掌握最常有的几类目标函数的几何意义;(3) 求值 —— 利用直线方程组成的方程组求解最优解的坐标,代入目标函数,求出最值 .真题感悟1. (2014·山东 )已知实数x y) x, y 知足 a <a (0<a<1) ,则以下关系式恒建立的是 (A. 21 >21 B . ln(x2+1)>ln( y2+ 1) x+ 1y+1C. sin x>sin y33 D . x >y答案D分析由于 0<a<1,a x<a y,所以 x>y.采纳赋值法判断, A 中,当 x= 1,y= 0 时,1<1,A 不行2立. B 中,当 x= 0,y=- 1 时, ln 1<ln 2 ,B 不建立. C 中,当 x= 0,y=-π时, sin x= sin y = 0, C 不建立. D 中,由于函数y= x3在R上是增函数,应选 D.x+ 2y- 4≤0,2. (2014 ·浙江 )当实数 x,y 知足 x- y- 1≤0,时, 1≤ax+ y≤4恒建立,则实数 a 的取值范x≥1围是 ________.答案[1,3 ] 2分析画可行域如下图,设目标函数 z= ax+ y,即 y=- ax+z,要使 1≤z≤4 恒建立,则 a>0,1≤2a+ 1≤4,即可,解得33数形联合知,知足1≤a≤ .所以 a 的取值范围是1≤a≤ .1≤a≤422押题精练1.为了迎接2014年3 月8 日的到来,某商场举行了促销活动,经测算某产品的销售量P 万件 (生产量与销售量相等 )与促销花费 x 万元知足 P= 3-2,已知生产该产品还需投入成本 (10 x+ 1+ 2P)万元 (不含促销花费 ),产品的销售价钱定为(4+20P )万元 /万件.则促销花费投入万元时,厂家的收益最大?()A .1B.1.5C. 2 D . 3答案A分析设该产品的收益为y 万元,由题意知,该产品售价为2×(10+ 2P) 万元,所以y=P10+ 2P)×P- 10-2P- x =4- x(x>0) ,所以 y = 17 - (4+ x + 1)≤17 -2×(P16 -x+1x+1244= x+ 1,即 x= 1 时取等号 ),所以促销花费投入 1 万元x+ 1×x+= 13(当且仅当x+1时,厂家的收益最大,应选 A.3x- y≤0,2.若点 P(x,y)知足线性拘束条件x- 3y+ 2≥0,点 A(3, 3),O 为坐标原点,则→ →OA·OPy≥0,的最大值为 ________.答案6分析→→→ →由题意,知 OA= (3, 3),设 OP= (x, y),则 OA·OP= 3x+ 3y.令 z= 3x+ 3y,如图画出不等式组所表示的可行域,可知当直线 y=-3x+33z 经过点 B 时, z 获得最大值.3x- y= 0,解得x= 1,3),故 z 的最大值为3×1+3× 3= 6.由即 B(1,x- 3y+ 2=0,y= 3,→→即 OA·OP的最大值为 6.(介绍时间: 50 分钟 )一、选择题1. (2014 ·四川 )若 a>b>0 ,c<d<0,则必定有 ()a b a bA. c>dB. c<da b a bC.d> cD. d<c答案D分析令 a= 3,b= 2, c=- 3, d=- 2,则ac=- 1,bd=- 1,所以 A ,B 错误;a=- 3,b=-2,d 2 c 3a b所以 d <c ,所以 C 错误.应选 D.2.以下不等式必定建立的是()21 A . lg x+4 >lg x(x>0)1B . sin x +sin x ≥ 2(x ≠k π, k ∈ Z )C . x 2+ 1≥2|x|(x ∈ R )1D.x 2 + 1>1( x ∈ R ) 答案 C分析应用基本不等式: x , y>0,x +y2 ≥ xy(当且仅当 x = y 时取等号 ) 逐一剖析,注意基本不等式的应用条件及取等号的条件.当 x>0 时, x 2+11= x ,≥··42所以 lg2+ 1,应选项 A 不正确;x 4 ≥lg x( x>0) 运用基本不等式时需保证一正二定三相等,而当 x ≠k π, k ∈ Z 时, sin x 的正负不定,应选项 B 不正确;由基本不等式可知,选项C 正确;1当 x = 0 时,有 x 2+ 1= 1,应选项 D 不正确.3. (2013 ·重庆 )对于 x 的不等式 x 2- 2ax - 8a 2<0(a>0) 的解集为 (x 1, x 2) ,且 x 2- x 1= 15,则 a 等于 ()5 7 A. 2B. 215 15 C. 4D. 2答案 A分析由 x 2 - 2ax - 8a 2<0 ,得 (x + 2a)( x - 4a)<0,因 a>0,所以不等式的解集为 (- 2a,4a) ,即x 2= 4a , x 1=- 2a ,由 x 2- x 1= 15,得 4a -( -2a)= 15,解得 a = 52.4. (2014 ·重庆 )若 log 4(3a +4b)= log 2 ab ,则 a + b 的最小值是 ( )A .6+2 3B .7+2 3C.6+4 3D.7+43答案Dab>0 ,a>0,分析由题意得ab≥0,所以b>0.3a+4b>0,又 log 4(3a+ 4b)= log 2 ab,所以 log 4(3a+ 4b)= log4ab,43所以 3a+ 4b= ab,故+=1.所以 a+b= (a+ b)(4+3)= 7+3a+4ba b b a3a 4b≥7+2· =7+43,b a当且仅当3ab=4ba时取等号.应选D.x+ y-5≤05.已知变量 x, y 知足拘束条件x- 2y+ 1≤0,则 z=x+ 2y- 1 的最大值为 ()x- 1≥0A .9B . 8C. 7 D . 6答案Bx+ y- 5≤0分析拘束条件x-2y+ 1≤0所表示的地区如图,x- 1≥0由图可知,当目标函数过A(1,4) 时获得最大值,故z= x+ 2y- 1 的最大值为1+ 2×4- 1= 8.二、填空题6.已知f(x)是R 上的减函数,A(3,- 1),B(0,1)是其图象上两点,则不等式|f(1 +ln x)|<1 的解集是 ________.答案(1,e2) e分析∵ |f(1+ ln x)|<1,∴ - 1<f(1+ ln x)<1 ,∴ f(3)< f(1+ ln x)<f(0), 又 ∵ f(x) 在 R 上为减函数,∴ 0<1 +ln x<3, ∴ - 1<ln x<2,12∴ e <x<e .x - y ≤0,7.若x , y 知足条件x + y ≥0,且 z = 2x + 3y 的最大值是5,则实数a 的值为 ________.y ≤a ,答案1分析 画出知足条件的可行域如图暗影部分所示,则当直线z = 2x + 3y 过点 A( a , a)时, z =2x+ 3y 获得最大值 5,所以 5= 2a + 3a ,解得 a =1.8. 若点 A(1,1)在直线 2mx + ny - 2=0 上,此中 mn>0,则 1+ 1的最小值为 ________.m n答案32+ 2分析∵ 点 A(1,1)在直线 2mx + ny - 2=0 上,∴ 2m + n = 2,∵ 1 + 1= ( 1 + 1)2m + n = 1(2+2m + n+ 1)m n m n 22n m1 2m n 3+ 2,≥ (3+2n· )=2m 2当且仅当2m = n,即 n = 2m 时取等号,n m∴ 1+ 1的最小值为3+ 2.m n2三、解答题9.设会合 A 为函数 y =ln( - x 2- 2x +8) 的定义域,会合B 为函数 y = x +1的值域,会合 Cx + 11为不等式 ( ax - a )(x + 4) ≤0的解集.(1) 求 A ∩B ;(2) 若 C? ?R A ,求 a 的取值范围.解 (1)由- x 2- 2x +8>0 得- 4< x<2,即 A = (- 4,2).y= x+1=(x+1)+1-1,x+ 1x+ 1当 x+ 1>0,即 x>- 1 时 y≥2- 1= 1,此时 x=0,切合要求;当 x+ 1<0,即 x<- 1 时, y≤- 2- 1=- 3,此时 x=- 2,切合要求.所以 B= (-∞,- 3]∪ [1,+∞),所以 A∩B= (- 4,- 3]∪ [1,2) .1(2)(ax-a)( x+ 4)= 0 有两根1 x=- 4 或 x= a2.1当 a>0 时, C={ x|- 4≤x≤a2} ,不行能C? ?R A;当 a<0 时, C={ x|x≤- 4 或 x≥a 12} ,若 C? ?R A,则121,a2≥2,∴a≤2∴ -22, 0).2≤a<0.故 a 的取值范围为 [ -2132处获得极大值,在x= x2处获得极小值,且10.已知函数 f( x)= ax-bx+ (2- b)x+ 1 在 x=x130<x1<1< x2<2.(1)证明: a>0;(2)若 z= a+ 2b,求 z 的取值范围.(1)证明求函数 f(x)的导数f′(x)= ax2- 2bx+ 2- b.由函数 f(x)在 x= x1处获得极大值,在 x= x2处获得极小值,知 x1、 x2是 f′(x)=0 的两个根,所以 f′(x)= a(x- x1)(x- x2) .当 x<x1时, f(x)为增函数, f′(x)>0,由 x- x1<0,x- x2<0 得 a>0.f,(2) 解在题设下, 0<x1<1<x2<2 等价于 f,f,2- b>0,即a- 2b+ 2- b<0,4a- 4b+2- b>0 ,化简得2- b>0,a- 3b+ 2<0,4a- 5b+2>0.此不等式组表示的地区为平面aOb 上的三条直线:2- b =0, a - 3b + 2= 0,4a - 5b + 2=0 所围成的 △ ABC 的内部,其三个极点分别为4 6 A 7,7 , B(2,2), C(4,2).16z 在这三点的值挨次为, 6,8.所以 z 的取值范围为 (16, 8).711.某工厂生产某种产品,每天的成本C(单位:万元 )与日产量 x(单位:吨 )知足函数关系式C= 3+ x ,每天的销售额 S(单位:万元 )与日产量 x 的函数关系式S = k+ 5, 0<x<6,3x + x - 814, x ≥ 6. 已知每天的收益 L = S - C ,且当 x = 2 时, L = 3.(1) 求 k 的值;(2) 当天产量为多少吨时,每天的收益能够达到最大,并求出最大值.(1)由题意可得 L = k+2, 0<x<6,解2x + x - 811-x , x ≥6.k由于当 x = 2 时, L = 3,所以 3= 2×2++ 2,解得 k =18.(2) 当 0<x<6 时, L = 2x + 18+ 2,所以x - 818+ 18=- [2(8 - x)+18- x18+ 18=6,L = 2(x - 8)+x - 88- x ] + 18≤- 28- x当且仅当 2(8- x)= 18,即 x = 5 时获得等号.8-x 当 x ≥6 时, L =11- x ≤5.所以当 x = 5 时 L 获得最大值 6.所以当天产量为 5 吨时,每天的收益能够达到最大,最大值为 6 万元.。
命题猜想三 不等式与线性规划【考向解读】不等式的性质、求解、证明及应用是每年高考必考的内容,对不等式的考查一般以选择题、填空题为主.(1)主要考查不等式的求解、利用基本不等式求最值及线性规划求最值;(2)不等式相关的知识可以渗透到高考的各个知识领域,往往作为解题工具与数列、函数、向量相结合,在知识的交汇处命题,难度中档;在解答题中,特别是在解析几何中求最值、范围或在解决导数问题时经常利用不等式进行求解,但难度偏高.【命题热点突破一】不等式的解法1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法(1)f x g x >0(<0)⇔f (x ) g (x )>0(<0);(2)f x g x ≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0.3.指数不等式、对数不等式及抽象函数不等式,可利用函数的单调性求解.例1、(1)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为( ) A .{x |x <-1或x >-lg2}B .{x |-1<x <-lg2}C .{x |x >-lg2}D .{x |x <-lg2} (2)已知函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{x |x >2或x <-2}B .{x |-2<x <2}C .{x |x <0或x >4}D .{x |0<x <4}【感悟提升】(1)对于和函数有关的不等式,可先利用函数的单调性进行转化;(2)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集;(3)含参数的不等式的求解,要对参数进行分类讨论.【变式探究】(1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.(2)已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是________________.【命题热点突破二】基本不等式的应用1.利用基本不等式求最值的注意点(1)在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错.2.结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式.常见的转化方法有 (1)x +b x -a=x -a +b x -a+a (x >a ). (2)若a x +b y =1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝⎛⎭⎫a x +b y ≥ma +nb +2abmn (字母均为正数).例2、(1)已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( )A.53B.83C .8D .24(2)已知关于x 的不等式2x +2x -a ≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32C .2D.52 【感悟提升】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.【变式探究】(1)(2015·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.(2)函数y =x -1x +3+x -1的最大值为________.【点评】求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.【命题热点突破三】简单的线性规划问题解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.例3、(1)(2015·北京)若x ,y 满足⎩⎪⎨⎪⎧ x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( ) A .0 B .1 C.32 D .2(2) x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1 【感悟提升】(1)线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是确定目标函数中的字母系数的取值范围.(2)一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.【变式探究】(2015·课标全国Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则y x 的最大值为________. 【高考真题解读】1.【2015高考重庆,文10】若不等式组,表示的平面区域为三角形,且其面积等于,则m 的值为( )(A)-3 (B) 1 (C) (D)32.【2015高考四川,文9】设实数x ,y 满足,则xy 的最大值为( )(A ) (B ) (C )12 (D )143.【2015高考广东,文4】若变量,满足约束条件,则的最大值为()A.B.C.D.4.【2015高考新课标1,文15】若x,y满足约束条件,则z=3x+y的最大值为.5.【2015高考陕西,文11】某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元6.【2015高考湖南,文4】若变量满足约束条件,则的最小值为( )A、B、0 C、1 D、27.【2015高考福建,文10】变量满足约束条件,若的最大值为2,则实数等于()A.B.C.D.8.【2015高考安徽,文5】已知x,y满足约束条件,则的最大值是()(A)-1 (B)-2 (C)-5 (D)19.【2015高考山东,文12】若满足约束条件则的最大值为.10.【2015高考浙江,文14】已知实数,满足,则的最大值是.。
专题15 不等式性质,线性规划与基本不等式提条件2能利用不等式的相关性质比较两个实数的大小 3利用不等式的性质比较大小是高考的热点 •分分析解读1.多考查线性目标函数的最值问题,兼顾面积、距离、斜率等问题 2能用线性规划的方法解决重要的实际问题,使收到的效益最大,耗费的人力、物力资源最少等3应重视数形结合的思想方法4本节在高考中主要考查与平面区域有关的范围、距离等问题以及线性规划问题分值约为分属中低档题分析解读 1.掌握利用基本不等式求最值的方法 ,熟悉利用拆添项或配凑因式构造基本不等式形式的技巧 同时注意“一正、二定、三相等”的原则 2利用基本不等式求函数最值、求参数范围、证明不等式是高考 热点•本节在高考中主要以选择题或填空题的形式进行考查 ,分值约为分分析解读 不等式的性质与函数、导数、数列等内容相结合 ,解决与不等式有关的数学问题和实际问题是高考热占<7 八、、八 \、-2018年咼考全景展示/ + y < 5.2x-y<\,-x + y < 1,1. 【2018年理数天津卷】设变量 x , y 满足约束条件I贝U 目标函数卫=弘+ 5卩的最大值为A. 6B. 19C. 21D. 45【答案】C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可•详解:绘制不等式组表示的平面区域如囲所示,结合目标雷数的几何意义可知目标函数在点討处取得最大值,联立直线方程:,可得点卫的坐标为:砲3),剣匕可知目标酗的最犬值为:点睛:求线性目标函数z= ax+ by(ab^0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b v 0时,直线过可行域且在y轴上截距最大时,z值最小,在y 轴上截距最小时,z值最大•2. 【2018年理新课标I卷】已知集合.!,贝y ;A. <-1 •'凡B. ■'! — mC {x|x <- 1} U {x|x > 2} D{x|x <- 1} U {x|x > 2}【答案】B【解析】分析:首先利用一元二次不等式的解法,求出疋-丄-2 > 0的解集『从而求得集合A,之后根据集合补集中元素的特征'求得结果.详解:解不等式* 一x - 2 > 0得菱<-1或工> 2,所以/ = (x|x < -1或i > 2}?所以可叹求得= {-r|-l<^< 2},故选丑点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果3. 【2018年全国卷川理】设,则A. a + b <ab< 0B. ab < a + b < 0C.a b <Q <abD. ai < 0 < a + b【答案】B1 (心1 ,2 1 1-=/0(?0.3°,-=也#0.3』-+ -【解析】分析:求出^ ,得到的范围,进而可得结果。
2016年高考数学线性规划一、选择题1、(2016年山东高考)若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A)4(B)9(C)10(D)12 【答案】C2、(2016年浙江高考)若平面区域30,230,230x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()【答案】B二、填空题2、(2016江苏省高考)已知实数x,y满足240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,则x2+y2的取值范围是▲ . 【答案】4[,13]54、(2016上海高考)若,x y满足0,0,1,xyy x≥⎧⎪≥⎨⎪≥+⎩则2x y-的最大值为_______.【答案】2-5、(2016全国I卷高考)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。
该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【答案】2160006、(2016全国II卷高考)若x,y满足约束条件103030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y=-的最小值为__________ 【答案】5-7、(2016全国III卷高考)若,x y满足约束条件210,210,1,x yx yx-+≥⎧⎪--≤⎨⎪≤⎩则235z x y=+-的最大值为_____________.【答案】10-1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. (Ⅰ)解:由已知yx,满足的数学关系式为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+3001033605820054yxyxyxyx,该二元一次不等式组所表示的区域为图1中的阴影部分.(1)(Ⅱ)解:设利润为z 万元,则目标函数y x z 32+=,这是斜率为32-,随z 变化的一族平行直线.3z 为直线在y 轴上的截距,当3z 取最大值时,z 的值最大.又因为y x ,满足约束条件,所以由图2可知,当直线y x z 32+=经过可行域中的点M 时,截距3z 的值最大,即z 的值最大.解方程组⎩⎨⎧=+=+30010320054y x y x 得点M 的坐标为)24,20(M ,所以112243202max =⨯+⨯=z . 答:生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元.。
一、选择题1.已知集合A ={x|x 2-x<0},集合B ={x|2x<4},则“x∈A”是“x∈B”的( ) A .充分且不必要条件 B .必要且不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 ∵A ={x|0<x<1},B ={x|x<2},∴“x∈A”可以推出“x∈B”;在集合B 中取元素-1,则-1∉A ,∴“x∈B”不能推出“x∈A”.故选A.2.设非零实数a ,b 满足a<b ,则下列不等式中一定成立的是( ) A.1a >1b B .ab<b 2C .a +b>0D .a -b<0答案 D解析 令a =-1,b =1,经检验A 、C 都不成立,排除A 、C ;令a =-3,b =-2,经检验B 不成立,排除B ,故选D.3.[2015·烟台一模]若条件p :|x|≤2,条件q :x≤a,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a≥2B .a≤2C .a≥-2D .a≤-2 答案 A解析 因为|x|≤2,则p :-2≤x≤2,q :x≤a,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a≥2,选A.4.[2015·江西八校联考]已知O 为坐标原点,点M 的坐标为(-2,1),在平面区域⎩⎪⎨⎪⎧x≥0x +y≤2y≥0上取一点N ,则使|MN|取得最小值时,点N 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(2,0)答案 B解析 作出不等式组表示的区域,如图阴影部分所示,当MN ⊥y 轴时,|MN|取到最小值,即N(0,1).5.[2015·南昌一模]已知实数x ,y 满足⎩⎪⎨⎪⎧x +1-y≥0x +y -4≤0y≥m ,若目标函数z =2x +y 的最大值与最小值的差为2,则实数m 的值为( )A.4 B .3 C .2 D .-12答案 C解析 ⎩⎪⎨⎪⎧x +1-y≥0x +y -4≤0y≥m表示的可行域如图中阴影部分所示.将直线l 0:2x +y =0向上平移至过点A ,B 时,z =2x +y 分别取得最小值与最大值.由⎩⎪⎨⎪⎧x +1-y =0y =m 得A(m -1,m),由⎩⎪⎨⎪⎧x +y -4=0y =m得B(4-m ,m),所以z min =2(m -1)+m =3m -2,z max =2(4-m)+m =8-m ,所以z max -z min =8-m -(3m -2)=2,解得m =2.6.[2015·福建高考]若直线x a +yb =1(a>0,b>0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5答案 C解析 解法一:因为直线x a +y b =1(a>0,b>0)过点(1,1),所以1a +1b =1,所以1=1a +1b ≥21a ·1b =2ab(当且仅当a =b =2时取等号),所以ab ≥2.又a +b≥2ab(当且仅当a =b =2时取等号),所以a +b≥4(当且仅当a =b =2时取等号),故选C.解法二:因为直线x a +y b =1(a>0,b>0)过点(1,1),所以1a +1b =1,所以a +b =(a +b)⎝ ⎛⎭⎪⎫1a +1b =2+a b +ba≥2+2a b ·ba=4(当且仅当a =b =2时取等号),故选C. 7.[2015·兰州诊断]已知不等式组⎩⎪⎨⎪⎧x +y≤1x -y≥-1y≥0所表示的平面区域为D ,若直线y=kx -3与平面区域D 有公共点,则k 的取值范围为( )A .[-3,3]B.⎝ ⎛⎦⎥⎤-∞,-13∪⎣⎢⎡⎭⎪⎫13,+∞ C .(-∞,-3]∪[3,+∞)D.⎣⎢⎡⎦⎥⎤-13,13答案 C解析 满足约束条件的平面区域如图中阴影部分所示.因为直线y =kx -3过定点(0,-3),所以当y =kx -3过点C(1,0)时,k =3;当y =kx -3过点B(-1,0)时,k =-3,所以k≤-3或k≥3时,直线y =kx -3与平面区域D 有公共点,故选C.8.[2015·河北省名校联盟监测(二)]函数y =log a (x +3)-1(a>0,且a≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m>0,n>0,则2m +1n的最小值为( )A.2 2 B .4 C.52 D.92答案 D解析 由函数y =log a (x +3)-1(a>0,且a≠1)的解析式知:当x =-2时,y =-1,所以A 点的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2=92,当且仅当m =n =23时等号成立.所以2m +1n 的最小值为92,故选D.9.[2015·九江一模]若实数x ,y 满足|x -3|≤y≤1,则z =2x +y x +y 的最小值为( )A.53 B .2 C.35 D.12 答案 A解析 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0x -y -3≤00≤y≤1,画出可行域如图阴影部分所示,其中A(3,0),C(2,1),z =2+y x 1+y x =1+11+y x∈⎣⎢⎡⎦⎥⎤53,2,故选A. 10.若不等式t t 2+9≤a≤t +2t2在t ∈(0,2]上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤16,1B.⎣⎢⎡⎦⎥⎤16,22 C.⎣⎢⎡⎦⎥⎤16,413 D.⎣⎢⎡⎦⎥⎤213,1答案 D 解析t t 2+9=1t +9t ,而y =t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t≤213(当且仅当t =2时等号成立),t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18,因为1t ≥12,所以t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18≥1(当且仅当t =2时等号成立),故a 的取值范围为⎣⎢⎡⎦⎥⎤213,1. 二、填空题11.[2014·福建高考]要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案 160解析 设底面边长x m ,宽y m ,则x×y×1=4,∴xy =4,设造价为z ,∴z =20xy +10×2(x+y)=80+20(x +y)≥80+20×2xy =80+20×24=160(元),当且仅当x =y =2时,等号成立.12.[2015·陕西质检(二)]若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是________.答案 ⎝ ⎛⎭⎪⎫14,1 解析 令f(x)=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎪⎨⎪⎧,∴⎩⎪⎨⎪⎧b>0a +2b<-1.a +b>-2根据约束条件作出可行域,可知14<b -2a -1<1.13.[2015·辽宁五校联考]设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0x -y +2≥0x≥0y≥0,若目标函数z =ax +by(a>0,b>0)的最大值为10,则a 2+b 2的最小值为________.答案2513解析 因为a>0,b>0,所以由可行域得,当目标函数z =ax +by 过点(4,6)时取最大值,则4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么最小值是点(0,0)到直线4a +6b =10距离的平方,即a 2+b 2的最小值是2513.14.[2015·江西八校联考]已知点P(x ,y)到A(0,4)和B(-2,0)的距离相等,则2x+4y的最小值为________.答案 4 2解析 由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3, ∴2x+4y≥22x·4y=22x +2y=42,当且仅当x =2y =32时,即x =32,y =34时等号成立,故2x+4y 的最小值为4 2.。
2016届高考数学二轮复习 限时训练3 不等式、线性规划 理(建议用时30分钟)1.(2016·贵州贵阳模拟)下列命题中正确的是( ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >b C .若a c 2<b c2,则a <bD .若a >b ,c >d ,则a -c >b -d解析:选C.A 、B 不符合不等式乘法性质,缺少“>0”,而C 中,显然c 2>0.符合性质.2.已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2,上的一个动点,则OA →·OM →的取值范围是( ) A .[-1,0] B .[0,1] C .[0,2]D .[-1,2]解析:选C.作出可行域,如图所示,由题意OA →·OM →=-x +y .设z =-x +y ,作l 0:x -y =0,易知,过点(1,1)时z 有最小值,z min =-1+1=0;过点(0,2)时z 有最大值,z max =0+2=2,∴OA →·OM →的取值范围是[0,2],故选C.3.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,43 B.⎝ ⎛⎭⎪⎫-∞,13C.⎝ ⎛⎭⎪⎫-∞,-23D.⎝⎛⎭⎪⎫-∞,-53 解析:选C.作出不等式组表示的平面区域,根据题设条件分析求解.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.4.若x ∈[0,+∞),则下列不等式恒成立的是( ) A .e x≤1+x +x 2B.11+x ≤1-12x +14x 2C .cos x ≥1-12x 2D .ln(1+x )≥x -18x 2解析:选C.根据所给选项中不等式的特征构造函数求解.设f (x )=cos x +12x 2-1,则f ′(x )=-sin x +x ≥0(x ≥0),所以f (x )=cos x +12x 2-1是增函数,所以f (x )=cos x +12x 2-1≥f (0)=0,即cos x ≥1-12x 2.故选C.5.设变量x ,y 满足|x -1|+|y -a |≤1,若2x +y 的最大值是5,则实数a 的值是( ) A .2 B .1 C .0D .-1解析:选B.作出满足条件的平面区域,如图阴影部分所示,由图可知当目标函数z =2x +y 经过点(2,a )时取得最大值5,即2×2+a =5,解得a =1,故选B.6.设x ,y ∈R ,a >1,b >1,若a x =b y =2,a 2+b =4,则2x +1y的最大值为( )A .1B .2C .3D .4解析:选 B.由a x=b y=2得x =log a 2=1log 2a ,y =log b 2=1log 2b ,2x +1y=2log 2a +log 2b =log 2(a 2·b )≤log 2⎝ ⎛⎭⎪⎫a 2+b 22=2(当且仅当a 2=b =2时取等号),故选B.7.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( ) A .80元 B .120元 C .160元D .240元解析:选C.设底面矩形的一条边长是x m ,总造价是y 元,把y 与x 的函数关系式表示出来,再利用均值(基本)不等式求最小值.由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4xm ,又设总造价是y 元,则y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x=160,当且仅当2x =8x,即x =2时取得等号,故选C.8.若正实数x ,y 满足x +y +1=xy ,则x +2y 的最小值是( ) A .3 B .5 C .7D .8解析:选C.由x +y +1=xy ,得y =x +1x -1, 又y >0,x >0,∴x >1. ∴x +2y =x +2×x +1x -1=x +2×⎝ ⎛⎭⎪⎫1+2x -1=x +2+4x -1=3+(x -1)+4x -1≥3+4=7, 当且仅当x =3时取“=”.故选C.9.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0,所表示的区域上一动点,则直线OM 斜率的最小值为( ) A .2 B .1 C .-13D .-12解析:选C.画出图形,数形结合得出答案.如图所示,⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的平面区域为图中的阴影部分.由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0,得A (3,-1).当M 点与A 重合时,OM 的斜率最小,k OM =-13,故选C.10.已知a >b ,二次三项式ax 2+2x +b ≥0对于一切实数x 恒成立.又∃x 0∈R ,使ax 20+2x 0+b =0成立,则a 2+b 2a -b的最小值为( )A .1 B. 2 C .2D .2 2解析:选D.由题知a >0且Δ=4-4ab ≤0⇒ab ≥1,又由题知Δ=4-4ab ≥0⇒ab ≤1,因此ab =1,a 2+b 2a -b =a -b 2+2ab a -b =a -b +2a -b≥22(当且仅当(a -b )2=2时等号成立),故选D.11.若不等式m ≤12x +21-x 在x ∈(0,1)时恒成立,则实数m 的最大值为( )A .9 B.92C .5 D.52解析:选B.12x +21-x =⎝ ⎛⎭⎪⎫12x +92x +⎣⎢⎡⎦⎥⎤92-x +21-x-92≥2 12x ×92x +2 92-x ⎝⎛⎭⎪⎫21-x -92=2×32+2×3-92=9-92=92,当且仅当⎩⎪⎨⎪⎧12x =92x ,92-x =21-x,即x =13时取得等号,所以实数m 的最大值为92,故选B.12.已知定义在R 上的函数f (x )满足f (1)=1,且f (x )的导数f ′(x )在R 上恒有f ′(x )<12,则不等式f (x 2)<x 22+12的解集为( )A .(1,+∞)B .(-∞,-1)C .(-1,1)D .(-∞,-1)∪(1,+∞)解析:选D.记g (x )=f (x )-12x -12,则有g ′(x )=f ′(x )-12<0,g (x )是R 上的减函数,且g (1)=f (1)-12×1-12=0.不等式f (x 2)<x 22+12,即f (x 2)-x 22-12<0,g (x 2)<0=g (1),由g (x )是R 上的减函数得x 2>1,解得x <-1或x >1,即不等式f (x 2)<x 22+12的解集是(-∞,-1)∪(1,+∞).故选D.13.若实数x ,y 满足|xy |=1,则x 2+4y 2的最小值为________. 解析:x 2+4y 2≥24x 2y 2=4|xy |=4. 答案:414.若不等式组⎩⎪⎨⎪⎧x -y +2≥0ax +y -2≤0y ≥0表示的平面区域的面积为3,则实数a 的值是________.解析:作出可行域,如图中阴影部分所示,区域面积S =12⎝ ⎛⎭⎪⎫2a +2×2=3,解得a =2.答案:215.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0x ≥12x +y -8≤0,则yx的取值范围是________.解析:如图,画出可行域,易得A (2,4),B (1,6),∴它们与原点连线的斜率分别为k 1=2,k 2=6,又y x =y -0x -0,∴k 1≤y x ≤k 2,即2≤yx≤6.答案:[2,6]16.(2016·唐山市模拟)已知x ,y ∈R ,满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________.解析:∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4,当且仅当x =2y 时取等号. 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6, ∴z =x 2+4y 2=6-2xy ≤12. 综上可得4≤x 2+4y 2≤12. 答案:[4,12]。
1.若点A (m ,n )在第一象限,且在直线x 3+y 4=1上,则mn 的最大值是( )
A.3
B.4
C.7
D.12
2.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( )
A.1
B.2
C.3
D.4
3.已知约束条件⎩⎪⎨⎪⎧x -2y +1≤0,ax -y ≥0,x ≤1
表示的平面区域为D ,若区域D 内至少有一个点在函数y =e x 的图象上,那么实数a 的取值范围为( )
A.[e ,4)
B.[e ,+∞)
C.[1,3)
D.[2,+∞)
4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,
则z =2x -y 的最小值等于________. 5.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.
6.已知函数f (x )=2x x 2+6
. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值;
(2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围.
7.如图,建立平面直角坐标系xOy ,x 轴在地平面上, y 轴垂直于地平面,单位长度为1
千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线
上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.
8.已知函数f (x )=13ax 3-bx 2+(2-b )x +1在x =x 1处取得极大值,在x =x 2处取得极小值,
且0<x 1<1<x 2<2.
(1)证明:a >0; (2)若z =a +2b ,求z 的取值范围.
9.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1<0对任意实数x 恒成立,求实数a 的取值
范围.
10.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x . (1)求函数g (x )的解析式;
(2)解不等式g (x )≥f (x )-|x -1|.
11.若当a ∈[1,3]时,不等式ax 2+(a -2)x -2>0恒成立,求实数x 的取值范围.
12.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1,记f (x )≤1的解集为M ,g (x )≤4的解集为N . (1)求M ;
(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.
13.若对一切x >2均有不等式x 2-2x -8≥(m +2)x -m -15成立,求实数m 的取值范围.
14.某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的,是面积为200平方米的十字形地带.计划在正方MNPQ 上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.
(1)设总造价是S 元,AD 长为x 米,试建立S 关于x 的函数关系式;
(2)当x 为何值时,S 最小?并求出最小值.。