高考数学解析几何基础小题训练
- 格式:doc
- 大小:964.44 KB
- 文档页数:13
数学高考《平面解析几何》复习资料一、选择题1.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =, 所以2212||46413F F =+=13c ⇒=因为2521a x a =-=⇒=,所以23b = 所以双曲线的渐近线方程为23by x x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.2.设抛物线E :26y x =的弦AB 过焦点F ,||3||AF BF =,过A ,B 分别作E 的准线的垂线,垂足分别是A ',B ',则四边形AA B B ''的面积等于( ) A .3B .3C .163D .3【答案】C 【解析】 【分析】由抛物线的方程可得焦点坐标及准线方程,设直线AB 的方程,与抛物线联立求出两根之和及两根之积,进而求出弦长AB ,由抛物线的性质可得梯形的上下底之和求出,求出A ,B 的纵坐标之差的绝对值,代入梯形的面积公式即可求出梯形的面积. 【详解】解:由抛物线的方程 可得焦点3(2F ,0),准线方程:32x =-,由题意可得直线AB 的斜率存在且不为0,设直线AB的方程为:32x my =+,1(A x ,1)y ,2(B x ,2)y ,联立直线与抛物线的方程:2326x my y x⎧=+⎪⎨⎪=⎩,整理可得:2690y my --=,所以126y y m +=,129y y =-,21212()363x x m y y m +=++=+, 因为||3||AF BF =,所以3AF FB =uu u r uu r,即13(2x -,123)3(2y x -=-,2)y ,可得:123y y =-, 所以可得:2222639y m y -=⎧⎨-=-⎩即213m =, 由抛物线的性质可得: 21233166668223AA BB AB x x m ''+==+++=+=+=g , 221212121||()436363636433y y y y y y m -=+-=+=+=g ,由题意可知,四边形AA B B ''为直角梯形,所以1211()||84316322AA B B S AA BB y y ''''=+-==gg g , 故选:C .【点睛】本题考查抛物线的性质及直线与抛物线的相交弦长,梯形的面积公式,属于中档题.3.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, 233AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤, 在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn ABAFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.4.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45B .23C .34D .13【答案】A 【解析】 【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值.【详解】由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为ab-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.5.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =±B .12y x =±C .2y x =±D .3y x =±【答案】C 【解析】 【分析】由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上.由212PF PF =及212PF PF a -=,得12PF a =,24PF a =, 再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF , 从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c aMOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos aMOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±.故选:C. 【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.6.已知直线(3)(0)y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,F 为C 的焦点.若5FA FB =,则k 等于( )A .3B .12C .23D .2【答案】B 【解析】 【分析】 由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->,得213k <,129x x =①,再利用抛物线的定义根据5FA FB =,得到1254x x =+②,从而求得21x =,代入抛物线方程得到(1,2)B ,再代入直线方程求解. 【详解】设()11,A x y ,()22,B x y ,易知1 0x >,20x >,10y >,20y >,由2(3)4y k x y x=+⎧⎨=⎩,得()22226490k x k x k +-+=,()22464360k k ∆=-->, 所以213k <,129x x =①.因为1112p FA x x =+=+,2212pFB x x =+=+,且5FA FB =, 所以1254x x =+②.由①②及20x >得21x =, 所以(1,2)B ,代入(3)y k x =+,得12k =. 故选:B 【点睛】本题考查抛物线的定义,几何性质和直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.7.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴23OP =,在POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,23OP =∴36PQ OP ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.8.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .C .D .【答案】D 【解析】试题分析:渐近线的方程为,而,因此渐近线的方程为,选D.考点:双曲线渐近线9.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.10.设P 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点,延长1FP 至点Q ,使得2PQ PF =,则动点Q 的轨迹方程为( )A .22(x 2)y 28-+=B .22(x 2)y 7++=C .22(x 2)y 28++=D .22(x 2)y 7-+= 【答案】C 【解析】 【分析】推导出12PF PF 2a +==2PQ PF =,从而11PFPQ FQ +==Q 的轨迹为圆,由此能求出动点Q 的轨迹方程. 【详解】P Q 为椭圆C :22x y 173+=上一动点,1F ,2F 分别为左、右焦点, 延长1FP 至点Q ,使得2PQ PF =,12PF PF 2a ∴+==2PQ PF =,11PF PQ FQ ∴+==, Q ∴的轨迹是以()1F 2,0-为圆心,为半径的圆, ∴动点Q 的轨迹方程为22(x 2)y 28++=.故选:C . 【点睛】本题考查动点的轨迹方程的求法,考查椭圆的定义、圆的标准方程等基础知识,考查运算求解能力,是中档题.11.已知椭圆()2222:10x y C a b a b+=>>的右焦点()(),0F c c b >,O 为坐标原点,以OF 为直径的圆交圆222x y b +=于P 、Q 两点,且PQ OF =,则椭圆C 的离心率为( )A B .12C .2D【答案】D 【解析】 【分析】设点P 为两圆在第一象限的交点,利用对称性以及条件PQ OF =可得出点P 的坐标为,22c c ⎛⎫ ⎪⎝⎭,再将点P 的坐标代入圆222x y b +=的方程,可得出2b 与2c 的等量关系,由此可得出椭圆的离心率的值. 【详解】如下图所示,设点P 为两圆在第一象限的交点,设OF 的中点为点M ,由于两圆均关于x 轴对称,则两圆的交点P 、Q 也关于x 轴对称,又PQ OF c ==,则PQ 为圆M 的一条直径,由下图可知,PM x ⊥轴,所以点P 的坐标为,22c c ⎛⎫⎪⎝⎭,将点P 的坐标代入圆222x y b +=得22222c c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,可得2222222c b a c ==-, 所以,2223a c =,因此,椭圆的离心率为222633c c e a a ==== D. 【点睛】本题考查椭圆离心率的计算,根据题意得出a 、b 、c 的等量关系是解题的关键,考查运算求解能力,属于中等题.12.已知曲线C 的方程为22121x y m m+=-,现给出下列两个命题:p :102m <<是曲线C 为双曲线的充要条件,q :12m > 是曲线C 为椭圆的充要条件,则下列命题中真命题的是( )A .()()p q ⌝∧⌝B .()p q ⌝∧C .()p q ∧⌝D .p q ∧【答案】C【解析】 【分析】根据充分必要条件及双曲线和椭圆定义,分别判定命题p 与命题q 的真假,进而判断出复合命题的真假. 【详解】若曲线C 为双曲线,则()210m m -< ,可解得102m << 若102m <<,则()210m m -<,所以命题p 为真命题 若曲线C 为椭圆,则12m >且m≠1,所以命题q 为假命题 因而()p q ∧⌝为真命题 所以选C 【点睛】本题考查了椭圆与双曲线的标准方程,充分必要条件的判定,属于基础题.13.已知双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点,若121cos 4F MF ∠=,122MF MF =,则此双曲线渐近线方程为( ) A.y = B.3y x =±C .y x =±D .2y x =±【答案】A 【解析】 【分析】因为M 为双曲线上一点,可得122MF MF a -=,在12F MF ∆使用余弦定理,结合已知条件即可求得答案. 【详解】Q 双曲线()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,M 为双曲线上一点 ∴ 121222MF MF a MF MF ⎧-=⎪⎨=⎪⎩,解得:14MF a =,22MF a = 在12F MF ∆中,根据余弦定理可得:∴ 12121222122c 2os F F MF MF M MF MF F F ∠=+-⋅⋅可得:2221(2)(4)(2)2424c a a a a =+-⋅⋅⋅ 化简可得:2c a =由双曲线性质可得:22222243b c a a a a =-=-= 可得:b =Q 双曲线渐近线方程为:b y x a=±则双曲线渐近线方程为: y = 故选:A. 【点睛】本题考查了求双曲线渐近线方程问题,解题关键是掌握双曲线的基本知识,数形结合,考查分析能力和计算能力,属于中档题.14.已知1F ,2F 是双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点A 是双曲线上第二象限内一点,且直线1AF 与双曲线的一条渐近线by x a=平行,12AF F ∆的周长为9a ,则该双曲线的离心率为( )A .2 BC .3D.【答案】A 【解析】 【分析】根据双曲线的定义,结合三角形的周长可以求出1AF 和2AF 的表达式,根据线线平行,斜率的关系,结合余弦定理进行求解即可. 【详解】由题意知212AF AF a -=,2192AF AF a c +=-, 解得21122a c AF -=,1722a cAF -=, 直线1AF 与by x a =平行,则12tan b AF F a ∠=,得12cos a AF F c∠=, 222121214cos 22AF c AF a AF F c AF c+-∠==⋅, 化简得22280c ac a +-=,即2280e e +-=,解得2e =. 故选:A 【点睛】本题考查求双曲线的离心率,考查了双曲线的定义的应用,考查了余弦定理的应用,考查了数学运算能力.15.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知双曲线()2222100x y C a b a b-=:>,>的一条渐近线与圆22(4x y +-=相交于A ,B 两点,若|AB |=2,则C 的离心率为( )A BC .2D .4【答案】C 【解析】 【分析】求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可. 【详解】由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,圆22(4x y +-=的圆心为(0,,半径为2,由题意及|AB |=2,可得22212+=,222123a a b=+,即b 2=3a 2,可得c 2﹣a 2=3a 2,即224c a = 所以e ca==2.故选:C . 【点睛】本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.17.已知双曲线222:41(0)x C y a a -=>的右顶点到其一条渐近线的距离等于34,抛物线2:2E y px =的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-距离之和的最小值为( )A .1B .2C .3D .4【答案】B 【解析】分析:由双曲线的右顶点到渐近线的距离求出234a =,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M 到直线2l 的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程22241(0)x y a a-=>可得,双曲线的右顶点为(,0)a ,渐近线方程为12y x a=±,即20x ay ±=. ∵双曲线的右顶点到渐近线的距离等于3, ∴2314a =+,解得234a =,∴双曲线的方程为224413x y -=,∴双曲线的焦点为(1,0).又抛物线2:2E y px =的焦点与双曲线C 的右焦点重合, ∴2p =,∴抛物线的方程为24y x =,焦点坐标为(1,0)F .如图,设点M 到直线1l 的距离为||MA ,到直线2l 的距离为||MB ,则MB MF =, ∴MA MB MA MF +=+.结合图形可得当,,A M F 三点共线时,MA MB MA MF +=+最小,且最小值为点F 到直线1l 的距离22416243d ⨯+==+.故选B .点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.18.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2a C 2aD .22a 【答案】D 【解析】 【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可. 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 则ABEG 四点共面, 且平面1//A BGE 平面1B HI , 又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==,即F 在侧面11CDD C 上的轨迹的长度是22a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.19.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C .23D .13【答案】A 【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即22d a a b==+,整理可得223a b =,即()2223,a a c=-即2223ac =,从而22223c e a ==,则椭圆的离心率2633c e a ===, 故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.20.过双曲线()2222100x y a b a b-=>>,的右焦点且垂直于x 轴的直线与双曲线交于A B ,两点,OAB ∆,则双曲线的离心率为( )A B C .2D .3【答案】D 【解析】 【分析】令x c =,代入双曲线方程可得2by a=±,由三角形的面积公式,可得,a b 的关系,由离心率公式计算可得所求值. 【详解】右焦点设为F ,其坐标为(),0c令x c =,代入双曲线方程可得2by a=±=±OAB V 的面积为21223b c a ⋅⋅= 3b a ⇒=可得3c e a ==== 本题正确选项:D 【点睛】本题考查双曲线的对称性、考查双曲线的离心率和渐近线方程,属于中档题.。
全国高考数学专题汇编:解析几何一.选择题(共21小题)1.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.42.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.23.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.4.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.325.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD ⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(2019•新课标Ⅰ)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin40°B.2cos40°C.D.7.(2019•新课标Ⅰ)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过点F2的直线与椭圆C交于A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=18.(2019•新课标Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.89.(2019•新课标Ⅱ)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.10.(2019•新课标Ⅲ)已知F是双曲线C:﹣=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.11.(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.12.(2018•新课标Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣113.(2018•新课标Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 14.(2018•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2C.D.215.(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A 的坐标是(1,3),则△APF的面积为()A.B.C.D.16.(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)17.(2017•新课标Ⅱ)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)18.(2017•新课标Ⅱ)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l 为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.319.(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.20.(2016•新课标Ⅰ)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.21.(2016•新课标Ⅲ)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.二.填空题(共4小题)22.(2019•新课标Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.23.(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|=.24.(2017•新课标Ⅲ)双曲线(a>0)的一条渐近线方程为y=x,则a=.25.(2016•新课标Ⅰ)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.参考答案一.选择题(共21小题)1.B;2.B;3.B;4.B;5.B;6.D;7.B;8.D;9.A;10.B;11.C;12.D;13.A;14.D;15.D;16.A;17.C;18.C;19.A;20.B;21.A;二.填空题(共4小题)22.(3,);23.2;24.5;25.4π;三.解答题(共15小题)26.(2020•新课标Ⅰ)已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,•=8.P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【解答】解:(1)由题设得,A(﹣a,0),B(a,0),G(0,1),则,,由得a2﹣1=8,即a=3,所以E的方程为.(2)设C(x1,y1),D(x2,y2),P(6,t),若t≠0,设直线CD的方程为x=my+n,由题可知,﹣3<n<3,由于直线P A的方程为,所以,同理可得,于是有3y1(x2﹣3)=y2(x1+3)①.由于,所以,将其代入①式,消去x2﹣3,可得27y1y2=﹣(x1+3)(x2+3),即②,联立得,(m2+9)y2+2mny+n2﹣9=0,所以,,代入②式得(27+m2)(n2﹣9)﹣2m(n+3)mn+(n+3)2(m2+9)=0,解得n=或﹣3(因为﹣3<n<3,所以舍﹣3),故直线CD的方程为,即直线CD过定点(,0).若t=0,则直线CD的方程为y=0,也过点(,0).综上所述,直线CD过定点(,0).27.(2020•新课标Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.【解答】解:(1)由题意设抛物线C2的方程为:y2=4cx,焦点坐标F为(c,0),因为AB⊥x轴,将x =c代入抛物线的方程可得y2=4c2,所以|y|=2c,所以弦长|CD|=4c,将x=c代入椭圆C1的方程可得y2=b2(1﹣)=,所以|y|=,所以弦长|AB|=,再由|CD|=|AB|,可得4c=,即3ac=2b2=2(a2﹣c2),整理可得2c2+3ac﹣2a2=0,即2e2+3e﹣2=0,e∈(0,1),所以解得e=,所以C1的离心率为;(2)由椭圆的方程可得4个顶点的坐标分别为:(±a,0),(0,±b),而抛物线的准线方程为:x=﹣c,所以由题意可得2c+a+c+a﹣c=12,即a+c=6,而由(1)可得=,所以解得:a=4,c=2,所以b2=a2﹣c2=16﹣4=12,所以C1的标准方程为:+=1,C2的标准方程为:y2=8x.28.(2020•新课标Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.【解答】解:(1)由e=得e2=1﹣,即=1﹣,∴m2=,故C的方程是:+=1;(2)代数方法:由(1)A(﹣5,0),设P(s,t),点Q(6,n),根据对称性,只需考虑n>0的情况,此时﹣5<s<5,0<t≤,∵|BP|=|BQ|,∴有(s﹣5)2+t2=n2+1①,又∵BP⊥BQ,∴s﹣5+nt=0②,又+=1③,联立①②③得或,当时,则P(3,1),Q(6,2),而A(﹣5,0),则(法一)=(8,1),=(11,2),∴S△APQ==|8×2﹣11×1|=,同理可得当时,S△APQ=,综上,△APQ的面积是.法二:∵P(3,1),Q(6,2),∴直线PQ的方程为:x﹣3y=0,∴点A到直线PQ:x﹣3y=0的距离d=,而|PQ|=,∴S△APQ=••=.数形结合方法:如图示:①当P点在y轴左侧时,过P点作PM⊥AB,直线x=6和x轴交于N(6,0)点,易知△PMB≌△BQN,∴NB=PM=1,故y=1时,+=1,解得:x=±3,(x=3舍),故P(﹣3,1),易得BM=8,QN=8,故S△APQ=S△AQN﹣S△APB﹣S△PBQ﹣S△BQN=(11×8﹣10×1﹣(1+65)﹣1×8)=,②当P点在y轴右侧时,同理可得x=3,即P(3,1),BM=2,NQ=2,故S△APQ=,综上,△APQ的面积是.29.(2019•新课标Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解答】解:∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d=,又|AB|=4,∴在Rt△OMB中,d2+(|AB|)2=R2,即①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得或,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.30.(2019•新课标Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.【解答】解:(1)连接PF1,由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故曲线C的离心率e==﹣1.(2)由题意可知,满足条件的点P(x,y)存在当且仅当:|y|•2c=16,•=﹣1,+=1,即c|y|=16,①x2+y2=c2,②+=1,③由②③及a2=b2+c2得y2=,又由①知y2=,故b=4,由②③得x2=(c2﹣b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4,当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).31.(2019•新课标Ⅲ)已知曲线C:y=,D为直线y=﹣上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点.(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.【解答】(1)证明:设D(t,﹣),A(x1,y1),则,由于y′=x,∴切线DA的斜率为x1,故,整理得:2tx1﹣2y1+1=0.设B(x2,y2),同理可得2tx2﹣2y2+1=0.故直线AB的方程为2tx﹣2y+1=0.∴直线AB过定点(0,);(2)解:由(1)得直线AB的方程y=tx+.由,可得x2﹣2tx﹣1=0.于是.设M为线段AB的中点,则M(t,),由于,而,与向量(1,t)平行,∴t+(t2﹣2)t=0,解得t=0或t=±1.当t=0时,||=2,所求圆的方程为;当t=±1时,||=,所求圆的方程为.32.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N 两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,所以M(2,2)或M(2,﹣2),直线BM的方程:y=x+1,或:y=﹣x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=+===0,所以直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.33.(2018•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)由(1)可得AB的中点坐标为D(3,2),则直线AB的垂直平分线方程为y﹣2=﹣(x﹣3),即y =﹣x+5,设所求圆的圆心坐标为(x0,y0),则,解得:或,因此,所求圆的方程为(x﹣3)2+(y﹣2)2=16或(x﹣11)2+(y+6)2=144.34.(2018•新课标Ⅲ)已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M (1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴k=﹣.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,∴x3=1由椭圆的焦半径公式得则|F A|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|F A|+|FB|=4﹣,∴|F A|+|FB|=2|FP|,35.(2017•新课标Ⅰ)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解答】解:(1)设A(x1,),B(x2,)为曲线C:y=上两点,则直线AB的斜率为k==(x1+x2)=×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=的导数为y′=x,设M(m,),可得M处切线的斜率为m,由C在M处的切线与直线AB平行,可得m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为•=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t=7.则直线AB的方程为y=x+7.36.(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+m sinα﹣2sin2α=1,当α=0时,上式不成立,则0<α<2π,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由•=(﹣1﹣cosα,﹣sinα)•(﹣3,)=3+3cosα﹣3(1+cosα)=0.可得过点P且垂直于OQ的直线l过C的左焦点F.另解:设Q(﹣3,t),P(m,n),由•=1,可得(m,n)•(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,又P在圆x2+y2=2上,可得m2+n2=2,即有nt=3+3m,又椭圆的左焦点F(﹣1,0),•=(﹣1﹣m,﹣n)•(﹣3,t)=3+3m﹣nt=3+3m﹣3﹣3m=0,则⊥,可得过点P且垂直于OQ的直线l过C的左焦点F.37.(2017•新课标Ⅲ)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.【解答】解:(1)曲线y=x2+mx﹣2与x轴交于A、B两点,可设A(x1,0),B(x2,0),由韦达定理可得x1x2=﹣2,若AC⊥BC,则k AC•k BC=﹣1,即有•=﹣1,即为x1x2=﹣1这与x1x2=﹣2矛盾,故不出现AC⊥BC的情况;(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0),由题意可得y=0时,x2+Dx+F=0与x2+mx﹣2=0等价,可得D=m,F=﹣2,圆的方程即为x2+y2+mx+Ey﹣2=0,由圆过C(0,1),可得0+1+0+E﹣2=0,可得E=1,则圆的方程即为x2+y2+mx+y﹣2=0,另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),则由相交弦定理可得|OA|•|OB|=|OC|•|OH|,即有2=|OH|,再令x=0,可得y2+y﹣2=0,解得y=1或﹣2.即有圆与y轴的交点为(0,1),(0,﹣2),则过A、B、C三点的圆在y轴上截得的弦长为定值3.38.(2016•新课标Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p >0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.39.(2016•新课标Ⅱ)已知A是椭圆E:+=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:<k<2.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(﹣2,0),∵|AM|=|AN|,且MA⊥NA,∴△AMN为等腰直角三角形,∴MN⊥x轴,设M的纵坐标为a,则M(a﹣2,a),∵点M在E上,∴3(a﹣2)2+4a2=12,整理得:7a2﹣12a=0,∴a=或a=0(舍),∴S△AMN=a×2a=a2=;(II)设直线l AM的方程为:y=k(x+2),直线l AN的方程为:y=﹣(x+2),由消去y得:(3+4k2)x2+16k2x+16k2﹣12=0,∴x M﹣2=﹣,∴x M=2﹣=,∴|AM|=|x M﹣(﹣2)|=•=∵k>0,∴|AN|==,又∵2|AM|=|AN|,∴=,整理得:4k3﹣6k2+3k﹣8=0,设f(k)=4k3﹣6k2+3k﹣8,则f′(k)=12k2﹣12k+3=3(2k﹣1)2≥0,∴f(k)=4k3﹣6k2+3k﹣8为(0,+∞)的增函数,又f()=4×3﹣6×3+3﹣8=15﹣26=﹣<0,f(2)=4×8﹣6×4+3×2﹣8=6>0,∴<k<2.40.(2016•新课标Ⅲ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△P AR≌△F AR,∴∠P AR=∠F AR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠P AF=2∠P AR,∴∠FQB=∠P AR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,∴S△ABF=|FN||y1﹣y2|,∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.。
高考数学解析几何练习题及答案解析几何是高考数学中的一个重要知识点,对于考生来说具有一定的难度。
为了帮助广大考生更好地复习和应对高考数学解析几何部分,本文提供一些常见的解析几何练习题及其答案。
考生可以借此进行自测和巩固知识点,提升解析几何的解题能力。
题目一:已知三角形ABC的顶点坐标分别为A(-3,1),B(4,2),C(1,-3),求三角形ABC的周长和面积。
解析和求解:首先,我们可以利用两点之间的距离公式计算出三角形ABC的三边长度。
设点A的坐标为(x1,y1),点B的坐标为(x2,y2),则两点之间的距离公式为d = √[(x2-x1)^2 + (y2-y1)^2]。
根据该公式,我们可以计算出:AB的距离:dAB = √[(4-(-3))^2 + (2-1)^2] = √[7^2 + 1^2] = √50BC的距离:dBC = √[(1-4)^2 + (-3-2)^2] = √[(-3)^2 + (-5)^2] = √34AC的距离:dAC = √[(-3-1)^2 + (1-(-3))^2] = √[(-4)^2 + 4^2] = √32所以,三角形ABC的周长等于AB+BC+AC,即周长=√50+√34+√32。
接下来,我们可以利用海伦公式来计算三角形ABC的面积。
海伦公式可以表示为:面积=√[s(s-a)(s-b)(s-c)],其中s为三角形的半周长,即s=(a+b+c)/2。
由此,我们可以计算出半周长s=(√50+√34+√32)/2,将其代入海伦公式,即可得到三角形ABC的面积。
题目二:设直线l1过点A(-1,2)且与直线l2:2x-y-3=0平行,求直线l1的方程。
解析和求解:首先,根据题目提示,直线l1与l2平行,可以推知l1与l2的斜率相同。
斜率可以通过直线的一般方程式y=ax+b中的a来表示。
要求得直线l1的方程,我们需要先求出直线l2的斜率k。
直线l2的一般方程式为2x-y-3=0,将其转换为斜截式方程式y=2x-3,可以看出斜率k=2。
高考数学解析几何专题练习解析版82页1.一个顶点的坐标2,0,焦距的一半为3的椭圆的标准方程是()A.19422yxB.14922yxC.113422yxD.141322yx2.已知双曲线的方程为22221(0,0)x y a b ab,过左焦点F 1作斜率为3的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( )A .3B .32C .31D .323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+ m 4的值为()A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB.45oC.60oD.120o5.已知曲线C 的极坐标方程ρ=22cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上(B)P 、Q 都不在曲线C 上(C)P 不在曲线C 上,Q 在曲线C 上(D)P 、Q 都在曲线C 上6.点M 的直角坐标为)1,3(化为极坐标为()A .)65,2( B.)6,2( C .)611,2( D.)67,2(7.曲线的参数方程为12322tyt x (t 是参数),则曲线是()A 、线段B 、直线C 、圆D 、射线8.点(2,1)到直线3x-4y+2=0的距离是()A .54B .45C .254D .4259.圆06422y x yx的圆心坐标和半径分别为()A.)3,2(、13B.)3,2(、13 C.)3,2(、13 D.)3,2(、1310.椭圆12222by x的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN,则该椭圆离心率取得最小值时的椭圆方程为( )A.1222yxB.13222yxC.12222yxD.13222yx11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB 是直角三角形,则此双曲线的离心率e 的值为()A .32B .2C .2D .312.已知)0(12222baby ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021k k ,则21k k 的最小值为1,则椭圆的离心率为( ).(A)22 (B) 42 (C)23 (D)4313.设P 为双曲线11222yx上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21PF PF ,则△PF 1F 2的面积为()A .36B .12C .123D .2414.如果过点m P,2和4,m Q 的直线的斜率等于1,那么m 的值为( )A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516xy 上,若A 点坐标为(3,0),||1AM ,且0PM AM 则||PM 的最小值是()A .2 B.3 C.2 D.316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D、17.已知椭圆2222:1(0)x y C a b ab>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AFFB ,则k()(A )1(B )2(C )3(D )218.圆22(2)4x y与圆22(2)(1)9x y 的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是()(A)圆或椭圆或双曲线(B)两条射线或圆或抛物线(C)两条射线或圆或椭圆(D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是()A .[6,3) B.(6,2) C.(3,2) D.[6,2]21.直线l 与两直线1y 和70x y 分别交于,A B 两点,若线段AB 的中点为(1,1)M ,则直线l 的斜率为()A .23B .32 C .32D .2322.已知点0,0,1,1O A,若F 为双曲线221xy的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r的取值范围为()A .21,1 B.21,2 C.1,2 D .2,23.若b a,满足12b a ,则直线03b yax过定点().A 21,61B .61,21C .61,21.D 21,6124.双曲线1922yx 的实轴长为 ( )A.4 B. 3 C. 2 D. 125.已知F 1、F 2分别是双曲线1by ax 2222(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若9021PF F ,且21PF F 的三边长成等差数列,则双曲线的离心率是()A .2B.3C. 4D. 526.过A(1,1)、B(0,-1)两点的直线方程是()A.B.C. D.y=x 27.抛物线x y 122上与焦点的距离等于6的点横坐标是()A .1B.2C.3D.428.已知圆22:260C xyx y,则圆心P 及半径r 分别为()A 、圆心1,3P ,半径10r ;B 、圆心1,3P ,半径10r ;C 、圆心1,3P ,半径10r;D 、圆心1,3P ,半径10r。
数学高考《平面解析几何》试题含答案一、选择题1.过抛物线212x y =的焦点F 的直线交抛物线于点A 、B ,交抛物线的准线于点C ,若3AF FB =uu u r uu r,则BC =( )A .4B .43C .6D .8【答案】D 【解析】 【分析】作出图象,作BM CP ⊥,AN CP ⊥,BH AN ⊥,设BF x =,根据抛物线的性质可得BM BF HN x ===,3AN AF x ==,进而得到1sin 2ACN ∠=,则可求出x 的值,进而得到BC 的值. 【详解】作BM CP ⊥,AN CP ⊥,BH AN ⊥,如图,因为3AF FB =uu u r uu r,不妨设BF x =,所以33AF BF x ==,4AB x =, 根据抛物线的定义可得BM BF HN x ===,3AN AF x ==,6FP p ==, 则32AH AN HN x x x =-=-=, 所以1sin sin 2AH ABH ACN AB ∠=∠==,则212CF FP ==,2CB x =, 则312CF CB BF x =+==,所以4x =,则28BC x ==, 故选:D . 【点睛】本题考查抛物线的性质,涉及抛物线定义的应用,考查数形结合思想,属于中档题.2.已知抛物线2:6C x y =的焦点为F 直线l 与抛物线C 交于,A B 两点,若AB 中点的纵坐标为5,则||||AF BF +=( )A .8B .11C .13D .16【答案】C 【解析】 【分析】设点A 、B 的坐标,利用线段AB 中点纵坐标公式和抛物线的定义,求得12y y +的值,即可得结果; 【详解】抛物线2:6C x y =中p =3, 设点A (x 1,y 1),B (x 2,y 2),由抛物线定义可得:|AF |+|BF |=y 1+ y 2+p =y 1+ y 2+3, 又线段AB 中点M 的横坐标为122y y +=5, ∴12y y +=10, ∴|AF |+|BF |=13; 故选:C . 【点睛】本题考查了抛物线的定义的应用及中点坐标公式,是中档题.3.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限,∴240 21610 21kkkk-⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k-<<.故选:D.【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.4.已知椭圆C:2212xy+=的右焦点为F,直线l:2x=,点∈A l,线段AF交椭圆C于点B,若3FA FB=u u u v u u u v,则AFu u u v=()A.2B.2C.3D.3【答案】A【解析】【分析】设点()2,A n,()00,B x y,易知F(1,0),根据3FA FB=u u u v u u u v,得43x=,13y n=,根据点B在椭圆上,求得n=1,进而可求得2AF=u u u v【详解】根据题意作图:设点()2,A n,()00,B x y.由椭圆C:2212xy+=,知22a=,21b=,21c=,即1c=,所以右焦点F(1,0).由3FA FB=u u u v u u u v,得()()001,31,n x y=-.所以()131x=-,且3n y=.所以43x=,13y n=.将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =,所以AF u u u v ===故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.5.已知抛物线x 2=16y 的焦点为F ,双曲线22145x y -=的左、右焦点分别为F 1、F 2,点P是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】由题意并结合双曲线的定义可得1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公式可得所求最小值. 【详解】由题意得抛物线216x y =的焦点为()0,4F ,双曲线22145x y -=的左、右焦点分别为()()123,0,3,0F F -.∵点P 是双曲线右支上一点, ∴124PF PF =+.∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当2,,F P F 三点共线时等号成立,∴1PF PF +的最小值为9. 故选C . 【点睛】解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.6.设D 为椭圆2215y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20 D .x 2+(y +2)2=5 【答案】C 【解析】 【分析】由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆心,半径为 【详解】由题意得PA PD DA DB DA =+=+,又点D 为椭圆2215y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,∴DB DA +=,∴PA =∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()22220x y ++=. 故选C . 【点睛】本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.7.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点, AF BF +=, 则∠AFB 的最大值为( ) A .3π B .34π C .56π D .23π 【答案】D 【解析】 【分析】设|AF |=m ,|BF |=n ,再利用基本不等式求解mn 的取值范围,再利用余弦定理求解即可. 【详解】设|AF |=m ,|BF |=n ,∵AF BF +=,AB ≥∴213mn AB ≤,在△AFB 中,由余弦定理得22222()2cos 22m n ABm n mn AB AFB mnmn+-+--∠==212213222AB mnmn mn mn mn --=≥=-∴∠AFB 的最大值为23π. 故选:D 【点睛】本题主要考查了抛物线的焦半径运用,同时也考查了解三角形与基本不等式的混合运用,属于中等题型.8.已知双曲线2222:1(0,0)x y C a b a b-=>>,过其右焦点F 作渐近线的垂线,垂足为B ,交y轴于点C ,交另一条渐近线于点A ,并且满足点C 位于A ,B 之间.已知O 为原点,且53OA a =,则||||FB FC =( ) A .45B .23C .34D .13【答案】A 【解析】 【分析】设出直线AB 的方程,联立直线AB 方程和渐近线方程,由此求得,A B 两点的坐标,以及求得C 点的坐标,根据53OA a =列方程,求得,,a b c 的关系,由此求得||||FB FC 的值.【详解】由于双曲线渐近线为b y x a =±,不妨设直线AB 的斜率为ab-,故直线AB 的方程为()a y x c b =--.令0x =,得0,ac C b ⎛⎫ ⎪⎝⎭.由()a y x c bb y x a ⎧=--⎪⎪⎨⎪=⎪⎩解得2,a ab B c c ⎛⎫ ⎪⎝⎭,.由()a y x c bb y xa ⎧=--⎪⎪⎨⎪=-⎪⎩解得22222,a c abc A a b a b ⎛⎫- ⎪--⎝⎭,由53OA a =得22222222259a c abc a a b a b ⎛⎫-⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭,化简得()()2222440a b a b --=,解得12b a =或2b a =.由于C 位于,A B 之间,故12b a =舍去,所以2b a=,即2b a =.故22222222||44||45B C aby FB b b a c ac FC y c a b a a b======++. 故选:A.【点睛】本小题主要考查双曲线的渐近线方程,考查直线和直线相交所得交点坐标的求法,考查双曲线的几何性质,考查运算求解能力,考查数形结合的数学思想方法,属于中档题.9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是A.-1 B.1 C.1020-D.102【答案】A【解析】双曲线223mx my-=3的标准方程为22113x ym m-=,∵焦点在y轴上,∴134m m+=,且0m<,∴ 1.m=-故选A.10.已知P是双曲线C上一点,12,F F分别是C的左、右焦点,若12PF F∆是一个三边长成等差数列的直角三角形,则双曲线C的离心率的最小值为()A.2 B.3C.4 D.5【答案】A【解析】【分析】设直角三角形三边分别为3,4,5x x x,分23c x=,24c x=和25c x=三种情况考虑,即可算得双曲线离心率的最小值.【详解】如图,易知该直角三角形三边可设为3,4,5x x x.①若23c x=,则254a x x x=-=,得232cea==;②若24c x=,则2532a x x x=-=,得222cea==;③若25c x =,则243a x x x =-=,得252ce a==. 故选:A 【点睛】本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.11.已知P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =,则“4a =”是“217PF =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】化简得到229PF a =+或292PF a =-,故当4a =时,217PF =或21PF =;当217PF =时,4a =,得到答案.【详解】P 是双曲线2221(0)8x y a a -=>上一点,12,F F 为左、右焦点,且19PF =, 则229PF a =+或292PF a =-,当4a =时,217PF =或21PF =;当217PF =时,4a =. 故“4a =”是“217PF =”的必要不充分条件. 故选:B . 【点睛】本题考查了必要不充分条件,意在考查学生的推断能力.12.已知椭圆221259x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .13.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r ,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=. 故选:A. 【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.14.已知双曲线2222:1(0,0)x y C a b a b-=>>,点()00,P x y 是直线40bx ay a -+=上任意一点,若圆()()22001x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率取值范围是( ). A .(]1,2 B .(]1,4 C .[)2,+∞ D .[)4,+∞ 【答案】B 【解析】 【分析】先求出双曲线的渐近线方程,可得则直线bx ay 2a 0-+=与直线bx ay 0-=的距离d ,根据圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,可得d 1≥,解得即可. 【详解】由题意,双曲线2222x y C :1(a 0,b 0)a b-=>>的一条渐近线方程为b y x a =,即bx ay 0-=,∵()00P x ,y 是直线bx ay 4a 0-+=上任意一点, 则直线bx ay 4a 0-+=与直线bx ay 0-=的距离224a 4a d ca b ==+, ∵圆()()2200x x y y 1-+-=与双曲线C 的右支没有公共点,则d 1≥, ∴41a c ≥,即4ce a=≤,又1e > 故e 的取值范围为(]1,4, 故选:B . 【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线C 的右支没有公共点得出d 1≥是解答的关键,着重考查了推理与运算能力,属于基础题.15.如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为( )A .23y x =±B .2y x =±C .3y x =D .2y x =±【答案】A【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得:3x =,所以12||F F ==c ⇒=因为2521a x a =-=⇒=,所以b =所以双曲线的渐近线方程为by x a=±=±. 【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.16.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.17.若A ,B 分别是直线20x y --=与x 轴,y 轴的交点,圆C :()()22448x y -++=上有任意一点M ,则AMB ∆的面积的最大值是( )A .6B .8C .10D .12【答案】C 【解析】 【分析】先求出AB ,再求出M 到直线的最大距离为点M 到直线20x y --=加上半径,进而可得面积最大值. 【详解】由已知()2,0A ,()0,2B -则AB ==,又点M=所以最大面积为1102⨯=. 故选:C. 【点睛】本题考查圆上一点到直线的最大距离问题,是基础题.18.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若22e =,则1e 的值是( ) ABC.7D【答案】D【解析】 【分析】利用椭圆和双曲线的定义以及余弦定理可得到方程2221243c a a =+,由此得到关于离心率的方程求得结果. 【详解】设椭圆长半轴长为1a ,双曲线实半轴长为2a ,焦点坐标为()1,0F c -,()2,0F c , 不妨设P 为第一象限内的点,则1212+=PF PF a ,1222-=PF PF a , 则221212PF PF a a =-,由余弦定理得:2222212121212242cos3c PF PF PF PF PF PF PF PF π=+-=++, ()22222211212443c a a a a a ∴=--=+,2212314e e ∴+=,又22e =,2145e ∴=, 125e ∴=. 故选:D . 【点睛】本题考查共焦点的椭圆与双曲线问题的求解,关键是能够熟练应用椭圆和双曲线的定义,利用余弦定理构造等量关系,配凑出关于椭圆和双曲线离心率的方程.19.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发出的电磁波的时间差计算出距离差,得知船P 在双曲线()222713664x y --=的左支上,根据船P 接收到A 台和B 台电磁波的时间差,计算出船P 到B 发射台的距离比到A 发射台的距离远30海里,则点P 的坐标(单位:海里)为( )A .9011,77⎛⎫± ⎪ ⎪⎝⎭B .135322,77⎛⎫± ⎪ ⎪⎝⎭C.3217,3⎛⎫±⎪⎝⎭D.()45,162±【答案】B【解析】【分析】设由船P到B台和到A台的距离差确定的双曲线方程为()22221x yx aa b-=≥,根据双曲线的定义得出15a=,再得出由船P到B台和到A台的距离差所确定的双曲线为()2211522564x yx-=>,与双曲线()222713664x y--=联立,即可得出点P坐标.【详解】设由船P到B台和到A台的距离差确定的双曲线方程为()22221x yx aa b-=≥由于船P到B台和到A台的距离差为30海里,故15a=,又=17c,故8b=故由船P到B台和到A台的距离差所确定的双曲线为()2211522564x yx-=>联立()()()222227121366411522564x yxx yx⎧--=<⎪⎪⎨⎪-=>⎪⎩,解得135322,77P⎛⎫±⎪⎪⎝⎭故选:B【点睛】本题主要考查了双曲线的应用,属于中档题.20.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y=+恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于4π;④方程()223221)60(x y x y xy+=<表示的曲线C在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.。
2023 解几大题热点50 题训练一.解答题(共50 小题)1.(2023•五华区校级模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为F ,C 的两条渐近线分别与直线2a x c=交于A ,B 两点,且AB 的长度恰好等于点F (1)求双曲线的离心率;(2)已知过点F 且斜率为1的直线l 与双曲线交于M ,N 两点,O 为坐标原点,若对于双曲线上任意一点P ,均存在实数λ,μ,使得OP OM ON λμ=+,试确定λ,μ的等量关系式.2.(2023•江西模拟)已知点F 为抛物线2:2(0)C y px p =>的焦点,点(4,)M a 在抛物线上,且||6FM =.(1)求抛物线C 的方程;(2)过点F 分别作两条互相垂直的直线与抛物线C 分别交于A ,B 与P ,Q ,记AFP ∆,BFQ ∆的面积分别为1S ,2S ,求12S S +的最小值.3.(2023•潍坊模拟)已知动点P 与两定点1(2,0)A -,2(2,0)A ,直线1PA 与2PA 的斜率之积为34-,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(D a ,0)(12)a <<,E 为直线2x a =上一动点,直线DE 交曲线C 于G ,H 两点,若||GD 、||HE 、||GE 、||HD 依次为等比数列{}n b 的第m 、n 、p 、q 项,且m n p q +=+,求实数a 的值.4.(2023•西安模拟)已知椭圆2222:1(0)x y C a b a b +=>>的焦点为1F 、2F ,离心率为22,直线:0l x y m ++=,1F 、2F 在直线l 上的射影分别为M 、N ,且||MN =.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,(2,0)P -.求ABP ∆的面积的最大值.5.(2023•聊城一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线的倾斜角为60︒,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点(0,0)O ,(0,2)M ,动直线:l y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.6.(2023•周至县二模)如图,已知椭圆2222:1(0)y x E a b a b +=>>的一个焦点为1(0,1)F ,离心率为22.(1)求椭圆E 的方程;(2)过点I F 作斜率为k 的直线交椭圆E 于A ,B 两点,AB 的中点为M .设O 为原点,射线OM 交椭圆E 于点C .当四边形OACB 为平行四边形时,求k的值.7.(2023•太原模拟)已知椭圆2222:1(0)x y C a b a b+=>>的右顶点为A ,上顶点为B ,其离心率12e =,直线AB 与圆22127x y +=相切.(1)求椭圆C 的方程;(2)过点M 的直线与椭圆C 相交于P ,Q 两个不同点,过点P 作x 轴的垂线分别与AB ,AQ 相交于点D 和N ,证明:D 是PN 中点.8.(2023•江苏模拟)已知直线l 与抛物线21:2C y x =交于两点1(A x ,1)y ,2(B x ,2)y ,与抛物线22:4C y x =交于两点3(C x ,3)y ,4(D x ,4)y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点(1,0)M,且11||||BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB ∆,COD ∆的面积分别为1S ,2(S O 为坐标原点),若||2||AC BD =,求12S S .9.(2022秋•滨江区校级期末)已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点.点M 为椭圆上一点,当12F MF ∠取最大值3π时,121()6MF MF MF +⋅= .(1)求椭圆C 的方程;(2)点P 为直线4x =上一点(且P 不在x 轴上),过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,点B 关于x 轴的对称点为B ',连接AB '交x 轴于点G .设△2AF G ,△2BF G 的面积分别为1S ,2S ,求12||S S -的最大值.10.(2023春•广东月考)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为Q ,且QP QF FP FQ ⋅=⋅ .(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设点P 的轨迹C 与x 轴交于点M ,点A ,B 是轨迹C 上异于点M 的不同的两点,且满足0MA AB ⋅=,求||MB的最小值.11.(2023春•商丘月考)已知动点P 到直线8y =-的距离比到点(0,1)的距离大7.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)记动点P 的轨迹为曲线C ,点M 在直线1:1l y =-上运动,过点M 作曲线C 的两条切线,切点分别为A ,B ,点N 是平面内一定点,线段MA ,NA ,NB ,MB 的中点依次为E ,F ,G ,H ,若当M 点运动时,四边形EFGH 总为矩形,求定点N 的坐标.12.(2023•铜仁市模拟)已知双曲线2222:13x y C a a -=-的一条渐近线方程为20x y -=,若过点(0,3)E -的直线l 交C 于A ,B 两点.(1)求直线l 的斜率范围;(2)若l 交C 的两条渐近线于C ,D 两点且满足CA AB BD ==,求直线l 的斜率的大小.13.(2023•抚顺模拟)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点坐标为(1,0)-,A ,B 分别是椭圆的左、右顶点,点(,)D x y 在椭圆C 上,且直线AD 与BD 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)设直线230x ty +-=与椭圆分别相交于M ,N 两点,直线(MO O 为坐标原点)与椭圆的另一个交点为E ,求MNE ∆的面积S 的最大值.14.(2023•湛江一模)已知1F ,2F 分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,椭圆E 的离心率为12,过2F 且不与坐标轴垂直的直线l 与椭圆E 交于A ,B 两点,△1F AB 的周长为8.(1)求椭圆E 的标准方程;(2)过1F 且与l 垂直的直线l '与椭圆E 交于C ,D 两点,求四边形ACBD 面积的最小值.15.(2023•辽宁一模)如图,A ,B ,C ,D 是抛物线2:4E y x =上的四个点(A ,B 在x 轴上方,C ,D 在x 轴下方),已知直线AC 与BD 的斜率分别为63-和2,且直线AC 与BD 相交于点P .(1)若点A 的横坐标为6,则当ADC ∆的面积取得最大值时,求点D 的坐标.(2)试问||||||||PA PC PB PD ⋅⋅是否为定值?若是,求出该定值;若不是,请说明理由.16.(2023•咸阳二模)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,且椭圆C 过点(2,0)-,离心率为12.(1)求椭圆C 的方程;(2)若点1(M x ,1)y 是椭圆22221(0)x y m n m n+=>>上任一点,那么椭圆在点M 处的切线方程为11221x x y y m n +=.已知0(N x ,0)y 是(1)中椭圆C 上除顶点之外的任一点,椭圆C 在N 点处的切线和过N 点垂直于切线的直线分别与y 轴交于点P 、Q .求证:点P 、N 、Q 、1F 、2F 在同一圆上.17.(2023•赤峰三模)法国数学家加斯帕尔⋅蒙日是19世纪著名的几何学家,他创立了画法几何学,推动了空间解析几何学的独立发展,奠定了空间微分几何学的宽厚基础,根据他的研究成果,我们定义:给定椭圆2222:1(0)x y C a b a b +=>>,则称圆心在原点O 的圆为“椭圆C 的伴随圆”,已知椭圆22221(0)x y a b a b +=>>的一个焦点为F ,其短轴的一个端点到焦点F (1)若点A 为椭圆C 的“伴随圆”与x 轴正半轴的交点,B ,D 是椭圆C 的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.(2)在椭圆C 的“伴随圆”上任取一点P ,过点P 作直线1l ,2l ,使得1l ,2l 与椭圆C 都只有一个交点,试判断1l ,2l 是否垂直?并说明理由.18.(2023•开封二模)如图,过抛物线2:2(0)E x py p =>的焦点F 作直线l 交E 于A ,B 两点,点A ,B 在x 轴上的射影分别为D ,C .当AB 平行于x 轴时,四边形ABCD 的面积为4.(1)求p 的值;(2)过抛物线上两点的弦和抛物线弧围成一个抛物线弓形,古希腊著名数学家阿基米德建立了这样的理论:以抛物线弓形的弦为底,以抛物线上平行于弦的切线的切点为顶点作抛物线弓形的内接三角形,则抛物线弓形的面积等于该内接三角形面积的43倍.已知点P 在抛物线E 上,且E 在点P 处的切线平行于AB ,根据上述理论,从四边形ABCD 中任取一点,求该点位于图中阴影部分的概率为12时直线l 的斜率.19.(2023•吉州区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点3(1,2A ,且12|||4AF AF +=.(1)求C 的方程;(2)过点2F 且斜率为l 的直线与C 交于点M 、N ,求OMN ∆的面积.20.(2023•毕节市模拟)在圆22:1O x y +=上任取一点P ,过点P 作y 轴的垂线,垂足为D ,点Q 满足2DQ PQ =.当点P 在圆O 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设曲线C 与y 轴正半轴交点为A ,不过点A 的直线l 与曲线C 交于M ,N 两点,若0AM AN ⋅=,试探究直线l 是否过定点.若过定点,求出该点的坐标;若不过定点,请说明理由.21.(2023•大庆模拟)已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,短轴长为.(1)求椭圆C 的方程;(2)已知经过定点(1,1)P 的直线l 与椭圆相交于A ,B 两点,且与直线34y x =-相交于点Q ,如果AQ AP λ= ,QB PB μ=,那么λμ+是否为定值?若是,请求出具体数值;若不是,请说明理由.22.(2023•成都模拟)已知中心为坐标原点O ,对称轴为坐标轴的椭圆C 经过P ,3,Q ,3两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(0,1)的直线l 与椭圆C 相交于A ,B 两点,23OD OB = ,OE OD OA =+,且点E 在椭圆C 上,求直线l 的方程.23.(2023•湖南模拟)在平面直角坐标系xOy 中,双曲线2222:1(0,0)y x C a b a b-=>>的焦点到渐近线的距离(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,点P 在y 轴上(位于原点与上顶点之间),过P 作x 轴的平行线l ,过P 的另一条直线交双曲线于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若ANM AOM π∠+∠=,求点P 的坐标.24.(2023•贵州模拟)已知抛物线2:2(0)C x py p =>上的点0(2,)y 到其焦点F 的距离为2.(1)求抛物线C 的方程;(2)已知点D 在直线:3l y =-上,过点D 作抛物线C 的两条切线,切点分别为A ,B ,直线AB 与直线l 交于点M ,过抛物线C 的焦点F 作直线AB 的垂线交直线l 于点N ,当||MN 最小时,求||||AB MN 的值.25.(2023•广西模拟)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)若P 为直线:2l x =-上的一动点,过P 作抛物线C 的切线PA ,PB ,A ,B 为切点,直线AB 与l 交于点M ,过F 作AB 的垂线交l 于点N ,当||MN 最小时.求||AB .26.(2023•昆明一模)已知过点(1,)e 的椭圆2222:1(0)x y E a b a b+=>>的焦距为2,其中e 为椭圆E 的离心率.(1)求E 的标准方程;(2)设O 为坐标原点,直线l 与E 交于A ,C 两点,以OA ,OC 为邻边作平行四边形OABC ,且点B 恰好在E 上,试问:平行四边形OABC 的面积是否为定值?若是定值,求出此定值;若不是,说明理由.27.(2023•全国一模)已知双曲线2222:1(0,0)x y C a b a b-=>>过点(3,A ,且渐近线方程为0x ±=.(1)求双曲线C 的方程;(2)如图,过点(1,0)B 的直线l 交双曲线C 于点M 、N .直线MA 、NA 分别交直线1x =于点P 、Q ,求||||PB BQ 的值.28.(2023•邯郸一模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率与双曲线221x y -=的离心率互为倒数,点(2,2)A 在椭圆C 上,不过点A 的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的标准方程;(2)若直线AP ,AQ 的斜率之和为1,试问直线l 是否过定点?若过定点,求出此定点;若不过定点,请说明理由.29.(2023•成都模拟)已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,与椭圆C 有相同焦点的双曲线2214x y -=在第一象限与椭圆C 相交于点P ,且2||1PF =.(1)求椭圆C 的方程;(2)设直线1y kx =+与椭圆C 相交于A ,B 两点,O 为坐标原点,且(0)OD mOB m =>.若椭圆C 上存在点E ,使得四边形OAED 为平行四边形,求m 的取值范围.30.(2023•商洛一模)已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,Q 是椭圆E 的右顶点,2||1F Q =,且椭圆E 的离心率为12.(1)求椭圆E 的方程.(2)过1F 的直线交椭圆E 于A ,B 两点,在x 轴上是否存在一定点P ,使得1()||||PA PBPF PA PB λ=+,λ为正实数.如果存在,求出点P 的坐标;如果不存在,说明理由.31.(2023•石景山区一模)已知椭圆2222:1(0)x y C a b a b+=>>过点,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点(1,1)P -且互相垂直的直线1l ,2l 分别交椭圆C 于M ,N 两点及S ,T 两点.求||||||||PM PN PS PT 的取值范围.32.(2023•西城区校级模拟)已知点A ,B 是椭圆2222:1(0)x y E a b a b+=>>的左,右顶点,椭圆E 的短轴长为2,离心率为32.(1)求椭圆E 的方程;(2)点O 是坐标原点,直线l 经过点(2,2)P -,并且与椭圆E 交于点M ,N ,直线BM 与直线OP 交于点T ,设直线AT ,AN 的斜率分别为1k ,2k ,求证:12k k 为定值.33.(2023•江西模拟)设椭圆E 的方程为2221(1)x y a a+=>,点O 为坐标原点,点A ,B 的坐标分别为(,0)a ,(0,1),点M 在线段AB 上,满足||2||BM MA =,直线OM 的斜率为14.(1)求椭圆的方程;(2)若动直线l 与椭圆E 交于P ,Q 两点,且恒有OP OQ ⊥,是否存在一个以原点O 为圆心的定圆C ,使得动直线l 始终与定圆C 相切?若存在,求圆C 的方程,若不存在,请说明理由.34.(2023•天津模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,直线:1l x =与C 交于M ,N 两点,且||MN =(1)求C 的方程;(2)若C 的左、右顶点分别为A ,B ,点D (不同于M ,)N 为直线l 上一动点,直线AD ,BD 分别与C 交于点P ,Q ,证明:直线PQ 恒过定点,并求出该定点的坐标.35.(2023•江西模拟)已知椭圆2222:1(,02)x y C a b b a b+=><<的左、右焦点分别为1F ,2F ,点M 在椭圆上,212MF F F ⊥,若△12MF F 的周长为6,面积为32.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 交椭圆于A ,B 两点,交y 轴于P 点,设1222,PA AF PB BF λλ==,试判断12λλ+是否为定值?请说明理由.36.(2023•兴庆区校级一模)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,经过点3(1,2,若点P 是椭圆C上一个动点(异于椭圆C 的左右顶点),点(3,0)N -,(2,0)E -,(2,0)F ,直线PN 与曲线C 的另一个公共点为Q ,直线EP 与FQ 交于点M .(1)求椭圆C 的标准方程;(2)求证:当点P 变化时,点M 恒在一条定直线上.37.(2023•渝中区校级模拟)已知椭圆2222:1x y C a b+=的焦点在x 轴上,它的离心率为12,且经过点23(3P .(1)求椭圆C 的方程;(2)若椭圆C 的左焦点为F ,过点F 的直线l 与椭圆C 交于A ,B 两点,且过点A ,B 和点2Q 的圆的圆心在x 轴上,求直线l 的方程及此圆的圆心坐标.38.(2023•兴庆区校级一模)如图所示,由半椭圆2212:1(0)4x y C y b += 和两个半圆222:(1)1(0)C x y y ++= 、223:(1)1(0)C x y y -+= 组成曲线:(,)0C F x y =,其中点1A ,2A 依次为1C 的左、右顶点,点B 为1C 的下顶点,点1F ,2F 依次为1C 的左、右焦点.若点1F ,2F 分别为曲线2C ,3C 的圆心.(1)求1C 的方程;(2)若过点1F ,2F 作两条平行线1l ,2l 分别与1C ,2C 和1C ,3C 交与M ,N 和P ,Q ,求||||MN PQ +的最小值.39.(2023•浙江模拟)已知双曲线E 的顶点为(1,0)A -,(1,0)B ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且4OFG S ∆=.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅为定值.40.(2023•呼和浩特模拟)已知椭圆22221(0)x y a b a b +=>>的一个焦点为(2,0)F ,且离心率e =.(1)求椭圆的标准方程;(2)设点A 、B 是x 轴上的两个动点,1)M -且||||AM BM =,直线AM 、BM 分别交椭圆于点P 、Q (均异于)M ,证明:直线PQ 的斜率为定值.41.(2023•龙岩模拟)已知椭圆2222:1(0)x y K a b a b+=>>的左、右焦点分别为1(2,0)F -,2(2,0)F ,过右焦点2F 的直线l 交椭圆K 于M ,N 两点,以线段2||MF 为直径的圆C 与圆221:8C x y +=内切.(1)求椭圆K 的方程;(2)过点M 作ME x ⊥轴于点E ,过点N 作NQ x ⊥轴于点Q ,OM 与NE 交于点P ,是否存在直线l 截得PMN ∆的面积等于62若存在,求出直线l 的方程;若不存在,请说明理由.42.(2023•济宁一模)已知直线10x y ++=与抛物线2:2(0)C x py p =>相切于点A ,动直线l 与抛物线C 交于不同两点M ,(N M ,N 异于点)A ,且以MN 为直径的圆过点A .(1)求抛物线C 的方程及点A 的坐标;(2)当点A 到直线l 的距离最大时,求直线l 的方程.43.(2023•宁波模拟)已知双曲线2222:1(,0)x y C a b a b-=>的渐近线与曲线21:22E y x =+相切.横坐标为t 的点P 在曲线E 上,过点P 作曲线E 的切线l 交双曲线C 于不同的两点A ,B .(1)求双曲线C 的离心率;(2)记AB 的中垂线交x 轴于点M .是否存在实数t ,使得30APM ∠=︒?若存在,请求出t 的值;若不存在,请说明理由.44.(2023•沙坪坝区校级模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为F 到双曲线C 的渐近线距离为1.(1)求双曲线C 的方程;(2)点P 在第一象限,P ,Q 在直线12y x =上,点P ,A ,B 均在双曲线C 上,且AQ x ⊥轴,M 在直线AQ 上,P ,M ,B 三点共线.从下面①②中选取一个作为条件,证明另外一个成立:①Q 是AM 的中点;②直线AB 过定点(0,1)T .45.(2023•石家庄模拟)已知点(4,3)P 在双曲线2222:1(0,0)x y C a b a b-=>>上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若直线:l y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.46.(2023•广州模拟)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,以C 的短轴为直径的圆与直线6y ax =+相切.(1)求C 的方程;(2)直线:(1)(0)l y k x k =- 与C 相交于A ,B 两点,过C 上的点P 作x 轴的平行线交线段AB 于点Q ,直线OP 的斜率为(k O '为坐标原点),APQ ∆的面积为1.S BPQ ∆的面积为2S ,若21||||AP S BP S ⋅=⋅,判断k k '⋅是否为定值?并说明理由.47.(2023•南充模拟)如图,已知A ,B 分别为椭圆2222:1(0)x y M a b a b+=>>的左,右顶点,0(P x ,0)y 为椭圆M 上异于点A ,B 的动点,若4AB =,且ABP ∆面积的最大值为2.(1)求椭圆M 的标准方程;(2)已知直线l 与椭圆M 相切于点0(P x ,0)y ,且l 与直线x a =和x a =-分别相交于C ,D 两点,记四边形ABCD 的对角线AC ,BD 相交于点N .问:是否存在两个定点1F ,2F ,使得12||||NF NF +为定值?若存在,求1F ,2F 的坐标;若不存在,说明理由.48.(2023•赣州模拟)已知抛物线2:2(0)C y px p =>,F 为其焦点,点0(2,)M y 在C 上,且4(OFM S O ∆=为坐标原点).(1)求抛物线C 的方程;(2)若A ,B 是C 上异于点O 的两个动点,当90AOB ∠=︒时,过点O 作ON AB ⊥于,问平面内是否存在一个定点Q ,使得||NQ 为定值?若存在,请求出定点Q 及该定值;若不存在,请说明理由.49.(2023•杭州模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>,并且经过点,2).(1)求双曲线E 的方程.(2)若直线l 经过点(2,0),与双曲线右支交于P 、Q 两点(其中P 点在第一象限),点Q 关于原点的对称点为A ,点Q 关于y 轴的对称点为B ,且直线AP 与BQ 交于点M ,直线AB 与PQ 交于点N ,证明:双曲线在点P 处的切线平分线段MN .50.(2023•浦东新区模拟)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且点(-在椭圆1C 上.(1)求椭圆1C 的方程;(2)过点(0,1)Q 的直线l 与椭圆1C 交于D ,E 两点,已知2DQ QE = ,求直线l 的方程;(3)点P 为椭圆1C 上任意一点,过点P 作1C 的切线与圆222:12C x y +=交于A ,B 两点,设直线OA ,OB 的斜率分别为1k ,2k .证明:12k k ⋅为定值,并求该定值.。
高考数学解析几何部分测试习题10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是A .324+B .13-C .213+ D .13+5.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( )A .3B .23C .38 D .32 6、抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617B .1615C .87D .011、点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=a 的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A .33 B .31 C .22 D .21(12)设直线l:2x+y+2=0,关于原点对称的直线为l ’,若l ’与椭圆x 2+41y 2=1的交点为A 、B ,点P 为椭圆上的动点,则使△APB 面积为21的点P 的个数为(A )1(B )2(C )3(D )4(5)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为(A)2±(B)34±(C)21±(D)43±(6)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x,y)| |x|<11且|y|<9}内的椭圆个数为(A)43 (B) 72 (C) 86 (D) 901.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为( )A .5)2(22=+-y xB .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x2.点(1,-1)到直线x -y +1=0的距离是( )(A)21 (B) 32(C)(4)从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为(A )π (B )2π (C )4π (D )6π13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.5.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .38 7.已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( )A .30ºB .45ºC .60ºD .90º13.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则OB OA ⋅= .(6)已知双曲线 62x - 32y = 1的焦点为F 1、、F 2,点M 在双曲线上且MF 1 ⊥ x 轴,则F 1到直线F 2 M 的距离为 (A )563 (B )665 (C )56 (D )65(14)设双曲线21a x 2-21by 2=1(a>0,b>0)的右交点为F ,右准线l 与两条渐近线交于P 、Q 两点,若△PQF 是直角三角形,则双曲线的离心率e=____________________。
考点测试54 抛物线一、基础小题1.已知抛物线x2=4y上一点A的纵坐标为4,则点A到抛物线焦点的距离为( )A.10 B.4 C.15 D.5答案 D解析由题意知,抛物线的准线方程为y=-1,所以由抛物线的定义知,点A到抛物线焦点的距离为5.2.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( )A.18 B.24 C.36 D.48答案 C解析如图,设抛物线方程为y2=2px(p>0).∵当x =p2时,|y |=p ,∴p =|AB |2=122=6.又P 到AB 的距离始终为p , ∴S △ABP =12×12×6=36.3.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( ) A.π6或5π6B.π4或3π4 C.π3或2π3D.π2 答案 B解析 焦点坐标为⎝ ⎛⎭⎪⎫32,0,当斜率不存在时,弦长为2p =6,不符合题意,故此弦所在直线斜率存在设为k ,所以方程为y =k ⎝ ⎛⎭⎪⎫x -32,代入y 2=6x ,得k 2x 2-(3k 2+6)x +94k 2=0,设弦的两端点为(x 1,y 1),(x 2,y 2),x 1+x 2+p =12,即3k 2+6k2+3=12,k 2=1.∴k =tan α=±1,结合x ∈[0,π),可得α=π4或34π.4.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( )A. 3B. 5 C .2 D.5-1 答案 D解析 由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+-12=5,所以d +|PF |-1的最小值为5-1.5.抛物线y 2=2px 的焦点为F ,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( )A .x +y =0B .x -y =0C .2x +y -1=0D .2x -y -1=0 答案 C解析 ∵点A 在抛物线上,∴4=2p ,p =2. 抛物线方程为y 2=4x ,焦点F (1,0). 设点B (x 1,y 1),点C (x 2,y 2), 则有y 21=4x 1,①y 22=4x 2,②由①-②,得(y 1-y 2)(y 1+y 2)=4(x 1-x 2), 得k BC =y 1-y 2x 1-x 2=4y 1+y 2. 又∵y 1+y 2+23=0,∴y 1+y 2=-2.∴k BC =-2. 又∵x 1+x 2+13=1,∴x 1+x 2=2.∴BC 中点为(1,-1),则BC 所在直线方程为y +1=-2(x -1), 即2x +y -1=0.6.若抛物线y 2=2x 上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +b 对称,且y 1y 2=-1,则实数b 的值为( )A .-52 B.52 C.12 D .-12答案 A解析 直线AB 的斜率为k AB =y 1-y 2x 1-x 2=y 1-y 212y 21-12y 22=-1,所以y 1+y 2=-2,y 21+y 22=(y 1+y 2)2-2y 1y 2=6.线段AB 的中点为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22=⎝ ⎛⎭⎪⎫y 21+y 224,-1=⎝ ⎛⎭⎪⎫32,-1,代入y =x +b ,得b =-52.故选A.7.已知动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________. 答案 y 2=4x解析 设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与其到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .8.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足|NF |=32|MN |,则∠NMF =________. 答案π6解析 过N 作准线的垂线,垂足是P ,则有PN =NF , ∴PN =32MN ,∠NMF =∠MNP .又cos ∠MNP =32,∴∠MNP =π6,即∠NMF =π6. 二、高考小题9.[2015·某某高考]如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1答案 A解析 过A ,B 点分别作y 轴的垂线,垂足分别为M ,N ,则|AM |=|AF |-1,|BN |=|BF |-1.可知S △BCF S △ACF =12·|CB |·|CF |·sin∠BCF12·|CA |·|CF |·sin∠BCF =|CB ||CA |=|BN ||AM |=|BF |-1|AF |-1,故选A.10.[2016·全国卷Ⅰ]以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8 答案 B解析 不妨设C :y 2=2px (p >0),A (x 1,22),则x 1=2222p=4p,由题意可知|OA |=|OD |,得⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.故选B. 11.[2016·某某高考]设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33 B.23 C.22D .1 答案 C解析 设P (x ,y ),∵|PM |=2|MF |,∴|PM ||MF |=2,又F ⎝ ⎛⎭⎪⎫p 2,0,∴⎩⎨⎧x M =x +2×p21+2=x +p 3,y M=y 1+2=y 3,∴k OM =y M x M =yx +p,由题易知k OM 最大时y >0,∴k OM =2px x +p=2px +p x≤2p 2p =22, 当且仅当x =p 时取等号.12.[2016·某某高考]若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.答案 9解析 设M (x 0,y 0),由抛物线方程知焦点F (1,0).根据抛物线的定义得|MF |=x 0+1=10,∴x 0=9,即点M 到y 轴的距离为9.13.[2016·某某高考]设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.答案6解析 由已知得抛物线的方程为y 2=2px (p >0),则|FC |=3p ,∴|AF |=|AB |=32p ,则A (p ,2p )(不妨设A 在第一象限).易证△EFC ∽△EAB ,所以|EF ||AE |=|FC ||AB |=|FC ||AF |=2,所以|AE ||AF |=13,所以S △ACE =13S △AFC =13×32p ×2p =22p 2=32,所以p = 6.三、模拟小题14.[2017·某某监测]抛物线y =4ax 2(a ≠0)的焦点坐标是( ) A .(0,a ) B .(a,0) C.⎝⎛⎭⎪⎫0,116a D.⎝ ⎛⎭⎪⎫116a ,0 答案 C解析 将y =4ax 2(a ≠0)化为标准方程得x 2=14a y (a ≠0),所以焦点坐标为⎝ ⎛⎭⎪⎫0,116a ,所以选C.15.[2017·豫南九校联考]已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|PA |+|PQ |的最小值为( )A .7B .8C .9D .10 答案 C解析抛物线的焦点为F(0,1),准线方程为y=-1,根据抛物线的定义知,|PF|=|PM|=|PQ|+1.∴|PA|+|PQ|=|PA|+|PM|-1=|PA|+|PF|-1≥|AF|-1=82+7-12-1=10-1=9.当且仅当A、P、F三点共线时,等号成立,则|PA|+|PQ|的最小值为9.故选C.16.[2016·某某某某模拟]如果P1,P2,…,P n是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,x n,F是抛物线C的焦点,若x1+x2+…+x n=10,则|P1F|+|P2F|+…+|P n F|=( )A.n+10 B.n+20 C.2n+10 D.2n+20答案 A解析由抛物线的方程y2=4x可知其焦点为(1,0),准线为x=-1,由抛物线的定义可知|P1F|=x1+1,|P2F|=x2+1,…,|P n F|=x n+1,所以|P1F|+|P2F|+…+|P n F|=x1+1+x2+1+…+x n+1=(x1+x2+…+x n)+n=n+10.故选A.17.[2016·某某某某一模]已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的一个交点,若|FP|=3|FQ|,则|QF|=( )A.83B.52C.3 D.2答案 A解析 设l 与x 轴的交点为M ,如图所示,过Q 作QN ⊥l ,垂足为N ,则△PQN ∽△PFM ,所以|NQ ||MF |=|PQ ||PF |=23,因为|MF |=4,所以|NQ |=83,故|QF |=|QN |=83,故选A.18.[2016·某某某某二模]直线3x -4y +4=0与抛物线x 2=4y 、圆x 2+(y -1)2=1从左至右的交点依次为A ,B ,C ,D ,则|CD ||AB |的值为________.答案 16解析 如图所示,抛物线x 2=4y 的焦点为F (0,1),直线3x -4y +4=0过点(0,1),由⎩⎪⎨⎪⎧x 2=4y ,3x -4y +4=0,得4y 2-17y +4=0,设A (x 1,y 1),D (x 2,y 2),则y 1+y 2=174,y 1y 2=1,解得y 1=14,y 2=4,则|CD ||AB |=|FD |-1|AF |-1=y 2+1-1y 1+1-1=16.一、高考大题1.[2016·某某高考]如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值X 围.解 (1)抛物线C :y 2=2px (p >0)的焦点为⎝ ⎛⎭⎪⎫p2,0,由点⎝ ⎛⎭⎪⎫p2,0在直线l :x -y -2=0上, 得p2-0-2=0,即p =4. 所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0). 因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ , 于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明:由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x ,得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0. 方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b 上, 所以-p =-(2-p )+b ,即b =2-2p . 由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值X 围是⎝ ⎛⎭⎪⎫0,43. 2.[2016·全国卷Ⅲ]已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题设知F ⎝ ⎛⎭⎪⎫12,0.设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2. 所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=0(舍去),或x 1=1. 设AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为y 2=x -1. 二、模拟大题3.[2017·某某模拟]已知抛物线C :x 2=2py (p >0)的焦点为F ,直线l 过点F 交抛物线C 于A ,B 两点,且以AB 为直径的圆M 与直线y =-1相切于点N .(1)求C 的方程;(2)若圆M 与直线x =-32相切于点Q ,求直线l 的方程和圆M 的方程.解 (1)设A (x 1,y 1),B (x 2,y 2),则|AB |=y 1+y 2+p . 又∵以AB 为直径的圆M 与直线y =-1相切,∴|AB |=y 1+y 2+2,故p =2,∴抛物线C 的方程为x 2=4y .(2)设直线l 的方程为y =kx +1,代入x 2=4y 并整理,得x 2-4kx -4=0. ∴x 1+x 2=4k ,x 1x 2=-4,∴y 1+y 2=k (x 1+x 2)+2 =4k 2+2, ∴圆心M ⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22的坐标为M (2k,2k 2+1).∵圆M 与直线x =-32相切于点Q ,∴|MQ |=|MN |,∴⎪⎪⎪⎪⎪⎪2k +32=|2k 2+2|,解得k =12.此时直线l 的方程为y =12x +1,即x -2y +2=0.圆心M ⎝ ⎛⎭⎪⎫1,32,半径r =52, 即圆M 的方程为(x -1)2+⎝ ⎛⎭⎪⎫y -322=254.4.[2017·某某师大附中质检]已知抛物线C 的顶点为坐标原点,焦点F (1,0),其准线与x 轴的交点为K ,过点K 的直线l 与C 交于A ,B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设FA →·FB →=89,求△BDK 的内切圆M 的方程.解 (1)证明:由题可知K (-1,0),抛物线的方程为y 2=4x , 则可设直线l 的方程为x =my -1, 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),由⎩⎪⎨⎪⎧x =my -1,y 2=4x ,得y 2-4my +4=0,∴Δ=(-4m )2-4×4≥0,得m 2≥1, ∴y 1+y 2=4m ,y 1y 2=4, 则直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2),即 y -y 2=4y 2-y 1⎝ ⎛⎭⎪⎫x -y 224.令y =0,得x =y 1y 24=1,∴点F (1,0),在直线BD 上.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=4,∴x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2,x 1x 2=(my 1-1)(my 2-1)=1.又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2) 故FA →·FB →=(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+5=8-4m 2, 则8-4m 2=89,∴m =±43,故直线l 的方程为3x +4y +3=0或3x -4y +3=0,y 2-y 1=±y 2+y 12-4y 1y 2=±16m 2-16=±473,故直线BD 的方程为3x +7y -3=0或3x -7y -3=0. 又KF 为∠BKD 的平分线, 故可设圆心M (t,0)(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4,得t =19或t =9(舍去), 故圆M 的半径为r =3|t +1|5=23,∴圆M 的方程为⎝ ⎛⎭⎪⎫x -192+y 2=49.5.[2017·某某重点中学联考]如图,抛物线C :x 2=2py (p >0)的焦点为F (0,1),取垂直于y 轴的直线与抛物线交于不同的两点P 1,P 2,过P 1,P 2作圆心为Q 的圆,使抛物线上其余点均在圆外,且P 1Q ⊥P 2Q .(1)求抛物线C 和圆Q 的方程;(2)过点F 作直线l ,与抛物线C 和圆Q 依次交于M ,A ,B ,N ,求|MN |·|AB |的最小值. 解 (1)因为抛物线C :x 2=2py (p >0)的焦点为F (0,1), 所以p2=1,解得p =2,所以抛物线C 的方程为x 2=4y .由抛物线和圆的对称性,可设圆Q :x 2+(y -b )2=r 2. ∵P 1Q ⊥P 2Q ,∴△P 1QP 2是等腰直角三角形, 不妨设P 1在左侧,则∠QP 1P 2=45°,∴P 2⎝ ⎛⎭⎪⎫22r ,b -22r ,代入抛物线方程有r 22=4b -22r .由题意,可知在P 1,P 2处圆和抛物线相切,对抛物线方程x 2=4y 求导得y ′=x2,所以抛物线在点P 2处切线的斜率为k =2r 4. 由∠QP 1P 2=45°,得k =2r 4=1,所以r =22,代入r22=4b -22r ,解得b =3.所以圆Q 的方程为x 2+(y -3)2=8.(2)由题意,知直线l 的斜率一定存在,设直线l 的方程为y =kx +1. 圆心Q (0,3)到直线l 的距离为d =21+k2,∴|AB |=2r 2-d 2=42-11+k2.由⎩⎪⎨⎪⎧x 2=4y ,y =kx +1,得y 2-(2+4k 2)y +1=0.设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4k 2+2,由抛物线定义知,|MN |=y 1+y 2+2=4(1+k 2), 所以|MN |·|AB |=16(1+k 2)2-11+k2. 设t =1+k 2(t ≥1),则|MN |·|AB |=16t2-1t=162t 2-t =162⎝ ⎛⎭⎪⎫t -142-18(t ≥1), 所以当t =1,即k =0时,|MN |·|AB |有最小值16.6.[2017·某某适应考试]已知抛物线C :y 2=4x ,过其焦点F 作两条相互垂直且不平行于x 轴的直线,分别交抛物线C 于点P 1,P 2和点P 3,P 4,线段P 1P 2,P 3P 4的中点分别记为M 1,M 2.(1)求△FM 1M 2面积的最小值; (2)求线段M 1M 2的中点P 满足的方程.解 (1)由题意,得抛物线的焦点坐标为F (1,0),设直线P 1P 2的方程为y =k (x -1),k ≠0.联立⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,消去y 并整理,得k 2x 2-2(2+k 2)x +k 2=0.(*)(*)是关于x 的一元二次方程,其判别式Δ=[-2(2+k 2)]2-4k 4=16(1+k 2)>0. 设P 1(x 1,y 1),P 2(x 2,y 2),则x 1,x 2是方程(*)的两个不相等实根,且x 1+x 2=22+k2k 2.设M 1(xM 1,yM 1),则⎩⎪⎨⎪⎧xM 1=x 1+x 22=2+k 2k2,yM 1=kxM 1-1=2k,类似地,设M 2(xM 2,yM 2),则⎩⎪⎨⎪⎧xM 2=2+1k 21k2=2k 2+1,yM 2=-1kxM 2-1=-2k ,所以|FM 1|=⎝⎛⎭⎪⎫1-2+k 2k 22+⎝ ⎛⎭⎪⎫2k 2=2k 21+k 2,|FM 2|= 2k22+-2k2=2|k |1+k 2,因此S △FM 1M 2=12|FM 1|·|FM 2|=2⎝ ⎛⎭⎪⎫1|k |+|k |.因为1|k |+|k |≥2,所以S △FM 1M 2≥4,当且仅当1|k |=|k |,即k =±1时,S △FM 1M 2取到最小值4.(2)设线段M 1M 2的中点为P (x ,y ), 由(1)得⎩⎪⎨⎪⎧x =12xM 1+xM 2=12⎝ ⎛⎭⎪⎫2+2k 2+2k 2=1+k 2+1k 2,y =12yM 1+yM 2=12⎝ ⎛⎭⎪⎫2k -2k =-k +1k ,消去k ,得y 2=x -3.∴线段M 1M 2的中点P 满足的方程为y 2=x -3.。
高考数学历年(2018-2022)真题按知识点分类平面解析几何(圆锥曲线之椭圆)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x y +=C .22132x y +=D .2212x y +=3.(2021ꞏ全国ꞏ统考高考真题)设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤ ⎥⎝⎦4.(2021ꞏ全国ꞏ统考高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.(2020ꞏ山东ꞏ统考高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( )A .3B .6C .8D .126.(2019ꞏ全国ꞏ高考真题)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=7.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .148.(2018ꞏ全国ꞏ高考真题)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 1-9.(2018ꞏ全国ꞏ高考真题)已知椭圆C :2221(0)4x y a a+=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D .310.(2018ꞏ全国ꞏ专题练习)(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B .3C 3D .1311.(2019ꞏ北京ꞏ高考真题)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b二、多选题12.(2020ꞏ海南ꞏ高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线三、填空题13.(2022ꞏ全国ꞏ统考高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE V 的周长是________________.14.(2019ꞏ全国ꞏ统考高考真题)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.四、解答题15.(2022ꞏ全国ꞏ统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.16.(2022ꞏ北京ꞏ统考高考真题)已知椭圆:2222:1(0)x y E a b a b +=>>的一个顶点为(0,1)A ,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.17.(2022ꞏ天津ꞏ统考高考真题)椭圆()222210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足BF AB(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN18.(2021ꞏ北京ꞏ统考高考真题)已知椭圆2222:1(0)x y E a b a b +=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为 (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点,M N ,当|PM |+|PN |≤15时,求k 的取值范围. 19.(2021ꞏ全国ꞏ统考高考真题)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F . (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =20.(2021ꞏ天津ꞏ统考高考真题)已知椭圆()222210x y a b a b +=>>的右焦点为F ,上顶点为B ,且BF = (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.21.(2020ꞏ全国ꞏ统考高考真题)已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.22.(2020ꞏ山东ꞏ统考高考真题)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.23.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.24.(2020ꞏ海南ꞏ高考真题)已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.25.(2020ꞏ全国ꞏ统考高考真题)已知椭圆C 1:22221x y a b +=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 26.(2019ꞏ全国ꞏ高考真题)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形; (ii )求PQG 面积的最大值.27.(2019ꞏ全国ꞏ高考真题)已知12,F F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2 POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.28.(2019ꞏ北京ꞏ高考真题)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |ꞏ|ON |=2,求证:直线l 经过定点.29.(2019ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.30.(2018ꞏ天津ꞏ高考真题)设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M均在第四象限.若BPM △的面积是BPQ V 面积的2倍,求k 的值.31.(2018ꞏ天津ꞏ高考真题)设椭圆22221x y a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知A 的坐标为(),0b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值.32.(2018ꞏ北京ꞏ高考真题)已知椭圆2222:1(0)x y M a b a b +=>>,焦距为斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程; (Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .五、双空题33.(2021ꞏ浙江ꞏ统考高考真题)已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0)c >,若过1F 的直线和圆22212x c y c ⎛⎫-+= ⎪⎝⎭相切,与椭圆在第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是___________,椭圆的离心率是___________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.B【要点分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【答案详解】解:因为离心率13c e a ==,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -, B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B. 3.C【要点分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【答案详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 02e <≤; 当32b b c->-,即22b c <时, 42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C .【名师点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值. 4.C【要点分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点睛】 5.B【要点分析】根据椭圆中,,a b c 的关系即可求解. 【答案详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B. 6.B【要点分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解.【答案详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养. 7.D【答案详解】要点分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 答案详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 名师点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 8.D【答案详解】要点分析:设2||PF m =,则根据平面几何知识可求121,F F PF ,再结合椭圆定义可求离心率.答案详解:在12F PF ∆中,122190,60F PF PF F ∠=∠=︒设2||PF m =,则1212||2,||c F F m PF ==,又由椭圆定义可知122||||1)a PF PF m =+=+则离心率212c ce a a ====-, 故选D.名师点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 9.C【答案详解】要点分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得a =最后利用椭圆离心率的公式求得结果.答案详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率为e =C. 名师点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中,,a b c 的关系求得结果.10.A【答案详解】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===故选A.【名师名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11.B【要点分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.【答案详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.12.ACD【要点分析】结合选项进行逐项要点分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【答案详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线Cn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【名师点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.13【要点分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE V 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =. 【答案详解】∵椭圆的离心率为12c e a ==,∴2a c =,∴22223b a c c =-=,∴椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,∵222AF a OF c a c ===,,,∴23AF O π∠=,∴12AF F △为正三角形,∵过1F 且垂直于2AF 的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,∴直线DE 的斜率为3,斜率倒数直线DE 的方程:x c =-,代入椭圆方程22234120x y c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,∴12226461313cDE y y =-=⨯=⨯⨯⨯=, ∴138c =, 得1324a c ==, ∵DE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,∴ADE V 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==. 故答案为:13.14.(【要点分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.【答案详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=, 又M 为C 上一点且在第一象限,12MF F △为等腰三角形,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.15.(1)22143y x +=(2)(0,2)-【要点分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解. 【答案详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M,(1,)3N ,代入AB 方程223y x =-,可得(3,)3T+-,由MT TH=得到(5,3H--.求得HN方程:(22y x=-,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234ky ykk ky yk⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【名师点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.16.(1)2214xy+=(2)4k=-【要点分析】(1)依题意可得22212bcc a b=⎧⎪=⎨⎪=-⎩,即可求出a,从而求出椭圆方程;(2)首先表示出直线方程,设()11,B x y、()22,C x y,联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出M x 、N x ,根据N M MN x x =-得到方程,解得即可; 【答案详解】(1)解:依题意可得1b =,2c =222c a b =-,所以2a =,所以椭圆方程为2214x y +=;(2)解:依题意过点()2,1P -的直线为()12y k x -=+,设()11,B x y 、()22,C x y ,不妨令1222x x -≤<≤,由()221214y k x x y ⎧-=+⎪⎨+=⎪⎩,消去y 整理得()()22221416816160k x k k x k k +++++=, 所以()()()222216841416160k k k k k ∆=+-++>,解得0k <, 所以212216814k k x x k++=-+,2122161614k kx x k +⋅=+, 直线AB 的方程为1111y y x x --=,令0y =,解得111M xx y =-, 直线AC 的方程为2211y y x x --=,令0y =,解得221N xx y =-,所以212111N M x xMN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++()()12212222x x k x x -==++,所以()()122122x x k x x -=++, ()212124k x x x x =+++⎡⎤⎣⎦22221616168241414k k k k k k k ⎡⎤⎛⎫++=+-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414kk k k k k k ⎡⎤=+-+++⎣⎦+整理得4k =,解得4k =-17.(1)e =(2)22162x y +=【要点分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由Δ0=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程. 【答案详解】(1)解:()222224332BF a b a a b AB===⇒=+⇒=,离心率为3c e a ==. (2)解:由(1)可知椭圆的方程为2223x y a +=, 易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=, 由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+, 由=OM ON 可得()()222229131m k m k+=+,②由OMN S =可得31213km m k ⋅=+③ 联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=.18.(1)22154x y +=;(2)[3,1)(1,3]--⋃. 【要点分析】(1)根据椭圆所过的点及四个顶点围成的四边形的面积可求,a b ,从而可求椭圆的标准方程.(2)设()()1122,,,B x y C x y ,求出直线,AB AC 的方程后可得,M N 的横坐标,从而可得PM PN +,联立直线BC 的方程和椭圆的方程,结合韦达定理化简PM PN +,从而可求k的范围,注意判别式的要求.【答案详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为1222a b ⨯⨯=,即a =,故椭圆的标准方程为:22154x y +=.(2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令=3y -,则112M x x y =-+,同理222N x x y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x >又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.19.(1)2213x y +=;(2)证明见解析.【要点分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN = 充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【答案详解】(1)由题意,椭圆半焦距c =ce a ==a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F 三点共线,可设直线(:MN yk x =-即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k=±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x-+=,所以1212324x x x x +=⋅=,所以MN ==所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==213k =+ 化简得()22310k -=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=-或y x =-所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N,F 三点共线的充要条件是||MN = 【名师点睛】关键点名师点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.20.(1)2215x y +=;(2)0x y -=.【要点分析】(1)求出a 的值,结合c 的值可得出b 的值,进而可得出椭圆的方程; (2)设点()00,M x y ,要点分析出直线l 的方程为0015x xy y +=,求出点P 的坐标,根据//MP BF 可得出MP BF k k =,求出0x 、0y 的值,即可得出直线l 的方程.【答案详解】(1)易知点(),0F c 、()0,B b,故BF a ===因为椭圆的离心率为c e a==2c =,1b =, 因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215xy +=上一点,先证明直线MN 的方程为0015x xy y +=, 联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭, 直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭, 因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=, 所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,06x =-, 所以,直线l的方程为166x y -+=,即0x y -=. 【名师点睛】结论名师点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b+=在其上一点()00,x y 的切线方程为00221x x y y a b +=,再应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.21.(1)221612525x y +=;(2)52. 【要点分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)方法一:过点P 作x 轴垂线,垂足为M ,设6x =与x 轴交点为N ,可得 PMB BNQ ≅△△,可求得P 点坐标,从而求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.【答案详解】(1) 222:1(05)25x y C m m+=<<∴5a =,b m =,根据离心率c e a ====,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=.(2)[方法一]:通性通法不妨设P ,Q 在x 轴上方,过点P 作x 轴垂线,垂足为M ,设直线6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥, 90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒, 90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=, 可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -, (6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===根据两点间距离公式可得:AQ ==,∴APQ △面积为:15252⨯=; ②当P 点为(3,1)-时,故5+38MB ==, PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -, (6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为d ===,根据两点间距离公式可得:AQ ==∴APQ △面积为:1522=,综上所述,APQ △面积为:52. [方法二]【最优解】:由对称性,不妨设P ,Q 在x 轴上方,过P 作PE x ⊥轴,垂足为E .设(6,0)D ,由题知,PEB BDQ ≌.故131p BP PE PEPE x QB BD ==⇒=⇒=±, ①因为(3,1),(5,0),(6,2)P A Q -,如图,所以,52APQAQD PEDQ PEA S S S S =--=.②因为(3,1),(5,0),(6,8)P A Q --,如图,所以52APQAQD PEDQ PEA S S S S =--=.综上有52APQ S =△ [方法三]:由已知可得()5,0B ,直线,BP BQ 的斜率一定存在,设直线BP 的方程为()5y k x =-,由对称性可设0k <,联立方程22(5),161,2525y k x x y =-⎧⎪⎨+=⎪⎩消去y 得()22221161601625250k x k x k +-+⨯-=,由韦达定理得221625255116P k x k ⨯-=+,所以22805116P k x k -=+,将其代入直线BP 的方程得210116P ky k -=+,所以22280510,116116k k P k k ⎛⎫-- ⎪++⎝⎭,则||BP == 因为BP BQ ⊥,则直线BQ 的方程为1(5)y x k=--,则16,,||Q BQ k ⎛⎫-== ⎪⎝⎭因为||||BP BQ ==,422566810k k -+=, 即()()22641410k k --=,故2164k =或214k =,即18k =-或12k =-.当18k =-时,点P ,Q 的坐标分别为(3,1),(6,8),||P Q PQ -=直线PQ 的方程为71093y x =+,点A 到直线PQ故APQ △的面积为1522=.当12k =-时,点P ,Q 的坐标分别为(3,1),(6,2),||P Q PQ =直线PQ 的方程为13y x =,点(5,0)A -到直线PQ 的距离为2,故APQ △的面积为15222⨯=.综上所述,APQ △的面积为52.[方法四]:由(1)知椭圆的方程为221612525x y +=,(5,0),(5,0)A B -.不妨设()00,P x y 在x 轴上方,如图.设直线:(5)(0)AP y k x k =+>.因为||||,BP BQ BP BQ =⊥,所以00||1,||5Q y BN y BM x ====-.由点P 在椭圆上得201612525x +=,所以209x =.由点P 在直线AP 上得()015k x =+,所以015k x k -=.所以2159k k -⎛⎫= ⎪⎝⎭,化简得216101k k =-. 所以0110155516k x k k k -⎛⎫-=--== ⎪⎝⎭,即(6,16)Q k . 所以,点Q 到直线AP 的距离d ==.又)0||5AP x k==+=.故115222APQS AP d =⋅== .即APQ △的面积为52.[方法五]:由对称性,不妨设P ,Q 在x 轴上方,过P 作PC x ⊥轴,垂足为C ,设(6,0)D , 由题知PCB BDQ ≌,所以131p BP PC PCPC x QB BD==⇒=⇒=±.(1)(3,1),(5,0),(6,2)P A Q -.则1221115|82111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y ==). (2)(3,1),(5,0),(6,8)P A Q --.同理,1221115|28111|222APQ S x y x y ==-=⨯-⨯= . (其中()()1122,,,AP x y AQ x y == ) 综上,APQ △的面积为52. 【整体点评】(2)方法一:根据平面几何知识可求得点P 的坐标,从而得出点Q 的坐标以及直线AQ 的方程,再根据距离公式即可求出三角形的面积,是通性通法;方法二:同方法一,最后通过面积分割法求APQ △的面积,计算上有简化,是本题的最优解;方法三:通过设直线BP 的方程()5y k x =-与椭圆的方程联立,求出点P 的坐标,再根据题目等量关系求出k 的值,从而得出点Q 的坐标以及直线AQ 的方程,最后根据距离公式即可求出三角形的面积,思想简单,但运算较繁琐;方法四:与法三相似,设直线AP 的方程:(5)(0)AP y k x k =+>,通过平面知识求出点P 的坐标,表示出点Q ,再根据距离公式即可求出三角形的面积;方法五:同法一,只是在三角形面积公式的选择上,利用三角形面积的正弦形式结合平面向量的数量积算出.22.(1)22163x y +=;(2)详见解析.【要点分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程. (2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.【答案详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以ꞏ0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x k m ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=, 因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由ꞏ0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍). 此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||23DQ AP ==.[方法三]:建立曲线系A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ?-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=. 由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =. 若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=. 令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =. 又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.23.(1)12;(2)221:13627x y C +=,22:12C y x =.【要点分析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)[方法四]由(1)可得出1C 的方程为2222143x yc c+=,联立曲线1C 与2C 的方程,求出点M的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【答案详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,。
高考数学解析几何解答题专项练习题(附解析)各科成绩的提高是同学们提高总体学习成绩的重要途径,大伙儿一定要在平常的练习中不断积存,查字典数学网为大伙儿整理了解析几何解答题专题训练题,期望同学们牢牢把握,不断取得进步!1.已知过抛物线y2=2px(p0)的焦点,斜率为22的直线交抛物线于A(x1,y1),B(x2,y2)(x1(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若OC=OA+OB,求的值.解(1)直线AB的方程是y=22x-p2,与y2=2px联立,从而有4x2-5px+ p2=0,因此x1+x2=5p4.由抛物线定义得|AB|=x1+x2+p=9,因此p=4,从而抛物线方程是y2=8x.(2)由p=4,知4x2-5px+p2=0可化为x2-5x+4=0,从而x1=1,x2=4,y1=-22,y2=42,从而A(1,-22),B(4,42).设OC=(x3,y3)=(1,-22)+(4,42)=(4+1,42-22),又y23=8x3 ,因此[22(2-1)]2=8(4+1),即(2-1)2=4+1,解得=0,或=2.2.已知圆心为C的圆,满足下列条件:圆心C位于x 轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为23,圆C的面积小于13.(1)求圆C的标准方程;(2)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在如此的直线l,使得直线OD 与MC恰好平行?假如存在,求出l的方程;假如不存在,请说明理由.解(1)设圆C:(x-a)2+y2=R2(a0),由题意知|3a+7|32+42=R,a2+3=R解得a=1或a=138,又S=13,a=1,R=2.圆C的标准方程为(x-1)2+y2=4.(2)当斜率不存在时,直线l为x=0,不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又l与圆C相交于不同的两点,联立得y=kx+3x-12+y2=4,消去y得(1+k2)x2+(6k-2)x+6=0,=(6k-2)2-24(1+k2)=12k2-24k-200,解得k 1-263或k1+263.x1+x2=-6k-21+k2,y1+y2=k(x1+x2)+6=2k+61+k2,OD=OA+OB=(x1+x2,y1+y2),MC=(1,-3),假设OD∥MC,则-3(x1+x2)=y1+y2,36k-21+k2=2k+61+k2,解得k=34-,1-2631+263,+,假设不成立,不存在如此的直线l.3.已知A(-2,0),B(2,0),点C,点D满足|AC|=2,AD=12(AB+AC).(1)求点D的轨迹方程;(2)过点A作直线l交以A,B为焦点的椭圆于M,N两点,线段MN 的中点到y轴的距离为45,且直线l与点D的轨迹相切,求该椭圆的方程.解(1)设C ,D点的坐标分别为C(x0,y0),D(x,y),则AC=(x0+2,y0),AB=(4,0),则AB+AC=(x0+6,y0),故AD=12(AB+AC)=x02+3,y02.又AD=(x+2,y),故x02+3=x+2,y02=y.解得x0=2x-2,y0=2y.代入|AC|=x0+22+y20=2,得x2+y2=1,即所求点D的轨迹方程为x2+y2=1.(2)易知直线l与x轴不垂直,设直线l的方程为y=k(x+2),①设椭圆方程为x2a2+y2a2-4=1(a24).②将①代入②整理,得(a2k2+a2-4)x2+4a2k2x+4a2k2-a4+4a2=0.③因为直线l与圆x2+y2=1相切,故|2k|k2+1=1,解得k2=13.故③式可整理为(a2-3)x2+a2x-34a4+4a2=0.设M(x1,y1),N(x2,y2),则x1+x2=-a2a2-3.由题意有a2a2-3=245(a24),解得a2=8,经检验,现在0.故椭圆的方程为x28+y24=1.4.已知点F1,F2分别为椭圆C:x2a2+y2b2=1(a0)的左、右焦点,P是椭圆C上的一点,且|F1F2|=2,F1PF2=3,△F1PF2的面积为33.(1)求椭圆C的方程;(2)点M的坐标为54,0,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,关于任意的kR,MAMB是否为定值?若是,求出那个定值;若不是,说明理由.解(1)设|PF1|=m,|PF2| =n.在△PF1F2中,由余弦定理得22=m2+n2-2mncos3,化简得,m2+n2-mn=4.由S△PF1F2=33,得12mnsin3=33.化简得mn=43.因此(m+n)2=m2+n2-mn+3mn=8.m+n=22,由此可得,a=2.又∵半焦距c=1,b2=a2-c2=1.因此,椭圆C的方程为x22+y2=1.(2)由已知得F2(1,0),直线l的方程为y=k(x-1),由y=kx-1,x22+y2=1消去y,得(2k2+1)x2-4k2x+2(k2-1)=0.设A(x1,y1),B(x2,y2),则x1+x2=4k22k2+1,x1x2=2k2-12k2+1.∵MAMB=x1-54,y1x2-54,y2=x1-54x2-54+y1y2=x1-54x2-54+k2(x1-1)(x2-1)=(k2+1)x1x2-k2+54(x1+x2)+2516+k2=(k2+1)2k2-22k2+1-4k2k2+542k2+1+2516+k2=-4k2-22k2+1+2516=-716.由此可知MAMB=-716为定值.5.已知双曲线E:x2a2-y2b2=1(a0,b0)的焦距为4,以原点为圆心,实半轴长为半径的圆和直线x-y+6=0相切.(1)求双曲线E的方程;(2) 已知点F为双曲线E的左焦点,试问在x轴上是否存在一定点M,过点M任意作一条直线交双曲线E于P,Q两点(P在Q点左侧),使FPFQ 为定值?若存在,求出此定值和所有的定点M的坐标;若不存在,请说明理由.解(1)由题意知|6|12+-12=a,a=3.又∵2c=4,c=2,b=c2-a2=1.双曲线E的方程为x23-y2=1.(2)当直线为y=0时,则P(-3,0),Q(3,0),F(-2,0),FPFQ=( -3+2,0)(3+2,0)=1.当直线不为y=0时,可设l:x=ty+m(t3),代入E:x23-y2=1,整理得(t2-3)y2+2mty+m2-3=0(t3).(*)由0,得m2+t23.设方程(*)的两个根为y1,y2,满足y1+y2=-2mtt2-3,y1y2=m2-3t2-3,FPFQ=(ty1+m+2,y1)(ty2+m+2,y2)=(t2+1)y1y2+t(m+2)(y1+y2)+(m+2)2=t2-2m2-12m-15t2-3.当且仅当2m2+12m+15=3时,FPFQ为定值,解得m1=-3-3,m2=-3+3(舍去).死记硬背是一种传统的教学方式,在我国有悠久的历史。
高考数学解析几何基础小题训练1.直线0x y +=被圆22(2)4x y -+=截得的弦长为( )A.22B.2C.22D.22.平行线0943=-+y x 和620x my ++=的距离是( ) A .58 B .2 C .511 D .57 3.已知双曲线22–100ax by a b =(>,>)的一条渐近线方程是30x y -=,它的一个焦点在抛物线2–4y x =的准线上,则双曲线的方程为( ).(A )4x 2–12y 2=1 (B )4x 2–34y 2=1 (C )12x 2–4y 2=1 (D )3422–41x y = 4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A )2 (B )3 (C )312+ (D )512+5.已知等轴双曲线C 与抛物线y x 42=有一个共同的焦点,则双曲线C 的方程为( )A .12222=-x y B .12222=-y x C .122=-x y D .12222=-x y 6.抛物线28y x =的焦点到双曲线2213y x -=的一条渐近线的距离为( ) A.1 B.2 C.3 D.237.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线310x y ++=垂直,则双曲线的离心率等于 A.6 B.233C.10D.3 8.已知过抛物线x y 122=焦点的一条直线与抛物线相交于A ,B 两点,若||14AB =,则线段AB 的中点到y 轴的距离等于( ) A .1 B .2 C .3 D .49.抛物线214y x =-的焦点坐标是( ) (A )()1,0- (B )()2,0- (C )()0,1- (D )()0,2- 10.抛物线24y x =图像上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线焦点为F ,则△MPF 的周长为( )A .5+5B .5+25C .10D .10+2511.设椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为F 1、F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ). A .63 B .31 C .21 D .3312.已知双曲线2213x y -=的左,右焦点分别为12,F F ,点P 在双曲线上,且满足12||||25PF PF +=,则△12PF F 的面积为( )A. 5B.3 C. 1 D. 1213.已知抛物线214y x =的焦点为F ,定点(1,2)M ,点A 为抛物线上的动点,则AF AM +的最小值为( )A .32 B .52C .3D .5 14.直线和直线平行,则a=( )A .71--或B .7-C .7或1D .1-15.已知直线()1:3210l mx m y +++=,直线()()2:2220l m x m y -+++=,且12//l l ,则m 的值为( ) A 、-1 B 、12 C 、12或-2 D 、-1或-2 16.点P 在圆1C :22(3)1x y ++=上,点Q 在圆2C :22(4)4x y -+= 上,则PQ 的最大值是A .8B .5C .3D .217.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=118.过抛物线28y x = 的焦点作直线交抛物线于()()1122,,,A x y B x y 两点,如果126x x += ,那么=( )A .6B .8C .9D .1019.直线032=--y x 与圆9)3()2(22=++-y x 交于F E ,两点,则EOF ∆(O 为原点)的面积为( ) A .655 B .355C .32D .3420.已知抛物线24y x =的焦点为F ,准线为l ,点P 为抛物线上任意一点,且在第一象限,PA ⊥l ,垂足为A ,||4PF =,则直线AF 的倾斜角等于( )A.712π B.23π C.34π D.56π21.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ) (A )22(2)(2)3x y -+±= (B )22(2)(3)3x y -+±= (C )22(2)(2)4x y -+±= (D )22(2)(3)4x y -+±=22.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于 ( ) A .1 B .13-C .23- D .23.圆036422=--++y x y x 的圆心和半径分别为( )(A )(4,-6),16 错误!未找到引用源。
(B )(2,-3),4(C )(-2,3),4 错误!未找到引用源。
(D )(2,-3),1624.由直线y=x+l 上的点向圆 2264120x y x y +-++=引切线,则切线长的最小值为 (A ) 17 (B )32 (C ) 19 (D )25;25.若双曲线的22221(0,0)x y a b a b -=>>的两条渐近线互相垂直,则离心率为( )2 B .3 C .2 D .2326.已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )ABA .23B .6C .43D .1227.抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4 B .33 C .43 D .828.圆221:46120O x y x y +--+=与圆222:86160O x y x y +--+=的位置关系是( )A .内切B .外离C .内含D .相交 29.直线(21)(1)740m x m y m +++--=过定点 ( ) A .(1,-3)B .(4,3)C .(3,1)D .(2,3)30.过点()3,1P 作圆()22:21C x y -+=的两条切线,切点分别为A 、B ,则直线AB 的方程为A .30x y +-=B .30x y --=C .230x y --=D .230x y +-=31.已知点P 是以21,F F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF ,21tan 21=∠F PF ,则椭圆的离心率为( ) (A )31 (B )21 (C )32(D )3532.设a R ∈,则1a =“”是1(1)3l ax a y +-=“直线:与直线2(1)l a x -:(23)2a y ++=互相垂直的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件33.已知抛物线22(0)x py p =>的焦点为F ,过F 作倾斜角为030的直线,与抛物线交于,A B 两点,若||||AF BF <,则||||AF BF =( )A .21 B .31 C .41 D .51 34.两圆22616480x y x y +-+-=与2248440x y x y ++--=的公切线条数为( ) A .4条 B .3条 C .2条 D .1条 35.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为 ( ) A .1 B .5 C .42 D .322+参考答案 1.C 【解析】试题分析:根据点到直线的距离公式可求得,圆心)0,2(到直线0x y +=的距离为2202=+=d ,所以直线0x y +=被圆22(2)4x y -+=截得的弦长为22242222=-=-d r ,故应选C .考点:1.直线与圆的位置关系;2.点到直线的距离公式; 2.B 【解析】试题分析:根据两直线平行,可以断定8m =,所以直线方程可化为3410x y ++=,由公式可得两直线之间的距离1925d +==,故选B . 考点:平行线间的距离公式. 3.D 【解析】试题分析:22–100ax by a b =(>,>)即22–10011x y a b a b=(>,>),其渐近线方程为a y x b =±,所以231(),33a ab b ==①;又2–4y x =的准线为1x =,所以111a b +=②,由①②解得4,43a b ==,故选D . 考点:1.抛物线的几何性质;2.双曲线的几何性质. 4.D 【解析】试题分析:设该双曲线方程为2222100x y a b a b-=(>,>),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为bc-由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为2222100x y a b a b-=(>,>),可得它的渐近线方程为by x a =±,焦点为F(c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为00FB b k c bc-==--,∵直线FB与直线by x a=互相垂直,2222222151,102b b b ac b c a c a ac e e e c a ±∴-⨯=-∴==-∴-=∴--=∴=,,,,∵双曲线的离心率e >1,∴e=512+,故选:D考点:双曲线的简单性质 5.A 【解析】试题分析:抛物线y x 42=的焦点为()1,0,由题意,得双曲线的焦点为()1,0,所以设双曲线的标准方程为)0,0(12222>>=-b a b x a y ,且⎩⎨⎧=+=122b a b a ,解得22==b a ,即双曲线的方程为12222=-x y .考点:双曲线的标准方程和抛物线的标准方程.6.C 【解析】试题分析:抛物线28y x =的焦点为(2,0),双曲线2213y x -=的渐近线方程为3y x =±.由渐近线的对称性可知,焦点(2,0)到两渐近线距离相等.不妨计算焦点(2,0)到直线3y x =即30x y -=的距离,22|320|3(3)1⨯-=+,选C .考点:1.双曲线、抛物线的几何性质;2.点到直线的距离公式. 7.C 【解析】试题分析:直线013=++y x 的斜率31-=k ,双曲线的渐近线方程x aby ±=,因此131-=⎪⎭⎫⎝⎛-⋅a b ,得 a b 3=,令k a =,则k b a c 1022=+=,离心率1010===kk a c e ,故答案为C. 考点:双曲线的简单几何性质. 8.D 【解析】试题分析:抛物线x y 122=焦点(3,0)F ,准线方程为.由抛物线的定义可知,,A B 到准线的距离之和等于||14AB =,由梯形的中位线定理,线段AB 的中点到准线轴的距离等于1||72AB =,所以,线段AB 的中点到y 轴的距离等于734-=,选D 考点:1.抛物线的定义;2.抛物线的几何性质. 9.C 【解析】试题分析:将抛物线方程化为标准方程得24x y =-,所以其焦点坐标为(0,1)-,故选C. 考点:抛物线的定义及标准方程. 10.D 【解析】试题分析:设准线x=-1与x 轴的交点为A ,如图所示:则AF=2.因为|PM|=5,所以点P 的横坐标为4,则点P 的纵坐标为±4, 所以M 的坐标为(-1,±4),MP+PF+FM=5+5+2224+=10+25, 故选D .考点:抛物线的方程,几何性质. 11.D . 【解析】试题分析:根据题意,作出示意图(如图所示)在21F PF Rt ∆中,02130=∠F PF ;设m PF 21=,则m F F m PF 3,212==;由椭圆的定义,得m F F c m PF PF a 32,322121===+=,则椭圆的离心率为3322==a c e .考点:椭圆的定义、直角三角形.12.C 【解析】试题分析:设x PF =1,y PF =2,由双曲线定义得32=-y x ①,又52=+y x ②,由①②可得2=xy ,2212216F F y x ==+,故⊥1PF 2PF ,21=S 1PF 12=PF考点: 焦点三角形面积13.C 【解析】试题分析:如图,直线:1l y =-是抛物线214y x =的准线,根据抛物线的定义,AF 等于点A 到准线的距离AN ,则AF AM MA AN +=+,其最小值在点M A N 、、三点共线时取得,即为2(1)3--=,故选C .考点:抛物线的定义. 14.B 【解析】试题分析:根据两直线平行的条件可知,(3+a )(5+a )-4×2=0,且5-3a≠8.进而可求出a的值.因为直线13453l a x y a ++=-:() 和直线2258l x a y ++=:() 平行,则2 35420870a a a a ++-⨯=∴++=()(),. 解得,a=-1或a=-7.又∵5-3a≠8,∴a≠-1.∴a=-7. 故答案为:B .考点:直线的一般方程与直线的平行 15.D 【解析】 试题分析:根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当2m =-时,1211:,:62l x l x =-=显然两直线平行,符合题意;当2m ≠-时,131:22m l y x m m =--++,222:22m l x m m ---++,若平行需满足3222m m m m --=-++且1222m m -≠-++,解得:1m =-,综上,答案为D.考点:1.两直线平行的条件;2.斜截式直线方程. 16.A 【解析】试题分析:两圆的圆心分别是12(0,3),(4,0)C C -,所以两圆心间的距离是5,根据圆的特点,PQ 的最大值为12128C C ++=,故选A.考点:两个圆上的动点之间的距离的最值问题. 17.A【解析】法一因为点(x ,y )关于原点的对称点为(-x ,-y ),所以圆C 为(-x +2)2+(-y -1)2=1,即(x -2)2+(y +1)2=1. 法二已知圆的圆心是(-2,1),半径是1,所以圆C 的圆心是(2,-1),半径是1.所以圆C 的方程是(x -2)2+(y +1)2=1. 18.D 【解析】试题分析:28,4;p p ==根据抛物线定义得:12||||||22p pAB AF BF x x =+=+++故选D考点:本题考查抛物线的定义点评:解决本题的关键是掌握抛物线的定义,开口向右的抛物线焦点弦长为12x x p ++ 19.A 【解析】试题分析:由点到直线的距离的公式可得:原点到直线EF 得距离为35h =, 同样可得,圆心(2,-3)到直线x-2y-3=0的距离26355d +-==,则 弦EF 的长度为()222354-=, 则△EOF 的面积为= 13654255创=,故选A 考点:直线与圆的位置关系,点到直线的位置关系点评:解决此题的关键是求出弦长,以及原点到直线的距离 20.B. 【解析】试题分析:设11(,)P x y ,由题意得,(1,0)F ,∴11||143PF x x =+=⇒=,∴123y =, ∴(1,23)A -,230311AF k -==---,∴倾斜角为23π.考点:1.抛物线的性质;2.直线的倾斜角与斜率.21.D 【解析】试题分析:∵圆C 经过(1,0),(3,0)两点,∴圆心在直线x=2上.可设圆心C (2,b ).又∵圆C 与y 轴相切,∴半径r=2.∴圆C 的方程为2224x y b -+-=()().∵圆C 经过点(1,0),∴22124b -+=() . ∴3b =±.∴圆C 的方程为22234x y -+±=()()考点:本题考查圆的标准方程点评:解决本题的关键是掌握圆的性质,直线与圆的位置关系,求出圆心和半径 22.D 【解析】试题分析:由题意得1210a ⨯+⨯= ,解得a=-2 考点:本题考查两直线的位置关系点评:解决本题的关键是掌握两直线垂直的充要条件,即12120A A B B += 23.C 【解析】试题分析:由题意可得()()222316x y ++-= ,所以圆心为(-2,3),半径为4 考点:本题考查圆方程点评:解决本题的关键是转化为标准方程,或记住圆的一般方程中圆心坐标和半径的公式 24.A 【解析】试题分析:由图可知,222221AB AC BC AC R AC =-=-=- ,要使AB 最小,只要AC 最小,过C (3,-2)做直线的垂线,这时321322AC ++==18117AB ∴=-= 1086422468101510551015CAB考点:本题考查圆的切线问题点评:解决本题的关键是切线与圆心到直线距离的关系式,知道点到直线的距离公式25.C【解析】试题分析:设双曲线方程为22221x y a b-=,则双曲线的渐近线方程为b y x a =±,∵两条渐近线互相垂直,∴()1b b a a ⨯-=-,222222c a b c a b a e a∴=∴=+=∴==,, 故选C .考点:双曲线的性质.26.C【解析】试题分析:根据椭圆的定义,可以得出三角形的周长为443a =,故选C .考点:椭圆的定义.27.C【解析】试题分析:由抛物线24y x =可知焦点()1,0F ,准线:1l x =-.过F 且斜率为3的直线AK 方程为()31y x =-,与抛物线方程联立消去y 可得231030x x -+=,解得13x =或3x =.依题意可知()3,23A ,则()1,23K -.由抛物线的定义可知()314AF AK ==--=,点()1,23K -到直线AK 的距离为()()2232332331d ---==+-.所以AKF △的面积为1423432⨯⨯=.故C 正确. 考点:1抛物线的定义;2直线与抛物线的位置关系.28.A【解析】试题分析:将两圆方程化为标准形式,即圆221:-2-31O x y +=()(),圆222:-4-39O x y +=()()两圆心距2212(24)(33)231o o =-+-==- ,所以两圆内切。