硫化氢的腐蚀特征和影响因素
- 格式:ppt
- 大小:104.00 KB
- 文档页数:24
硫化氢(H2S)的特性及来源1.硫化氢的特性硫化氢的分子量为34.08,密度为1.539mg/m3。
而且是一种无色、有臭鸡蛋味的、易燃、易爆、有毒和腐蚀性的酸性气体。
H2S在水中的溶解度很大,水溶液具有弱酸性,如在1大气压下,30℃水溶液中H2S饱和浓度大约是300mg/L,溶液的pH值约是4。
H2S不仅对人体的健康和生命安全有很大的危害性,而且它对钢材也具有强烈的腐蚀性,对石油、石化工业装备的安全运转存在很大的潜在危险。
2.石油工业中的来源油气中硫化氢的来源除了来自地层以外,滋长的硫酸盐还原菌转化地层中和化学添加剂中的硫酸盐时,也会释放出硫化氢。
3.石化工业中的来源石油加工过程中的硫化氢主要来源于含硫原油中的有机硫化物如硫醇和硫醚等,这些有机硫化物在原油加工过程进行中受热会转化分解出相应的硫化氢。
干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。
硫化氢腐蚀机理1.湿硫化氢环境的定义(1)国际上湿硫化氢环境的定义美国腐蚀工程师协会(NACE)的MR0175-97“油田设备抗硫化物应力开裂金属材料”标准:⑴ 酸性气体系统:气体总压≥0.4MPa,并且H2S分压≥0.0003MPa;⑵ 酸性多相系统:当处理的原油中有两相或三相介质(油、水、气)时,条件可放宽为:气相总压≥1.8MPa且H2S分压≥0.0003MPa;当气相压力≤1.8MPa且H2S分压≥0.07MPa;或气相H2S含量超过15%。
(2)国内湿硫化氢环境的定义“在同时存在水和硫化氢的环境中,当硫化氢分压大于或等于0.00035 MPa时,或在同时存在水和硫化氢的液化石油气中,当液相的硫化氢含量大于或等于10×10-6时,则称为湿硫化氢环境”。
(3)硫化氢的电离在湿硫化氢环境中,硫化氢会发生电离,使水具有酸性,硫化氢在水中的离解反应式为:H2S = H+ + HS- (1)HS- = H+ + S2- (2)2.硫化氢电化学腐蚀过程阳极: Fe - 2e → Fe2+阴极: 2H+ + 2e → Had + Had → 2H → H2↑↓[H]→ 钢中扩散其中:Had - 钢表面吸附的氢原子[H] - 钢中的扩散氢阳极反应产物: Fe2+ + S2- → FeS ↓注:钢材受到硫化氢腐蚀以后阳极的最终产物就是硫化亚铁,该产物通常是一种有缺陷的结构,它与钢铁表面的粘结力差,易脱落,易氧化,且电位较正,因而作为阴极与钢铁基体构成一个活性的微电池,对钢基体继续进行腐蚀。
硫化氢腐蚀温度范围一、引言硫化氢是一种常见的腐蚀介质,在石油、化工、煤炭等领域中广泛存在。
硫化氢腐蚀不仅会降低设备的使用寿命,还会对环境和人类健康造成威胁。
因此,了解硫化氢腐蚀的机理和温度对其腐蚀的影响,掌握不同温度下的硫化氢腐蚀行为,对于预防和控制硫化氢腐蚀具有重要意义。
本文将重点探讨硫化氢腐蚀的温度范围及相关控制措施。
二、硫化氢腐蚀机理硫化氢腐蚀主要涉及电化学腐蚀、化学腐蚀和生物腐蚀等机理。
其中,电化学腐蚀是最主要的腐蚀形式,包括阳极溶解和阴极析氢两个过程。
在酸性环境下,金属表面的氢离子获得电子后形成氢气,而金属离子则进入溶液,导致金属表面出现腐蚀。
化学腐蚀和生物腐蚀则在特定条件下与电化学腐蚀相互作用,加速了硫化氢腐蚀的过程。
三、温度对硫化氢腐蚀的影响温度是影响硫化氢腐蚀的重要因素之一。
随着温度的升高,硫化氢的活性增强,腐蚀速率也会相应增加。
实验表明,在一定范围内,温度每升高10℃,硫化氢腐蚀速率将增加1倍。
此外,温度还会影响腐蚀产物的结构和性质,进而影响腐蚀速率和机理。
四、硫化氢腐蚀温度范围根据相关研究和实验数据,硫化氢腐蚀的温度范围较广,一般在20℃至200℃之间。
然而,在实际应用中,由于不同材料和环境条件的差异,硫化氢腐蚀的温度范围会有所不同。
例如,在某些高硫化氢环境中,温度可能高达300℃以上,此时需考虑采用耐高温材料或进行冷却措施以减缓硫化氢腐蚀。
五、不同温度下的硫化氢腐蚀行为在不同温度下,硫化氢腐蚀的行为和机理可能存在差异。
在常温下,硫化氢主要引起均匀腐蚀和局部腐蚀,其中均匀腐蚀是由于金属表面整体暴露于硫化氢环境中而引起的。
局部腐蚀则主要发生在金属表面的缺陷处或应力集中的区域。
随着温度的升高,局部腐蚀的比例会增加,而均匀腐蚀则会减少。
此外,高温下还可能发生高温硫化氢腐蚀、高温高压下的硫化氢腐蚀等特殊形式。
六、硫化氢腐蚀控制措施为了减缓和控制硫化氢腐蚀,可以采取以下措施:1.选择耐蚀材料:针对不同温度和环境条件,选择耐蚀性能优良的材料可以有效降低硫化氢腐蚀的风险。
h2s对金属的腐蚀(原创实用版)目录1.硫化氢对金属的腐蚀概述2.湿 H2S 环境下金属腐蚀行为和机理3.干燥的 H2S 对金属材料的腐蚀破坏作用4.钢材在湿 H2S 环境中的腐蚀破坏5.结论正文硫化氢(H2S)是一种常见的腐蚀性气体,对金属材料产生腐蚀作用。
根据所提供的参考信息,本文将详细介绍硫化氢对金属的腐蚀行为和机理,以及在湿 H2S 环境下金属的腐蚀情况。
1.硫化氢对金属的腐蚀概述硫化氢对金属的腐蚀性因其浓度、温度、湿度以及金属材料的种类而异。
在常温常压下,干燥的硫化氢对金属材料无腐蚀破坏作用。
然而,在湿环境中,硫化氢会与水分子结合形成硫化氢水溶液,从而对金属材料产生腐蚀。
2.湿 H2S 环境下金属腐蚀行为和机理在湿 H2S 环境下,金属材料会发生腐蚀,其腐蚀行为和机理取决于金属材料的种类。
例如,对于铁和钢材,硫化氢会在其表面形成硫化亚铁(FeS),并继续转化为硫化铁(FeS2),从而引发腐蚀破坏。
而对于其他金属,如铜、铝等,硫化氢腐蚀作用较弱。
3.干燥的 H2S 对金属材料的腐蚀破坏作用如前所述,在常温常压下,干燥的硫化氢对金属材料无腐蚀破坏作用。
因此,在储存和使用金属材料时,应注意环境湿度的控制,以减少硫化氢腐蚀的可能性。
4.钢材在湿 H2S 环境中的腐蚀破坏钢材在湿 H2S 环境中容易引发腐蚀破坏。
硫化氢与钢材表面的铁发生反应,形成硫化亚铁,并继续转化为硫化铁,导致钢材表面出现锈蚀、脱落等现象。
此外,硫化氢还会加剧钢材的应力腐蚀开裂,从而加速钢材的损坏。
5.结论综上所述,硫化氢对金属材料的腐蚀作用因金属材料种类、环境条件等因素而异。
在湿 H2S 环境下,金属材料容易发生腐蚀,尤其是钢材。
硫化氢腐蚀与防护相关知识1. 硫化氢腐蚀的预防措施1.1. 选用抗硫化氢材料抗硫化氢材料主要是指对硫化氢应力腐蚀开裂和氢损伤有一定抗力或对这种开裂不敏感的材料。
同时采用低硬度(强度)和“完全淬火+回火”处理工艺对材料抗硫化氢腐蚀是有利的。
美国国家腐蚀工程师学会(NACE)标准MR-01-75(1980年修订)中规定:含硫化氢环境中使用的钻杆、钻杆接头、钻铤和其它管材的最大硬度不许高于HRC22;钻杆接头与钻杆的焊接及热影响区应进行“淬火+595℃以上温度的回火”处理;对于最小屈服强度大于655MPa的钢材应进行“淬火+回火”处理,以获得抗硫化物应力腐蚀开裂的最佳能力。
1.2. 抗H2S腐蚀钢材的基本要求⑴成分设计合理:材料的抗H2S应力断裂性能主要与材料的晶界强度有关,因此常常加入Cr、Mo、Nb、Ti、Cu等合金元素细化原始奥氏体晶粒度。
超细晶粒原始奥氏体经淬火后,形成超细晶粒铁素体和分布良好的超细碳化物组织,是开发抗硫化物应力腐蚀的高强度钢最有效的途径。
⑵采用有害元素(包括氢,氧,氮等)含量很低纯净钢;⑶良好的淬透性和均匀细小的回火组织,硬度波动尽可能小;⑷回火稳定性好,回火温度高(>600℃);⑸良好的韧性;⑹消除残余拉应力。
1.3. 添加缓蚀剂实践证明合理添加缓蚀剂是防止含H2S酸性油气对碳钢和低合金钢设施腐蚀的一种有效方法。
缓蚀剂对应用条件的选择性要求很高,针对性很强。
不同介质或材料往往要求的缓蚀剂也不同,甚至同一种介质,当操作条件(如温度、压力、浓度、流速等)改变时,所采用的缓蚀剂可能也需要改变。
用于含H2S酸性环境中的缓蚀剂,通常为含氧的有机缓蚀剂(成膜型缓蚀剂),有胺类、米唑啉、酰胺类和季胺盐,也包括含硫、磷的化合物。
如四川石油管理局天然气研究所研制的CT2-l和CT2-4油气井缓蚀剂及CT2—2输送管道缓蚀剂,在四川及其他含硫化氢油气田上应用均取得良好的效果。
1.4. 控制溶液pH值提高溶液pH值降低溶液中H+含量可提高钢材对硫化氢的耐蚀能力,维持pH值在9~11之间,这样不仅可有效预防硫化氢腐蚀,又可同时提高钢材疲劳寿命。
硫化氢腐蚀的机理及影响因素作者:安全管理网来源:安全管理网1. H2S腐蚀机理自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。
虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。
关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。
因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。
(1) 硫化氢电化学腐蚀过程硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。
硫化氢在水中的溶解度随着温度升高而降低。
在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。
在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。
其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。
研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。
总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。
Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。
然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。
硫化氢腐蚀的机理及影响因素作者:安全管理网来源:安全管理网1. H2S腐蚀机理自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。
虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。
关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。
因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。
(1) 硫化氢电化学腐蚀过程硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。
硫化氢在水中的溶解度随着温度升高而降低。
在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。
1在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。
其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。
研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。
总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。
Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-X S在内的具有保护性的硫化物膜。
然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-X S为主的包括FeS,FeS2在内的非保护性膜。
硫化氢腐蚀的影响因素1.材料因素在油气田开发过程中钻柱可能发生的腐蚀类型中,以硫化氢腐蚀时材料因素的影响作用最为显著,材料因素中影响钢材抗硫化氢应力腐蚀性能的主要有材料的显微组织、强度、硬度以及合金元素等等;⑴ 显微组织镍Ni:提高低合金钢的镍含量,会降低它在含硫化氢溶液中对应力腐蚀开裂的抵抗力;原因是镍含量的增加,可能形成马氏体相;所以镍在钢中的含量,即使其硬度HRC<22时, 也不应该超过1%;含镍钢之所以有较大的应力腐蚀开裂倾向,是因为镍对阴极过程的进行有较大的影响;在含镍钢中可以观察到最低的阴极过电位,其结果是钢对氢的吸留作用加强,导致金属应力腐蚀开裂的倾向性提高;铬Cr:一般认为在含硫化氢溶液中使用的钢,含铬0.5%~13%是完全可行的,因为它们在热处理后可得到稳定的组织;不论铬含量如何,被试验钢的稳定性未发现有差异;也有的文献作者认为,含铬量高时是有利的,认为铬的存在使钢容易钝化;但应当指出的是,这种效果只有在铬的含量大于11%时才能出现;钼Mo:钼含量≤3%时,对钢在硫化氢介质中的承载能力的影响不大;钛Ti:钛对低合金钢应力腐蚀开裂敏感性的影响也类似于钼;试验证明,在硫化氢介质中,含碳量低的钢0.04%加入钛0.09%Ti,对其稳定性有一定的改善作用;锰Mn:锰元素是一种易偏析的元素,研究锰在硫化物腐蚀开裂过程的作用十分重要;当偏析区Mn、C含量一旦达到一定比例时,在钢材生产和设备焊接过程中,产生出马氏体/贝氏体高强度、低韧性的显微组织,表现出很高的硬度,对设备抗SSCC是不利的;对于碳钢一般限制锰含量小于1.6%;少量的Mn能将硫变为硫化物并以硫化物形式排出,同时钢在脱氧时,使用少量的锰后,也会形成良好的脱氧组的对应力腐蚀开裂的影响高强度钢即使在溶液中硫化氢浓度很低体积分数为1×10-3mL/L的情况下仍能引起破坏,硫化氢体积分数为5×10-2~6×10-1 mL/L时,能在很短的时间内引起高强度钢的硫化物应力腐蚀破坏,但这时硫化氢的浓度对高强度钢的破坏时间已经没有明显的影响了;硫化物应力腐蚀的下限浓度值与使用材料的强度硬度有关;碳钢在硫化氢体积分数小于5×10-2mL/L时破坏时间都较长;NACE MR0175-88标准认为发生硫化氢应力腐蚀的极限分压为0.34×10-3MPa水溶液中H2S浓度约20mg/L,低于此分压不发生硫化氢应力腐蚀开裂;⑵ pH值对硫化物应力腐蚀的影响:随pH的增加,钢材发生硫化物应力腐蚀的敏感性下降pH≤6时,硫化物应力腐蚀很严重;6<pH≤9时,硫化物应力腐蚀敏感性开始显著下降,但达到断裂所需的时间仍然;通常规定阀门的气体流速低于15m/s;相反,如果气体流速太低,可造成管线、设备低部集液,而发生因水线腐蚀、垢下腐蚀等导致的局部腐蚀破坏;因此,通常规定气体的流速应大于3m/s;5氯离子在酸性油气田水中,带负电荷的氯离子,基于电价平衡,它总是争先吸附到钢铁的表面,因此,氯离子的存在往往会阻碍保护性的硫化铁膜在钢铁表面的形成;但氯离子可以通过钢铁表面硫化铁膜的细孔和缺陷渗入其膜内,使膜发生显微开裂,于是形成孔蚀核;由于氯离子的不断移入,在闭塞电池的作用下,加速了孔蚀破坏;在酸性天然气气井中与矿化水接触的油套管腐蚀严重,穿孔速率快,与氯离子的作用有着十分密切的关系;。
硫化氢腐蚀温度范围硫化氢是一种常见的有毒气体,具有剧烈的腐蚀性。
它在一定的温度范围内可以对多种金属和合金产生严重的腐蚀作用。
本文将重点探讨硫化氢腐蚀的温度范围。
硫化氢的腐蚀温度范围是指在一定的温度下,硫化氢对金属材料产生显著腐蚀的范围。
一般认为,在室温下,硫化氢对大部分金属的腐蚀性较低,但随着温度的升高,腐蚀性也逐渐增强。
以下将根据温度范围的不同,对硫化氢的腐蚀作用进行详细分析。
1.低温腐蚀(-50℃以下):在较低的温度下,硫化氢的腐蚀性较弱。
常见的低温腐蚀主要发生在液态硫化氢或高压硫化氢气体的情况下。
一些金属,在低温下容易与硫化氢反应生成硫化物,从而导致腐蚀。
例如,在液态硫化氢中,铜、镍、钢等金属容易被硫化氢气体腐蚀,产生相应的硫化物。
2.中温腐蚀(-50℃~150℃):在中等温度下,硫化氢的腐蚀性较为显著。
硫化氢在此温度范围内对钢材、铝合金、不锈钢等金属材料具有较强的腐蚀作用。
在石油、化工、电力等工业领域,中温腐蚀是一种较为常见的腐蚀形式。
例如,在炼油厂的硫化氢转氧化装置中,中温腐蚀对设备和管道的腐蚀问题常常需要引起重视。
3.高温腐蚀(150℃以上):在高温下,硫化氢对金属材料的腐蚀力度进一步增强。
高温腐蚀主要发生在高温炉窑、燃气管道、锅炉和深海气田等条件下。
硫化氢气体在高温环境中与金属表面发生反应,会导致金属材料脆化、粉化和孔蚀等现象。
高温腐蚀对金属材料的损害更为严重,因此需要采取相应的防护措施,以延缓腐蚀的发生。
需要注意的是,硫化氢腐蚀的温度范围并非是确定的数值。
它受到多种因素的影响,包括硫化氢的浓度、氧气的含量、气体流速、金属的材质和表面情况等。
在实际生产和应用中,应根据具体情况来评估硫化氢的腐蚀风险,并采取相应的防腐措施。
总结起来,硫化氢具有一定的腐蚀性,在不同温度下对金属材料的腐蚀性能不同。
了解硫化氢腐蚀的温度范围,对于工业生产和设备维护非常重要。
只有在及时采取防护措施的前提下,才能有效降低硫化氢对金属材料的腐蚀作用,保证生产安全和设备的正常运行。