流体动力学(cfd)在往复式压缩机管道系统气流脉动计算中的应用
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
146教育现代化传媒品牌投稿邮箱:jyxdhbjb@课程与教学工程流体力学是研究流体的机械运动规律以及运用这些规律解决工程实际意义的一门学科。
工程流体力学成为大部分工科学生的必修专业基础课程,主要涉及的专业有机械、能源动力、化工、环保、石油等专业[1]。
该课程的特点是抽象、枯燥、难懂,应用的数学知识较多。
因此为提高教学质量,授课教师们也一直在探讨如何改进流体力学的教学方法。
近年来,随着计算机科学的发展,计算流体动力学(简称CFD)技术日趋成熟。
CFD 是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统进行求解分析[2]。
由于数值模拟相对于实验研究具有成本低、周期短、获得数据完整等特点�对设计研发起到重要指导作用,所以CFD 技术得到了越来越多的应用。
如何最大程度地激发学生对所学知识的兴趣是教学成败的最关键因素,它影响着学生对知识的求知欲望,从而进一步决定对他们对所学理论的理解与掌握[3]。
由于流动基本变化规律很难理解,因此本文将CFD 技术应用在流体力学的教学过程中。
通过对基本流动现象的数值分析,将抽象的概念、理论变成形象的画面及动画演示,并结合基础理论进行讲解,便于学生对所学内容深入理解。
同时也列举科研中研究的工程实际问题,从而达到激发学生的学习兴趣,改善教学效 果的目的。
Fluent 软件是1999年进入中国市场,目前在国内各个行业得到广 泛应用。
文献[3]和[4]希望在流体力学的教学过程中,同时也教授软件Fluent 的使用方法,让学生自己对简单地流动现象进行数值仿真,从而使学生对流体力学的基本概念和基本理论理解深刻。
这种想法立意很好,但对教师要求很高,同时由于课时的有限,实际操作起来困难较大。
本文应用Fluent 软件,对流体力学中的一些基本流动现象进行数值分析,并将流动规律的动画或图片应用到教学过程中,清晰表明流动规律,帮助学生建立清晰的物理概念,缩短认识过程,让学生在屏幕上看到“流动”。
CFD方法在流体机械设计中的应用CFD方法在流体机械设计中的应用1 引言随着科学技术的进步和经济的发展,许多领域(特别是石油化工、航空等)对高性能的流体机械需求越来越迫切。
为了适应社会的需求,需要进行试制和大量试验参数测量等工作,为此需要耗费大量的资金和时间。
显然,为了设计出高性能的流体机械,传统的设计方法已满足不了需要,必须采用现代设计理论和方法。
这就要求设计者必须详细掌握流体机械性能和内部流动状况,从而给流体机械内部流动理论和试验研究提出了新的课题。
研究流体流动的方法有理论分析、实验研究和数值模拟三种。
对叶轮机械、喷管、管道等内部流动实验测量时,要求的实验装置复杂庞大且实验成本较高,研制周期长,因而使实验研究受到了很大的限制。
而数值模拟将以其自身的特点和独特的功能,与理论分析及实验研究一起,相辅相成,逐渐成为研究流体流动的重要手段,形成了新的学科——计算流体动力学(CFD:Computational Fluid Dynamics)。
近年来,随着高速、大容量、低价格计算机的相继出现,以及CFD方法的深入研究,其可靠性、准确性、计算效率得到很大提高,展示了采用CFD方法用计算机代替试验装置和“计算试验”的现实前景。
CFD方法具有初步性能预测、内部流动预测、数值试验、流动诊断等作用。
在设计制造流体机械时,一般的过程为设计、样机性能试验、制造。
如果采用CFD方法通过计算机进行样机性能试验,能够很好地在图纸设计阶段预测流体机械的性能和内部流动产生的漩涡、二次流、边界层分离、尾流、叶片颤振等不良现象,力求将可能发生故障的隐患消灭在图纸设计阶段。
综上所述,人们借助计算机对流体机械内部的流动进行数值模拟成为可能,CFD方法将在一定程度上取代实验,以达到降低成本、缩短研制周期的目的,并且数值模拟可提供丰富的流场信息,为设计者设计和改进流体机械提供依据。
因此,人们深信CFD方法是现在和未来研制流体机械必不可少的工具和手段,它使设计者以最快、最经济的途径,从流体流动机理出发,寻求提高性能的设计思想和设计方案,从满足多种约束条件下获取最佳的设计,可以说CFD方法为流体机械设计提供了新的途径。
往复式压缩机进气管路气流压力脉动分析季龙庆;刘洪佳;田德永【摘要】使用Bentley PULS软件对往复式压缩机进气管路进行气流压力脉动分析,设计进气缓冲罐,计算管道系统中各节点的脉动压力.根据计算结果在管路中增设孔板对超标的气流压力脉动幅值进行抑制,使得进气管路内的气流脉动满足API618标准的要求,保证了装置的安全运行.【期刊名称】《化工设计》【年(卷),期】2018(028)006【总页数】4页(P38-41)【关键词】往复式压缩机;压力脉动;缓冲罐;孔板【作者】季龙庆;刘洪佳;田德永【作者单位】中海油石化工程有限公司济南 250100;中海油石化工程有限公司济南 250100;中海油石化工程有限公司济南 250100【正文语种】中文往复式压缩机是化工、石油化工、天然气、电力等行业的重要设备,通过气缸与活塞作用压缩气体以提高气体压力实现介质管线输送。
由于压缩机气缸不断交替吸排气,造成气缸排出的气体压力呈脉动状态。
气缸内活塞运动速度随时间变化而变化,造成气流运动速度呈脉动状态,这种气流压力和速度的周期性变化,称为气流脉动[1]。
气流脉动有着降低压缩机容积效率、增大压缩机轴功率,影响气缸稳定供气等危害。
压力脉动也是造成管道振动的重要因素,而管道振动反过来会引起压缩机机身振动,使运动件疲劳、过载使管道及换热器等附件应力过大而引发疲劳破坏和破裂[2]。
因此API 618标准规定,应对往复式压缩机进出口管路进行气流压力脉动分析,并对气体压力脉动幅值进行抑制[3]。
Bentley PULS软件基于一维波动理论,使用转移矩阵法对管路中气流脉动进行模拟计算,能够准确计算管道内气流压力脉动幅值[4-5]。
本文即采用该软件对某石化项目中往复式压缩机进气管路进行气流压力脉动分析,并对气流压力脉动幅值进行抑制。
1 压缩机进气管路系统往复式压缩机进气管路系统见图1。
以氮气为主的含烃混合气体来自集液罐,经缓冲罐进入压缩机进行压缩。
华中科技大学硕士学位论文摘要作为流体压缩及动力输送的通用机械,压缩机一向被视作化工行业的核心设备,其能否安全平稳地运行直接关乎相关企业经济效益。
活塞压缩机进、排气过程带有间断特性,使得进排气管内气流参数呈脉动变化,出现气流脉动现象。
气流脉动极易导致管道振动,从而引发压缩机容积效率变低、功率损耗增加等危害。
因此,研究脉动产生机理及其对管道振动特性产生的影响便具有较强意义。
本文针对阀腔压力脉动与管道振动作了以下研究。
建立了求解阀腔压力脉动的数学模型,综合考虑了压缩机阀腔、阀片运动和管道系统等对气流脉动的影响,将压缩机和管系作为一个动态关联的整体进行研究,使得压缩机工作特性的气流脉动分析更接近实际情况,计算结果精度更高。
根据压缩机工作和阀片运动规律特性的模拟结果,对是否考虑阀腔影响的两种情况,进行对比分析,结果表明,若考虑阀腔影响,阀片撞击升程限制器的速度增加约10%,容易损坏阀片。
然后讨论了阀片升程、弹簧刚度及阀片质量等气阀结构参数对气阀运动规律和缸内压力的影响。
另外,通过阀腔压力脉动模型的求解,获得了进气阀腔的压力变化情况,压力不均匀度为3.49%,在合理范围内。
基于流固耦合模态与气柱固频分析的基本理论,探索了压力、壁厚、内径等参数对所建管道固频的影响情况,并进行了管内气柱模态分析。
基于模态分析结果,对弯管内气体处于非定常状态时管路振动响应问题进行数值分析,同时还研究了脉动流体的频率与幅度等参数对管道响应的影响规律。
研究发现,压力脉动使管道应力出现较大波动(7%),这种较大幅度的交变应力极易破坏管道;在流固耦合作用下,管道基频随压力脉动频率的增大而升高,且当管道基频或气柱固频与气流脉动频率相近(共振)时,管道变形增大为非共振情况的2-3倍。
关键词:大型往复压缩机;气阀运动规律;阀腔压力脉动;管道振动;瞬态分析华中科技大学硕士学位论文AbstractAs a general machine of fluid compression and power delivery, compressor always been regarded as the core equipment of the petrochemical industry. Whether safe and smooth operation is directly related to the economic interests of the related enterprises. The inlet and exhaust process of piston compressor is intermittent, which makes the parameters of the air flow in the inlet and exhaust pipes change periodically, and then the flow pulsation occurs. Airflow pulsation can cause pipeline vibration easily, which leads to lower volumetric efficiency of compressor and the increasing of power loss etc. Therefore, it has great significance to study the mechanism of pulsation and its’ influence on the vibration characteristics of pipeline. In this paper, the pressure pulsation of valve cavity and the vibration of pipeline are studied as follows.First, we established the mathematical model of pressure fluctuation in valve chamber. The influence of valve chamber, valve motion and pipeline system on the flow pulsation are considered synthetically in this model, which makes the compressor and pipe system formed integrally, and this kind of air flow pulsation analysis combined with compressor working characteristics will make the calculation results more accurate and closer to the actual situation.According to the simulation results of compressor work and the motion law of valve plate, we compared and analyzed the influence of with or without valve cavity, the rsults show that if we take into account the valve cavity, the speed of valve plate impact lift limiter is increased by about 10%, and the valve plate is easily damaged. After that, we discussed the influence of valve structure parameters such as valve plate lift, spring stiffness and valve blade mass on valve motion and cylinder pressure. By solving the pressure fluctuation model of the valve cavity, the pressure variation of the inlet valve cavity is obtained, and the pressure inhomogeneity is 3.49, which is within a reasonable range.华中科技大学硕士学位论文Last, we studied the influence of pressure, wall thickness and inner diameter on the natural frequency of the pipeline based on the basic theory of fluid-solid coupling and modal analysis. After the modal analysis of the gas column in the pipe was carried out, based which numerical analysis of the vibration response of the pipe was done when the gas in the bend is in an unsteady state. At the same time, the influence of the frequency and amplitude of the pulsating fluid on the pipeline response is also studied. We found that the pressure pulsation causes the pipeline stress to fluctuate greatly (7%), which is easy to destroy the pipeline, and the fundamental frequency of the pipeline increases with the increase of the pressure pulsation frequency under the action of fluid-solid coupling. When the fundamental frequency of the pipeline or the fixed frequency of the gas column is close to the pulsating frequency of the gas flow (resonance), the deformation of the pipeline increases 2-3 times as much as that of the non-resonance case.Keywords: Large Reciprocating compressor; Motion law of valve; Pressure pulsation of valve chamber; Pipe vibration; Transient analysis华中科技大学硕士学位论文主要符号表h阀片位移 y阀片运动速度 θ曲轴转角 v M阀片质量 ω曲轴转角速度 β 推力系数 p气体压力 s p 进气压力 d p排气压力s A气阀推力面积so p进气阀腔气体初始压力 do p排气阀腔气体初始压力 so ρ 进气阀腔初始气体密度 do ρ排气阀腔初始气体密度 z气阀弹簧个数 K弹簧刚度系数 0H弹簧预压缩量 k气体绝热指数 V气体容积 A α气阀有效通流面积 R气体常数 s T进气温度 d T排气温度 S活塞行程p A活塞底面积 λ曲柄半径与连杆长度比值 0V余隙容积 D气缸直径 1α阀隙流量系数 e α阀座通道流量系数 v A环周长 e A阀座通道面积 1N进气阀个数 2N排气阀个数 Q热量W 功 下标imp 碰撞值 下标reb 反弹值 下标s进气 下标d排气H阀片升程s Φ进气管道质量流量 csΦ流经进气阀气体质量流量 cdΦ流经排气阀气体质量流量 d Φ 排气管道质量流量s ρ进气密度华中科技大学硕士学位论文s L进气管道长度 d L排气管道长度 d ρ排气密度 s V进气阀腔体积d V排气阀腔体积s λ进气管沿程阻力损失系数 d λ排气管沿程阻力损失系数 R C 阀片反弹系数 s K进气管局部阻力系数d K排气管局部阻力系数华中科技大学硕士学位论文目录摘要 (I)Abstract ........................................................................................................... I I 主要符号表 (IV)目录 (VI)1绪论 (1)1.1 课题背景与研究意义 (1)1.2 国内外研究现状 (2)1.3 本文主要工作 (6)2往复式压缩机阀腔压力脉动数学模型 (8)2.1 引言 (8)2.2 压缩机工作过程数学模型 (8)2.3 阀片运动方程 (11)2.4 阀腔压力控制方程 (13)2.5 管内气体流动方程 (15)2.6 阀腔压力脉动数学模型及计算条件 (16)2.7 本章小结 (18)3阀片运动及阀腔压力脉动模拟 (20)3.1 引言 (20)华中科技大学硕士学位论文3.2 阀片运动规律与影响因素分析 (20)3.3 阀腔压力脉动分析 (27)3.4 本章小结 (28)4输气管道流固耦合模态分析及气柱固有频率计算 (29)4.1 引言 (29)4.2 流固耦合基本原理 (29)4.3 管道结构模态分析 (33)4.4 气柱固有频率计算 (41)4.5 本章小结 (44)5管道流固耦合瞬态特性分析 (45)5.1 引言 (45)5.2 弯曲管道流固耦合模型 (45)5.3 数值分析 (47)5.4 结果分析及不同因素影响 (47)5.5 本章小结 (54)6总结与展望 (56)6.1 全文总结 (56)6.2 研究展望 (57)致谢 (58)华中科技大学硕士学位论文参考文献 (59)硕士期间研究成果 (66)华中科技大学硕士学位论文1绪论1.1 课题背景与研究意义作为流体压缩及动力输送的给予者,压缩机一向被视作化工行业的核心设备,压缩机将流体加压加速后使其快速涌向装置的其他部位,其能否安全平稳地运行直接关乎相关企业经济利益。
CFD软件在流体力学教学中的应用一、引言流体力学的教学内容理论性强、概念多、公式繁杂。
在流体力学学习过程中为了明白一个定理,甚至为了准确地理解一个概念,学生首先需要读懂数学,然而读懂了数学不一定意味着已经明白了数学符号背后所代表的物理意义,流体力学教学实践表明,学生从读懂数学到理解流动问题的物理本质有一个过程。
而几乎所有的重要概念和原理都与流体的流动联系在一起,仅依靠教师的语言描述和书本、黑板上的文字、图形、公式推导来说明,常使学生感到抽象、不易理解,教师的一个重要任务就是帮助学生完成从读懂数学到理解流动的物理本质这一转变过程。
流体力学作为正在蓬勃发展的前沿基础学科,新理论、新方法、新技术日新月异,新发现、新成果、新应用层出不穷。
随着流体力学研究的不断深入,人们对复杂流体流动机理的认识也在不断深化和发展,而计算流体动力学(CFD)[1]是近代流体力学、数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。
它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,能够直观地反映流体流动过程[2]。
二、理论计算与数值分析的结合由于流体运动的复杂性,流体力学的学习可以通过理论分析和数值计算共同完成。
通过理论分析,独立地完成一定量的课后练习题是流体力学学习过程的重要组成部分,解题过程本质上就是利用流体力学的基本原理和基本方程分析和解决实际问题的一个训练过程;而数值计算则训练学生将实际工程问题简化为数学物理模型,并选用恰当的数学工具加以求解的能力,在这一过程中可以增强学生对流动过程本质的理解,将数学工具与物理问题有机地结合起来,一个好的综合性或设计性作业练习有时相当于让学生完成一个小的科研项目;其次,鼓励学生参与到大学生实验创新计划中去,设计研究方案和技术路线,搭建实验平台,独立进行实验研究工作并总结写出研究报告或研究论文,通过综合性研究型实验,培养学生的科研能力和创新意识。
浅析CFD方法在流体机械设计中的应用摘要:流体机械设计需对低速、超音速间的无粘合性流动进行准确计算,通过对CFD方法的使用,即可对此速度下流体予以计算。
在流体机械设计中应用CFD方法,可增强流体分析与设计的科学性,工程应用意义更显著。
基于此,文章将CFD方法作为主要研究对象,重点阐述其在流体机械设计中的具体应用,希望有所帮助。
关键词:CFD方法;流体机械设计;应用目前,高能流体机械设计被广泛应用于各领域,为与社会需要相适应,需在设计中对资金需求与时间需求予以综合考虑。
为确保流体机械性能设计理想,需在传统设计方法的基础上合理引入新型设计方法。
为此,设计工作者要对流体性能及内部情况予以熟练掌握并加以设计。
由此可见,深入研究并分析CFD方法在流体机械设计中的具体应用十分有必要。
一、CFD方法概述CFD技术,即流体动力学计算方法,在工业机械设计中的应用十分广泛。
在CFD技术应用期间,需有效融合计算机技术和数学学科,对多种离散化数学方法加以运用,对流体力学容易遇到的计算问题予以计算和处理[1]。
通过对先进仪器的运用实现数值模拟,与实验数据相结合创建虚拟模型,进而为工业机械设计工作的开展提供准确度更高的参考。
(一)数学模型基于流体计算方法的发展,时间推进法常用于超音速与亚音速跨音速等领域,因计算中针对时间要选择倒推计算方法,所以计算科学性十分明显,误差也处于容许范围内。
在对时间推进法运用过程中,可有效解决实际问题[2]。
在相关工程应用体系发展中,使此方法得到了更好地运用,优势也逐渐凸显出来。
通常情况下,流体机械设计中的弯道设置相对科学。
若直通道较多则会产生较高冲击力,严重威胁设备实用性与可靠性,因而一般会选择不规则形态。
为此,在研究中选用斯托克斯方程分析内部流动情况,将客观数据转变为抽象处理法,以便于更好地开展流通量、粘黏性同量分析和求解。
(二)计算方法1.离散方程组求解长期以来,程序设计经常选择隐式推进法,但此方法求解时间时会涉及隐形关系,影响了矩阵求逆运算的效果[3]。
CFD技术在流体机械设计中的应用与发展发表时间:2018-09-17T17:11:39.147Z 来源:《基层建设》2018年第25期作者:宋平平[导读] 摘要:进入二十一世纪,科技不断发展,技术不断更新完善,在流体机械设计领域,能够体现科技创新技术的就是CFD技术。
中煤科工集团武汉设计研究院有限公司湖北武汉 430064摘要:进入二十一世纪,科技不断发展,技术不断更新完善,在流体机械设计领域,能够体现科技创新技术的就是CFD技术。
应用CFD技术进行流体机械设计能够提高流体机械的性能,使得CFD技术更广泛应用于流体机械设计领域。
占据流体力学重要部分的CFD技术是由数学和计算机有机结合产生,是一种边缘而生命力强大的学科。
CFD技术能够在数学和计算机领域同时得到更好的应用,其重要性不可忽略。
本文详细介绍CFD技术在流体机械设计领域的运用与发展。
关键词:CFD技术;流体机械设计;应用与发展一、流体机械的设计思想我国的科学技术与经济在不断发展的过程中,许多专业领域都在积极创新发展。
在石油化工和航空等领域,迫切需要新的流体机械设计技术以促进行业的发展。
随着社会的不断进步,使得流体机械设计新技术的需求增加。
传统技术已经不能满足于市场需要,已经逐渐被淘汰,所以此时需要更高性能的新型技术。
步入新型城市化进程后,设计管理与理念必须具有现代化。
设计者首先需要掌握该领域技能水平,这不仅需要了解过去的设计理念,同时还要结合实际现代化进程,为该领域量身定做一个属于新时代的设计方案。
接着设计者需要掌握流体机械设计在进入市场后的后续进程,同时详细的把控住流体机械的内部流动状态。
将流体机械设计方案不断进行试验,并与新型工艺进行结合,将传统技术进行代替,减小阻力与碰撞。
为此就设计者需要CFD技术促进流体机械性能的大幅度提高。
CFD 技术能够带来更多的便利,它不仅是现在与未来在研究流体机械领域不可或缺的重要工具和思想,同时能够给设计者提供新型理念,让设计者在此基础上,用最少的时间,获得最大的经济利益。
流体动力学(CFD)在往复式压缩机管道系统气流脉动计算中的应用流体动力学(CFD)在往复式压缩机管道系统气流脉动计算中的应用摘要:参照实验室所搭建的管道系统实验平台,根据计算流体动力学(CFD)方法建立管道内气体的二维非定常流动模型。
利用流体仿真软件FLUENT计算了缓冲器及孔板前后的气流脉动,通过分析气流脉动曲线及流场的分布情形验证了缓冲器及孔板对气流脉动的消减作用。
通过对比实验数据验证了利用CFD技术研究管道系统气流脉动是准确可靠的。
关键词:管道系统 CFD技术气流脉动 FLUENT 孔板往复式压缩机是石油、天然气、化工及电力等工业生产中的重要机械设备,其管道系统又是实现物质运输的主要途径,然而管道系统的振动会对安全生产造成很大的威胁,众多生产实践表明压缩机管路的绝大多数振动问题都是由气流脉动引起的,而压缩机吸排气的间歇性、周期性特点是产生气流脉动的主要原因。
因此研究气流脉动的产生机理,建立合理的流体动力学模型进行管道中气流脉动的预测具有重要的理论意义和工程实用价值。
现有研究气流脉动较为成熟的方法大多基于平面波动理论[1]或一维非定常流动理论[2],它们均未考虑流体流动时湍流的影响,同时对缓冲器、孔板、冷却器、分离器等管路元件的气流脉动计算精度也较差。
随着计算机速度的提高和近年来CFD技术的发展,选用有限元方法[3,4]及有限容积法[5]计算管系的气流脉动取得了一定的成效。
CFD方法[6]应用于稳态的工业流场模拟已有较多的报道,但对非稳态的脉动流场研究较少。
本文基于CFD方法建立管道系统流体动力学模型。
在考虑湍流的情况下[7],模拟了含空冷器及孔板管道等管路原件的管道系统非定常流动时气流脉动及流场特性。
通过和实验数据对比验证了CFD方法计算管道系统气流脉动的合理性及准确性。
一、CFD模拟计算理论目前广泛用于计算流体力学的数值方法有有限差分法、有限元法、有限体积法等,其目的都是将控制方程离散化,本文用到的CFD 软件FLUENT[8-9]采用有限体积法将非线性偏微分方程转变为网格单元上的线性代数方程,然后通过求解线性方程组得出流场的解。
流体动力学(CFD)在往复式压缩机管道系统气流脉动计算中的应用流体动力学(CFD)在往复式压缩机管道系统气流脉动计算中的应用
摘要:参照实验室所搭建的管道系统实验平台,根据计算流体动力学(CFD)方法建立管道内气体的二维非定常流动模型。
利用流体仿真软件FLUENT计算了缓冲器及孔板前后的气流脉动,通过分析气流脉动曲线及流场的分布情形验证了缓冲器及孔板对气流脉动的消减作用。
通过对比实验数据验证了利用CFD技术研究管道系统气流脉动是准确可靠的。
关键词:管道系统 CFD技术气流脉动 FLUENT 孔板
往复式压缩机是石油、天然气、化工及电力等工业生产中的重要机械设备,其管道系统又是实现物质运输的主要途径,然而管道系统的振动会对安全生产造成很大的威胁,众多生产实践表明压缩机管路的绝大多数振动问题都是由气流脉动引起的,而压缩机吸排气的间歇性、周期性特点是产生气流脉动的主要原因。
因此研究气流脉动的产生机理,建立合理的流体动力学模型进行管道中气流脉动的预测具有重要的理论意义和工程实用价值。
现有研究气流脉动较为成熟的方法大多基于平面波动理论[1]或一维非定常流动理论[2],它们均未考虑流体流动时湍流的影响,同时对缓冲器、孔板、冷却器、分离器等管路元件的气流脉动计算精度也较差。
随着计算机速度的提高和近年来CFD技术的发展,选用有限元方法[3,4]及有限容积法[5]计算管系的气流脉动取得了一定的成效。
CFD方法[6]应用于稳态的工业流场模拟已有较多的报道,但对非稳态的脉动流场研究较少。
本文基于CFD方法建立管道系统流体动力学模型。
在考虑湍流的情况下[7],模拟了含空冷器及孔板管道等管路原件的管道系统非定常流动时气流脉动及流场特性。
通过和实验数据对比验证了CFD方法计算管道系统气流脉动的合理性及准确性。
一、CFD模拟计算理论
目前广泛用于计算流体力学的数值方法有有限差分法、有限元
法、有限体积法等,其目的都是将控制方程离散化,本文用到的CFD 软件FLUENT[8-9]采用有限体积法将非线性偏微分方程转变为网格单元上的线性代数方程,然后通过求解线性方程组得出流场的解。
因此对于所有流动,FLUENT都求解质量和动量守恒方程;对于包含传热或可压性流动,还需要增加能量守恒方程;如果是湍流问题,还有相应的输运方程需要求解;我们称以上各方程为控制方程。
根据模型特点,本文所用FLUENT中的标准湍流模型对低速可压管流问题有良好的表现。
1.统一控制方程形式
式中,为通用变量,可以代表,,,等求解变量;为广义扩散系数;为广义源项,式中各项依次为瞬态项(transient term)、对流项(convective term)、扩散项(diffusive term)和源项(source term)。
2.标准方程
标准模型需要求解湍动能和耗散率方程。
该模型假设流体流动为完全湍流,忽略分子的粘性影响。
该模型的湍动能和耗散率方程为:
-由于平均速度梯度引起的湍动能;
-由于浮力影响引起的湍动能;
-可压缩湍流脉动膨胀对总的耗散率的影响;
-湍流粘性系数,。
此模型中的各个常数在FLUENT中的默认值为,
,湍动能和耗散率的湍流普朗特数分别为:,
该模型适合对完全湍流流动的模拟。
二、气流压力脉动实验及管道系统计算模型
1.孔板消减气流脉动实验
为了对管道系统气流脉动的模拟结果进行验证,依照图1搭建了往复式压缩机管道系统压力脉动测试实验平台。
测试系统主要由一台往复式压缩机、变频器、与其相连的管道系统、直流稳压电源、压力传感器、示波器、数据采集及分析系统组成。
2.管道系统的计算模型
根据搭建的管道系统实验平台,在不影响模拟结果的前提下,为提高计算效率采用如图2所示(尺寸单位为mm)的二维计算模型。
将模型导入Gambit中划分单元网格,网格类型采用非结构化(Pave)的四边形网格(Quad),共得到17644个单元。
最后在Gambit中对管道系统添加边界条件,入口边界条件采用非定常压力入口边界条件,出口边界条件为压力出口边界。
三、气流脉动模拟及实验分析
1.模拟分析
将在Gambit中化分好的网格模型导入Fluent中,在Fluent中根据管道内部介质的性质采用基于密度(耦合式)的隐式2ddp(二维双精度)求解器,并指定其计算模式为非稳态;计算模型选择标准双方程湍流模型;流体类材料为理想空气。
根据现场实验条件,出口边界条件采用非定常压力边界条件:(根据其公式用C语言编译非定常速度UDF函数)即施加一个频率为7.3Hz(模拟转速为
438r·min-1压缩机)、压力不均匀度为24%的脉动压力条件,入口边界条件采用定常压力边界条件(由储气罐上的背压阀控制),文中设定为101325Pa。
图3为未加孔板时缓冲器前后压力脉动曲线图,由图可以看出缓冲器对消减气流脉动有一定的作用;图4为加入孔径比为0.5的孔板后缓冲器前后压力脉动曲线图,对比图4发现孔板对消减气流脉动有明显的作用效果,但在加入孔板时需要选择适当的孔径比,由图可知0.5的孔径比衰减效果很理想。
2.实验测试结果
图5为当压缩机以438 r?min-1转速运行时,添加孔径比为0.5,厚度为8mm的孔板后,孔板前后主管线上压力脉动的对比图;与模拟结果(图4所示曲线)十分吻合。
从二者对比结果可看出利用CFD 的方法计算管道系统的脉动压力具有直观、形象、准确的特点。
四、结论
1.基于CFD技术,通过利用FLUENT软件对管道系统内部流场的计算,直观形象的验证了缓冲器、孔板等管路原件对气流脉动的消减作用。
2.通过与实验数据的对照,发现利用CFD技术计算气流脉动更加可靠、准确。
参考文献
[1]党锡淇,陈守五.活塞式压缩机气流脉动与管道振动[M].陕西西安:西安交通大学出版社,1984:7.143.
[2]陈守五,黄幼玲.往复式压缩机一维不稳定气流方程的数值解法[J].西安交通大学学报,1982,1:55~66.
[3]Enzo Giacomelli,Marco Passeri.Control of pulsation and vibrations in hyper compressors for LDPE plants. ASME ╞ PVP2004 Pressure vessel & piping conference, San Diego California 2004.7 19-22.
[4]Ing.Attilio Brighenti,Ing.Andrea Pavan.ACUSCOMP and ACUSYS-A powerful hybrid linear/nonlinear simulation suite to analyses pressure pulsations in piping[M].Italy:SATE Systems and Advanced Technology Engineering,Santa Croce 664/A,301 35 Venezia,2006,7 23-27.
[5] 苏永生,王恒杰. 应用CFD消除气流脉动[J].华东理工大学学报(自然科学版), 2006, 32 (4): 480 - 483.
[6] 任玉新,陈海昕.计算流体力学基础[M].北京:清华大学出版社,2006:1-11.
[7] 王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
[8] 韩占忠,王敬,兰小平.流体工程仿真计算实例与应用.北京理工大学出版社,2004.
[9] 温正,石良臣,任毅如.FLUENT流体计算应用教程.清华大学出版社.2009.
[10]王济,胡晓.MATLAB 在振动信号处理中的应用[M].北京:中国水利水电出版社,2006:112-117.
------------最新【精品】范文。