初三数学总复习辅导学习资料——几何综合题
- 格式:doc
- 大小:441.00 KB
- 文档页数:11
中考数学几何考点训练【图形的初步认识】考点1 圆和扇形(概念、弧长、面积)例1:圆周长的计算(1)已知圆的半径增大2倍,它的周长增大倍(2)一个圆的半径是7厘米,另一个圆的半径是5厘米,他们周长相差(3)如果圆切掉了它的四分之三,那么现在它的周长是原来的(4)如图,已知外圈的周长是内圈的4倍,外圆的周长是120cm,求阴影部分的宽度。
(5)一个人要从A点到B点(如图),他可以按①号箭头所表示的路线走,也可以按照②号箭头所表示的路线走。
哪条路线近?为什么?(6)如图,有四根底面直径都是0.5米的圆形管子,被一根铁丝紧紧的捆在一起,试求铁丝的长度。
例2:弧长与圆心角1、下列说法中,正确的个数有()个。
(1)弧的长度仅由弧所在圆的半径大小决定。
(2)两条弧的长度相等,则它们所对的圆心角也一定相等。
(3)圆心角扩大4倍而所在圆的半径缩小为原来的14,那么原来的弧长不变。
(4)在一个圆中,如果圆心角是周角的15,那么圆心角所对的弧长是圆周长的15。
A.0B.1C.2D.42、用一个放大镜照一个扇形时,不被放大的部分是()A 圆心角B 半径C 圆心角所对的弧长D 扇形的面积3、下列叙述中,正确的个数是()个(1)半圆是一条弧;(2)圆心角相等,所对弧的长也相等;(3)顶点在圆内的角叫做圆心角A 0B 1C 2D 34、一根铁丝,若把它弯成圆形,可得一个半径为10厘米的圆,如果将其弯成圆心角为90°的一条弧,那么这条弧所在圆的半径是_________厘米。
5、如图,有一个边长为2厘米的等边三角形,现将三角形沿水平线滚动,B点从开始到结束的位置,它所经过的路线的总长度是多少厘米?例4:圆和扇形的面积1、一个扇形的半径等于另一个圆的直径,且扇形面积等于圆的面积的2倍,则扇形的圆心角是。
2、等腰梯形的面积是54平方厘米,上底是6厘米,下底是12厘米,若要在这个等腰梯形内剪下一个面积最大的圆,这个梯形还剩下()平方厘米3、求下图阴影部分面积。
中考数学总复习几何综合压轴题中考数学总复习:几何综合压轴题解析与策略一、几何综合压轴题概述几何综合压轴题是中考数学中难度较大、分值较高、涉及知识点广泛的一类题目,常出现在试卷的最后一题。
这类题目主要考察学生的空间想象能力、逻辑推理能力、代数与几何的综合运用能力。
常见的几何综合压轴题涉及三角形、四边形、圆形等多个几何图形的性质、面积、周长等方面的计算,以及通过辅助线构造新的图形、运用代数方法解决几何问题等。
二、几何综合压轴题解题策略1.审题理解:仔细阅读题目,理解题意,明确题目中的条件和要求。
对于较复杂的图形,需要仔细观察,抓住关键的点、线、角等。
2.分析题目:根据题目中的条件和要求,分析题目中的几何关系,找出解决问题的思路和方法。
注意运用几何图形的性质和定理,以及辅助线的构造方法。
3.代数计算:在分析题目的基础上,引入适当的变量,建立代数方程或代数不等式,通过代数计算求解。
注意代数计算的准确性和严密性。
4.反思检验:完成解题过程后,要对结果进行检验,检查是否符合题意。
对于不确定的答案,可以通过代入法进行验证。
三、几何综合压轴题常见类型及解题方法1.三角形问题:涉及三角形的性质、周长、面积等计算,常用勾股定理、三角形面积公式等。
解题时需要注意三角形边角关系、相似三角形的对应关系等。
2.四边形问题:涉及四边形的性质、周长、面积等计算,常用平行四边形、矩形、菱形、正方形的性质和判定方法。
解题时需要注意四边形内角和定理、四边形面积公式等。
3.圆形问题:涉及圆的基本性质、周长、面积等计算,常用圆的周长公式、面积公式等。
解题时需要注意圆的内接四边形、圆周角定理等。
4.组合图形问题:涉及多个几何图形的组合,需要运用辅助线构造新的图形,常用三角形、四边形等基本图形的性质和判定方法。
解题时需要注意图形的对称性、旋转相似等。
四、总结几何综合压轴题是中考数学中的难点,学生需要通过大量的练习来提高解题能力。
在解题过程中,要注重审题理解、分析题目、代数计算和反思检验四个环节,同时掌握常见类型题目的解题方法和技巧。
初三数学几何综合题专题复习练习—、几何综合题特点:解证几何综合问题:就是从逻辑推理和定量计算的角度来探求新的、未知的结论.通俗地讲就是创造条件实现由已知向未知的转化.综合题是知识、方法、能力综合型试题,具有知识容量大、解题方法活、能力要求高、突现数学思想方法的运用以及要求学生具有一定的创新意识和创新能力等特点.纯几何综合题包括:1.利用圆的知识可以隐含三角形,形成与直角三角形结合的问题,其中包括求线段长、求角度、求阴影部分的面积以及图形面积问题(不能排除直线形问题)2.图形变换问题:这是一个独立形成综合题问题的知识点.几何综合题以几何图形的位置, 元素之间的关系为核心.以直线或者圆为支撑点,包括多个知识点,多种解题思想方法,多步骤等特点,多为探讨几何本质:研究平面几何图形在运动变化过程中的不变性质和不变量,或者变化规律的问题.二、中考对几何综合题的考查方面:连续运动变化过程中,不变结论或者变化规律的探究,特定状态的定量计算;点的轨迹特征.三、常见几何综合题的入手点:1.题目的背景都是几何变换,而且不止是一种变换2.考察学生根据文字描述准确作图的能力3.采用“问题探究一问题解决”的模式展开问题,立意新颖,构思巧妙,设问起点低,坡度大,难点分散,各小题之间承接性强,层层深入,第一问到第二问按特殊到一般的思想融入,入手自然,深入不难4.多以常见的全等结构为基础加以变化、引申呈现出题目,多有一定的新颖性和探究性,往往需要转化或还原成一些基本图形,所得图形都是学生做过多次、教师重点讲解过的基本图形。
探究性体现出“去模式化”的命题思路,转化和还原的基本图形和基本结构则是“模式化'的四、在解决此类问题时,往往需要把握以下几点:1.变换工具的运用;2.求解工具的运用;3作图工具的运用;4.分类讨论的意识;5.轨迹的意识;6.模型的意识;五、分析什么?怎么分析符合学生的认知规律?1.还原图形的生成过程,分步画图2.确定每步的结论以及相应的可用的方法3.判断图形或图形的元素是否需要移动六、复习建议:随时总结、熟练掌握一些典型图形及常用辅助线的作法及其作用;1.提高根据文字描述准确作图的能力,加强作图的意识2.—题多解,多题归一,体会将数学问题分解、类比、转化、及运动变化的思维过程3.引导学生挖掘各小问之间的联系,寻找解题思路4.不过度搜寻难题,给学生建立解题信心5.对几何证明的常规思路、通法进行总结七、几何中常见的辅助线做法:1构造有角平分线、平行线、等腰三角形共存的图形2.截长补短,证线段的和、差、倍、分3.构造三角形中位线4.三角形中有中线(或一边上有中点),构造“8”字型全等5作平行线,构造相似形6.作垂线,构造直角三角形、全等三角形或相似形7.在角平分线、线段垂直平分线的两侧构造轴对称(或利用等腰三角形、菱形、正方形的轴对称性)&图中有有公共端点的等线段时,构造旋转图形9.平移线段,构造全等三角形、构造相似形10.构造辅助圆八、举例说明常见的几何背景:_、以四边形为背景的几何综合题(-)四边形+旋转1.四边形如CD是正方形将线段CD绕点C逆时针旋转2仁(0。
几何综合题1.已知△ABC 中,AD 是的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H . (1)如图1,若①直接写出B ∠和ACB ∠的度数; ②若AB =2,求AC 和AH 的长;(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=︒,45ACB ∠=︒;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=︒,AD =2可得DE =1,AE 3. Rt △CDE 中,由45ACD ∠=︒,DE=1,可得EC =1. ∴AC 31.Rt △ACH 中,由30DAC ∠=︒,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α︒<<︒时, ①依题意补全图1.②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.BAC ∠60BAC ∠=︒(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.答案:(1)①补全的图形如图7所示.② ∠NCE =2∠BAM .(2)当45°<α<90°时,=1802NCE BAM ∠︒-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵ 四边形ABCD 为正方形, ∴ ∠BAD=∠ADC=∠BCD=90°,直线BD 为正方形ABCD 的对称轴,点A 与点C 关于直线BD 对称. ∵ 射线AM 与线段BD 交于点M , ∴ ∠BAM=∠BCM=α. ∴ ∠1=∠2=90α︒-. ∵ CE ⊥AM , ∴ ∠CEH=90°,∠3+∠5=90°. 又∵∠1+∠4=90°,∠4=∠5, ∴ ∠1=∠3.∴ ∠3=∠2=90α︒-.∵ 点N 与点M 关于直线CE 对称,∴ ∠NCE=∠MCE=∠2+∠3=1802BAM ︒-∠. (31CDBA图1备用图C DBAM3. 如图,已知60AOB ∠=︒,点P 为射线OA内,且满足DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=, ∴30OPE ∠=.∴30DPA OPE ∠=∠=. ∴120EPD ∠=. ∵DP PE =,6DP PE +=,∴30PDE ∠=,3PD PE ==. ∴cos30DF PD =⋅︒=∴2DE DF ==(2)当M 点在射线OA 上且满足OM =DMME的值不变,始终为1.理由如下: 当点P 与点M 不重合时,延长EP 到K 使得PK PD =. ∵,DPA OPE OPE KPA ∠=∠∠=∠, ∴KPA DPA ∠=∠. ∴KPM DPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △.∴MK MD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵60MO MOL =∠=,∴sin 603ML MO =⋅=.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK , ∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK ,∴MK ME =.∴ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明. 答案:(1)补全的图形如图所示.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°, ∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=+.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°. ∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF , ∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数; (3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;(2)45°;(3)结论:AM 2CN .A BC E证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称, ∴CE 是BD 的垂直平分线. ∴CB =CD .∴∠1=∠2=α.∵CA =CB ,∴CA =CD .∴∠3=∠CAD . ∵∠4=90°,∴∠3=(180°∠ACD )=(180°90°αα)=45°.∴∠5=∠2+∠3=α+45°-=45°. ∵∠4=90°,CE 是BD 的垂直平分线, ∴∠1+∠7=90°,∠1+∠6=90°. ∴∠6=∠7. ∵AG ⊥EC ,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中,∠8=∠G , ∠7=∠6, BC =CA ,BCN ≌△CAG .∴CN =AG . ∵Rt △AMG 中,∠G =90°,∠5=45°,∴AM AG .∴AM CN .答案:(1)补全图形略 (2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ , ∴AQ AP =,90QAP ∠=°. ∵四边形ABCD 是正方形, ∴AD AB =,90DAB ∠=°. ∴12∠=∠.∴△ADQ ≌△ABP . ∴DQ BP =,3Q ∠=∠.∵在Rt QAP ∆中,90Q QPA ∠+∠=°, ∴390BPD QPA ∠=∠+∠=°. ∵在Rt BPD ∆中,222DP BP BD +=,12-12----αα又∵DQ BP =,222BD AB =,∴2222DP DQ AB +=. ②BP AB =.7.如图,在等腰直角△ABC 中,∠CAB=90°,F 是AB 边上一点,作射线CF , 过点B 作BG ⊥C F 于点G ,连接AG . (1)求证:∠ABG =∠ACF ;(2)用等式表示线段C G ,AG ,BG 之间 的等量关系,并证明.答案:(1)证明 :∵ ∠CAB=90°. ∵ BG ⊥CF 于点G , ∴ ∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴ ∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH , ∵ △ABC 是等腰直角三角形, ∴ ∠CAB =90°,AB =AC . ∵ ∠ABG =∠ACH . ∴ △ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴ ∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF . (1)依题意补全图形; (2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所示. (2)证明∵正方形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°, ∴∠PAH =45°-∠BAE . ∵FH ⊥AE .∴∠APF =45°+∠BAE .EDCBAM H PDAC∵BF=BE ,∴AF=AE ,∠BAF =∠BAE . ∴∠FAC =45°+∠BAF . ∴∠FAC =∠APF .(3)判断:FM =PN .证明:过B 作BQ ∥MN 交CD 于点Q ,∴MN =BQ ,BQ ⊥AE . ∵正方形ABCD ,∴AB =BC ,∠ABC =∠BCD=90°. ∴∠BAE =∠CBQ . ∴△ABE ≌△BCQ . ∴AE =BQ . ∴AE =MN .∵∠FAC =∠APF , ∴AF =FP . ∵AF=AE , ∴AE =FP . ∴FP =MN . ∴FM =PN .9.如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP .(1) ∠BPC 的度数为________°;(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.解:(1)120°. ----------------------------2分(2)①∵如图1所示.②在等边ABC △中,60ACB ∠=︒, ∴60.ACP BCP ∠+∠=︒ ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=︒ ()180120.BPC CBP BCP ∠=︒-∠+∠=︒∴∴18060.CPD BPC ∠=︒-∠=︒ ∵=PD PC ,∴CDP △为等边三角形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=︒, ∴.ACD BCP ∠=∠ 在ACD △和BCP △中,M H PDA CDAC BC ACD BCP CD CP =⎧⎪∠=∠⎨⎪=⎩,,, ∴()SAS ACD BCP △≌△.∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分 (3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N . ∵=60ADB ADC PDC ∠∠-∠=︒, ∴=60.ADB CDB ∠∠=︒ ∴=60.ADB CDB ∠∠=︒∴3= 3.BM BN BD == 又由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =+()32AD CD =+ 32=3.=-----------------------------------7分10.如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (用含α的式子表示); ②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①. ………………………………………………………………………… 1分3-图1 备用图② 0≤QL2分(2)设直线+3y =与x 轴,y 轴的交点分别为点A ,点B ,可得A ,(0,3)B .∴ OA =,3OB =,30OAB ∠=︒. 由0≤QL y =.①如图13,当⊙D 与x 轴相切时,相应的圆心1D 满足题意,其横坐标取到最大值.作11D E x ⊥轴于点1E , 可得11D E ∥OB ,111D E AE BO AO=. ∵ ⊙D 的半径为1, ∴ 111D E =.∴ 1AE =11OE OA AE =-=. ∴1D x =②如图14,当⊙D 与直线y =相切时, 相应的圆心2D 满足题意,其横坐标取到最小值.作22D E x ⊥轴于点2E ,则22D E ⊥OA . 设直线y =与直线+33y x =的交点为F 可得60AOF ∠=︒,OF ⊥AB .则9cos2AF OA OAF =⋅∠==.∵ ⊙D 的半径为1, ∴ 21D F =.∴2272AD AF D F =-=.∴ 22cos AE AD OAF=⋅∠72==,224OE OA AE =-=.图13∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠<︒ ,点C 与点F 关于BD对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是 ;(2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (3)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.(1)DE DF =; (2)解:连接DE ,DF , ∵△ABC 是等边三角形, ∴60C ∠=︒. ∵DBC α∠=, ∴120BDC α∠=︒-.∵点C 与点F 关于BD 对称,∴120BDF BDC α∠=∠=︒-,DF DC =. ∴1202FDC α∠=︒+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆心,DC 为半径的圆上.∴1602FEC FDC ∠=∠=︒+α.(3)BG GF FA =+.理由如下:GFE DCBA图15GFEDCBA连接BF ,延长AF ,BD 交于点H , ∵△ABC 是等边三角形,∴60ABC BAC ∠=∠=︒,AB BC CA ==. ∵点C 与点F 关于BD 对称, ∴BF BC =,FBD CBD ∠=∠. ∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=, 则602ABF α∠=︒-. ∴60BAF α∠=︒+. ∴FAD α∠=.∴FAD DBC ∠=∠. 由(2)知60FEC α∠=︒+. ∴60BGE FEC DBC ∠=∠-∠=︒. ∴120FGB ∠=︒,60FGD ∠=︒.四边形AFGB 中,360120AFE FAB ABG FGB ∠=︒-∠-∠-∠=︒. ∴60HFG ∠=︒.∴△FGH 是等边三角形. ∴FH FG =,60H ∠=︒. ∵CD CE =, ∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△△AHD BGE ≅. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.12.如图,在△ABC 中,AB=AC ,∠BAC =90°,M 是BC 的中点,延长AM 到点D ,AE = AD ,∠EAD =90°,CE 交AB 于点F ,CD =DF .(1)∠CAD = 度; (2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明.HGFEDCBA解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分 ∴∠DBA =∠DCA ,BD = CD . ∵CD =DF ,∴B D =DF . ………………………………………3分 ∴∠DBA =∠DFB =∠DCA . ∵∠DFB +∠DFA =180°, ∴∠DCA +∠DFA =180°. ∴∠BAC +∠CDF =180°.∴∠CDF =90°. ………………………………………4分 (3)CE =)21CD . ……………………………………5分证明:∵90 EAD ∠=°,∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分 ∴DF =EF .由②可知,CF 2CD . …………………………7分 ∴CE =()21C D .13.如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . (1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .GFAB DCAB CE D∵四边形ABCD 是正方形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°, ∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF , ∴AE=AF ,∠FAE =90°. ∴∠1=∠2.∴△FDA ≌△EBA . …………………3分 ∴∠FDA =∠EBA =90°,FD=BE . ∵∠ADC =90°,∴∠FDA +∠ADC =180°。
中考数学——几何综合(讲义)➢ 知识点睛1. 几何综合问题的处理思路①标注条件,合理转化 ②组合特征,分析结构 ③由因导果,执果索因 2. 常见的思考角度304560 1 ↔⎧⎪↔⎪⎪↔⎨⎪↔⎪⎪︒︒︒↔⎩,,同位角、内错角、同旁内角平行内角、外角、对顶角、余角、补角转化计算角圆心角、圆周角在圆中,由弧找角,由角看弧直角互余、勾股定理、高、距离、直径特殊角等在直角三角形中,找边角关系() 2 ↔⎧⎪⎧⎪↔⎨⎪⎩⎪⎪⎧⎨⎪⎪⎪↔⎨⎪⎪⎪⎪⎪⎩⎪↔⎩、角平分线、垂直平分线轴对称性质勾股定理放在直角三角形中边角关系遇弦,作垂线边、线段连半径转移边放在圆中遇直径找直角遇切线连半径结合全等相似线段间比(例关系) 3 n ⎧⎧⎪⎪⎪⎪→⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪→⎨⎪⎩⎩倍长中线中位线中点三线合一特殊点斜边中线等于斜边的一半相似等分点面积转化() 4 ⎧⎧⎪⎪⎧⎪⎪→⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪→⎨⎪⎩⎩公式法相似规则图形转化法同底面积共高分割求和不规则图形割补法)补形作差(3. 常见结构、常用模型⎧→⎧⎪⎪→⎪⎪⎨⎪→⎪⎪⎪→⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩中点结构中点的思考角度直角结构斜转直常见结构旋转结构全等变换折叠结构轴对称的思考层次角平分线模型弦图模型常用模型相似基本模型三等角模型半角模型 ➢ 课前预习1. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F .若∠AEF =55°,则∠EAF=________.F EDCBA提示:倍长中线,构造全等三角形转移条件.具体操作:D 为中点,延长AD 到G 使DG =AD ,连接BG .得到△ADC ≌△GDB .2. 如图,在直角梯形ABCD 中,AB ∥CD ,∠ADC =90°,∠C =70°,点E 是BC的中点,CD =CE ,则∠EAD 的度数为( ) A .35°B .45°C .55°D .65°提示:平行夹中点,构造全等三角形补全图形.AD CE B具体操作:AB ∥CD ,E 为BC 的中点,延长AE 交直线CD 于点F .得到△ABE ≌△FCE .3. 如图,在四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠ACB =66°,∠CAD =20°,则∠EFG =____.AB CD FEG提示:多个中点考虑中位线,利用中位线性质转移角、转移边.具体操作:GF ,GE 分别为△CDA ,△ABC 的中位线.4. 如图,在△ABC 中,AB =AC ,BD =DC =3,sin C =45,则△ABC 的周长为______.提示:等腰三角形底边上的的中点——通过等腰三角形三线合一,构造直角三角形.具体操作:连接AD ,得到Rt △ADC .5. 如图,在锐角三角形ABC 中,∠BAC =60°,BN ,CM 为高,P 是BC 的中点,连接MN ,MP ,NP .则以下结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④当∠ABC =45°时,BNPC .其中正确的有( )具体操作:在Rt △BMC 中,MP 为斜边中线;在Rt △BNC 中,NP 为斜边中线.6. 如图,正方形ABCD 边长为9,点E 是线段CD 上一点,且CE 长为3,连接BE ,作线段BE 的垂直平分线分别交线段AD ,BC 于点F ,H ,垂足为G ,则AF 的长为______.H G F EDCBA方法1:提示:从边的角度考虑直角,往往先表达,然后用勾股定理建等式. 具体操作:连接BF ,EF ,则BF =EF ,设AF 为x ,分别在Rt △BAF 和Rt △EDF 中表达BF 2,EF 2,再利用BF 2=EF 2求解. 方法2:提示:从角度转移考虑直角,往往先找角相等,然后证相似或全等. 具体操作:过点F 作FM ⊥BC 于点M ,则可证△FMH ≌△BCE ,则MH =CE =3,连接EH ,利用勾股定理求解EH (BH ),则AF =BH -MH . 7. 如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC 于D .则AD 的长为_______________.DCBA提示:①特殊角+直角;②直角两边可看做是面积中的底或高.具体操作:①过点C 作CE ⊥AB ,交BA 延长线于点E ,在Rt △CAE 中利用特殊角60°求解;②将AD 看成高,求出BC 后,利用CE AB AD BC ⋅=⋅求解.8. 如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,则BD =________.ABECD提示:直角+角平分线,逆用三线合一构造出等腰三角形.具体操作:BE 既是角平分线、又是高.延长BA ,CE 交于点F ,可证△CAF ≌△BAD .9. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BD =2,AD =8,则CD =_________.DC提示:多个直角(直角三角形斜边上的高),考虑母子型相似.具体操作:由∠ACB =∠ADC =90°,考虑△BDC ∽△CDA ∽ △BCA .10. 如图,在梯形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若∠AED =90°,则CE =_____.ABCDE提示:多个直角(一线三等角),考虑三等角模型.具体操作:∠ABE =∠ECD =∠AED =90°,考虑△ABE ∽△ECD .11. 如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =5,OC=BC 的长为________.CB OAED提示:多个直角(斜放置的正方形、等腰直角三角形),考虑弦图.具体操作:过点D 作DF ⊥CB ,交CB 延长线于点F ,连接OF .由弦图可知,△OCF 是等腰直角三角形.12. 如图,将三角板放在矩形ABCD 上,使三角板的一边恰好经过点B ,三角板的直角顶点E 落在矩形对角线AC 上,另一边交CD 于点F .若AB =3,BC =4,则EF EG=________. FEDCG (B )A提示:斜直角要放平(关键是与其他直角配合),利用互余转移角后,寻找三角形相似或全等.具体操作:过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N ,则△EMF ∽△ENG .13. 已知直线l 1:y =112x b -+与直线l 2垂直,且直线l 2经过定点A (3,0),则直线l 2表达式为________________.提示:坐标系下的垂直,优先考虑121k k ⋅=-. 具体操作:由121k k ⋅=-求得k 2,再利用A (3,0)求b 2.14. 如图,在⊙O 中,弦AB,弦ADACB =45°,则弦AD 所对的圆心角为_______.CA提示:圆背景下,要构造直角,考虑:①直径所对的圆周角是直角;②垂径定理.具体操作:连接AO 并延长交⊙O 于点E ,连接DE ,BE .在Rt △ABE 中,求解直径AE ;在Rt △ADE 中,利用边角关系,求解∠AED 进而得到∠AOD . 15. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边上的点B ′处.若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是__________.B'A'F EDCBA提示:折叠,考虑:①利用对应边、对应角相等,考虑转移边、转移角;②矩形中的折叠常出现等腰三角形.具体操作:由折叠∠EFB =∠EFB′=60°,AE =A′E =2,∠B =∠A′B′F =90°,结合内错角∠B′EF =∠BFE =60°,可在Rt △A′B′E 中求解A′B′,即AB 的长.16. 如图,将长为4cm ,宽为2cm 的矩形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.BCFAEMD提示:折叠,考虑折痕是对应点连线的垂直平分线.具体操作:连接BE ,BM ,ME ,则BM =ME ,在Rt △BAM 和Rt △MDE 中表达BM 2,ME 2,利用相等建等式求解.17. 如图,已知直线l :y =122x -+与x 轴交于点A ,与y 轴交于点B ,将△AOB沿直线l 折叠,点O 落在点C 处,则点C 的坐标为_________.提示:折叠,可考虑折痕垂直平分对应点连线.函数背景下的折叠可以考虑121k k ⋅=-和中点坐标公式的组合应用.具体操作:连接OC ,先利用原点坐标和121k k ⋅=-求得OC 解析式;联立OC 和AB 解析式求出OC 的中点坐标后,进而求出点C 坐标.18. 如图,Rt △ABC 的边BC 位于直线l 上,ACACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路线长为__________.(结果保留π)19.的位置,使得CC′∥AB ,则∠BAB′的度数为( ) A .30°B .35°C .40°D .50°C'B'ABC提示:旋转是全等变换,对应边相等,对应角相等;会出现等腰三角形. 具体操作:由旋转可知AC =AC′(对应边相等),∠BAB′=∠CAC′(旋转角相等).20. 如图,P 是等边三角形ABC 内的一点,连接P A ,PB ,PC ,以BP 为边作∠PBQ =60°,且BQ =BP ,连接PQ ,CQ .若P A :PB :PC =3:4:5,则∠PQC =________.QBCPA提示:利用旋转可以重新组合条件.当看到等腰结构时往往会考虑利用旋转思想构造全等.具体操作:由等腰结构AB =BC ,PB =BQ ,先考虑△APB 和△BQC 的旋转关系,证明△APB ≌△CQB 后验证,重新组合条件后利用勾股定理进行证明.➢ 精讲精练1. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________. FEDBA2. 如图,矩形ABCD 中,AB =8,点E 是AD 上一点,且AE =4,BE 的垂直平分线交BC 的延长线于点F ,交AB 于点H ,连接EF 交CD 于点G .若G 是CD 的中点,则BC 的长是_______.HGOB A DEC F3. 如图,在□ABCD 中,AB :BC =3:2,∠DAB =60°,点E 在AB 边上,且AE :EB =1:2,F 是BC 的中点,过点D 分别作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP :DQ 等于( ) A .3:4BCD.QDCFBPEACBGFEDA第3题图 第4题图4. 如图,在△ABC 中,∠ABC =90°,BD 为AC 边上的中线,过点C 作CE ⊥BD于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF .若AG =13,CF =6,则四边形BDFG 的周长为________.5. 如图,已知四边形ABCD 为等腰梯形,AD ∥BC ,AB =CD,AD =CD 中点,连接AE,且AE =BF =________.BCEADF6. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 逆时针方向旋转90°并缩小,恰好使DE =23CD ,连接AE ,则△ADE 的面积是________.7. 如图,在平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC .线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD .若直线CD 与直线y =x 交于点Q ,则点Q 的坐标为__________.8. 如图,把矩形ABCD 沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC =3:5,则ADAB的值为_________. ED C B AEDCBA9. 如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF ;如图2,展开再折叠一次,使点C 落在线段EF 上,折痕为BM ,BM 交EF 于O ,且△NMO的周长为3,展开再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为P ,EP 交AB 于Q ,则△AQE 的周长为_______.图1BAD FC EMN图2OBAD F CE PHG 图3Q BA D F CE10.如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE ,BH .若BH =8,则FG =_______.GHBA D F CE11.顺时针旋转得到△A B′C′,连接CC ′并延长,交AB 于点O ,交BB ′于点F .若CC ′=CA ,则BF =_____.C'O B AFC B'12. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交DE 于点P ,连接BP .若AE =AP =1,PB =APD ≌△AEB ;②BE ⊥DE ;③点B 到直线AE;④1△△APD APB S S +=⑤4ABCD S =正方形 ) A .③④⑤B .①②⑤C .①③⑤D .①②④⑤PDA B CE【参考答案】 ➢ 课前预习1. 55°2. A3. 23°4. 165. B6. 27.7 8. 10 cm 9. 410. 1或6 11. 712. 4313. 26y x =-14.120°15.16.138cm17.816 () 55,18.(4π19.C20.90°➢精讲精练1.12.73.D4.205.4-6.27.99 () 44,8.1 29.1210.11.5 212.B。
初三数学总复习——几何内容为主的综合题北京八中 刘颖 一. 考试说明要求(与几何内容有关的“C”级要求) 1. 图形与证明 推理与证明 C:会用归纳和类比进行简单的推理 2. 图形的认识 (1)线段、射线和直线 C:会运用两点之间的距离解决有关问题 (2)等腰三角形与直角三角形 C:会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题 (3)全等三角形 C:会运用全等三角形的知识和方法解释或证明经过图形变换后的道德图形与原图形对应元素间的关 系 (4)解直角三角形 C:能综合运用直角三角形的性质解决有关问题 (5)圆的性质 C:能运用圆的性质解决有关问题 (6)圆周角 C:能综合运用几何和知识解决与圆周角有关的问题 (7)直线与圆的位置关系 C:能解决与切线有关的问题 3. 图形与变换 (1)轴对称 C:能运用轴对称的知识解决简单问题 (2)平移 C:能运用平移的知识解决简单问题 (3)旋转 C:能运用旋转的知识解决简单问题 二. 考点举例1. 运动变换 (1) (2009 年北京市)在 ABCD 中,过点 C 作 CE⊥CD 交 AD 于点 E,将线段 EC 绕点 E 逆时针旋 转 90 得到线段 EF(如图 1) (I)在图 1 中画图探究: ① 当 P 为射线 CD 上任意一点(P1 不与 C 重合)时,连结 EP1 绕点 E 逆时针旋转 90 得到线段 EC1. 判断直线 FC1 与直线 CD 的位置关系,并加以证明; ② 当 P2 为线段 DC 的延长线上任意一点 时,连结 EP2,将线段 EP2 绕点 E 逆时针旋 转 90 得到线段 EC2.判断直线 C1C2 与直线 CD 的位置关系,画出图形并直接写出你的 结论. (II) 若 AD=6,tanB=4 ,AE=1,在①的条件下, 设 CP1= x , S P1FC1 = y , 求 y 与 x 之间的函数关系式, 3并写出自变量 x 的取值范围. (2 ) (09 石景山一模)已知:如图,半圆 O 的直径 DE 12cm ,在 ABC 中, ACB 90 ,ABC 30 , BC 12cm .半圆 O 以每秒 2cm 的速度从左向右运动,在运动过程中,点 D 、 E始终在直线 BC 上. 设运动时间为 t(秒) ,当 t 0(秒) 时, 半圆 O 在 ABC 的左侧,OC 8cm . ①当 t 为何值时, ABC 的一边所在直线与半圆 O 所在的圆相切? ②当 ABC 的一边所在直线与半圆 O 所在的圆相切时,如果 半圆 O 与直线 DE 围成的区域与 ABC 三边围成的区域有重 叠部分,求重叠部分的面积.AD(3) (09 西城二模)△ ABC 是等边三角形,P 为平面内一个 动点,BP=BA,若 0° <∠PBC<180° ,且∠PBC 的平分线 上一点 D 满足 DB=DA, (1)当 BP 和 BA 重合时(如图 1) ,∠BPD= (2)当 BP 在∠ABC 内部时(如图 2) ,求∠BPD (3)当 BP 在∠ABC 外部时,请直接写出∠BPD,并画出相应的图形 °OEC第 24 题B2. 实验操作型 (1) (09 西城一模)已知:如图,△ ABC 中, AC<AB<BC.①在 BC 边上确定点 P 的位置,使∠APC=∠C.请用尺规作图,不写作法,只需保留作图痕迹; ②在图中作出一条直线 l,使得直线 l 分别与 AB、BC 边交于点 M、N,并且沿直线 l 将△ ABC 剪开后 可拼成一个等腰梯形.请画出直线 l 及拼接后的等腰梯形,并简要说明你的剪拼方法. (2) (09 西城二模)以下两图是一个等腰 Rt△ ABC 和一个等边△ DEF,要求把它们分别割成三个三 角形, 使分得的三个三角形互相没有重叠部分, 并且△ ABC 中分得的三个三角形和△ DEF 中分得的三个小三角形分别 相似,请画出两个三角形中的分割线,标出分割得到的小 三角形中两个角的度数.(3) (08 石景山二模)现有一张长和宽之比为 2∶1 的长方形纸片,将它折两次(第一次折后也可打 开铺平再折第二次) , 使得折痕将纸片分为面积相等且不重叠的四个部分 (称为一次操作) , 如图甲 (虚 线表示折痕).除图甲外,请你再给出三种不同的操作,分别将折痕画在图①至图③中(规定:一个 操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认 为是相同的操作,如图乙和图甲是相同的操作).A DA DB A图甲CB DA图乙C D ADBCBC BC图①图②图③(4) (09 朝阳一模)将图 1,将一张直角三角形纸片 ABC 折叠,使点 A 与点 C 重合,这时 DE 为折 痕,△ CBE 为等腰三角形;再继续将纸片沿△ CBE 的对称轴 EF 折叠,这时得到了两个完全重合的矩 形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形) ,我们称这样 两个矩形为“叠加矩形”.AAAAEDEDCB CBCFBBC BC图1图2图3①如图 2,正方形网格中的△ ABC 能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕; ②如图 3,在正方形网格中,以给定的 BC 为一边,画出一个斜三角形 ABC,使其顶点 A 在格点上, 且△ ABC 折成的“叠加矩形”为正方形; ③如果一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是 ④如果一个四边形一定能折成“叠加矩形”,那么它必须满足的条件是 . ;(5) (09 门头沟一模) 如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为 3,另一种 纸片的两条直角边长分别为 1 和 3.图 1、图 2、图 3 是三张形状、大小完全相同的方格纸,方格纸 中的每个小正方形的边长均为 1. ①请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片 拼成平行四边形(非矩形) ,每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不 留空隙,并把你所拼得的图形按实际大小画在图 1、图 2、图 3 的方格纸上(要求:所画图形各顶点 必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹) ; ②三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值, 请直接写出三种方法所拼得的平行四边形的面积各是多少; ③三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值, 请直接写出三种方法所拼得的平行四边形的周长各是多少.3 3 1 33 3 1 3 图1图3图2(6) (09 延庆一模)22.(本题满分 4 分) 如图 1,把一张标准纸一次又一次对开,得到“2 开”纸、“4 开”纸、“8 开”纸、“16 开”纸….已知标准纸 的短 ... 边长为 a . ① 如图 2,把这张标准纸对开得到的“16 开”纸按 如下步骤折叠: 第一步:将矩形的短边 AB 与长边 AD 对齐 折①标准纸“2 开”纸、 “4 开” 纸、 “8 开” 纸、 “16 开” 纸…… 都是矩形. ②本题中所求边长或面积都 用含 a 的代数式表示.叠,点 B 落在 AD 上的点 B 处,铺平后 得折痕AE ;第二步:将长边 AD 与折痕 AE 对齐折叠,点 D 正好与点 E 重合,铺平后得折痕 AF .则 AD :AB 的 值是 .② 求“2 开”纸长与宽的比__________. ③ 如图 3, 由 8 个大小相等的小正方形构成“ L ”型图案, 它的四个顶点 E,F,G,H 分别在“16 开” 纸的边 AB,BC,CD,DA 上,求 DG 的长. B A 4开 a 2开 8开 3. 阅读理解型 图1 16 开 B E 图2 A E HD F CD GBF 图3C(1) (08 房山二模)四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等, 但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图 l,点 P 为四边形 ABCD 对角线 AC 所在直线上的一点,PD=PB,PA≠PC,则点 P 为四边形 ABCD 的准等距点. ①如图 2,画出菱形 ABCD 的一个准等距点. ②如图 3,作出四边形 ABCD 的一个准等距点 (尺规作图,保留作图痕迹,不要求写作法).③如图 4,在四边形 ABCD 中,P 是 AC 上的点,PA≠PC,延长 BP 交 CD 于点 E,延长 DP 交 BC 于 点 F,且∠CDF=∠CBE,CE=CF.求证:点 P 是四边形 ABCD 的准等距点.(2) (08 石景山二模)我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则 把这样的三角形称为三角形板.把两块边长为 4 的等边三角形板 ABC 和 DEF 叠放在一起,使三角形 板 DEF 的顶点 D 与三角形板 ABC 的 AC 边中点 O 重合,把三角形板 ABC 固定不动,让三角形板DEF 绕点 O 旋转,设射线 DE 与射线 AB 相交于点 M,射线 DF 与线段 BC 相交于点 N.( 1 ) 如 图 1 , 当 射线 DF 经 过 点 B , 即 点 Q 与 点 B 重 合 时, 易 证 △ ADM∽△CND . 此 时 , AM· CN= .( 2 )将三 角形板 DEF 由 图 1 所 示的位置 绕点 O 沿逆时针 方向旋转 ,设旋转角为 . 其中0 90 ,问 AM· CN 的值是否改变?说明你的理由.(3)在(2)的条件下,设 AM= x,两块三角形板重叠面积为 y ,求 y 与 x 的函数关系式. (图 2, 图 3 供解题用)E M D(O) E F B(N) C B N C B E F 图1 图2 M 图3 F P N C M D(O) D(O) A A A(3)(2009 年河北) 如图 1 至图 5,⊙O 均作无滑动滚动,⊙O1、⊙O2、⊙O3、⊙O4 均表示⊙O 与线 段 AB 或 BC 相切于端点时刻的位置,⊙O 的周长为 c. 阅读理解:O1 AOO2 B图1O1 A B O2 n° D C图2O1 AO BO2 O3 O D C O4 ABO CD图3图4图5① 如图 1,⊙O 从⊙O1 的位置出发,沿 AB 滚动到⊙O2 的位置,当 AB = c 时,⊙O 恰好自转 1 周. ② 如图 2,∠ABC 相邻的补角是 n° ,⊙O 在∠ABC 外部沿 A-B-C 滚动,在点 B 处,必须由⊙O1 的位 置旋转到⊙O2 的位置,⊙O 绕点 B 旋转的角∠O1BO2 = n° ,⊙O 在点 B 处自转 实践应用: ① 在阅读理解的①中,若 AB = 2c,则⊙O 自转 理解的②中,若∠ABC = 120° ,则⊙O 在点 B 处自转 周. ② 如图 3,∠ABC=90° ,AB=BC= 的位置,⊙O 自转 拓展联想: ① 如图 4,△ ABC 的周长为 l,⊙O 从与 AB 相切于点 D 的位置出发,在 △ ABC 外部,按顺时针方 向沿三角形滚动,又回到与 AB 相切于点 D 的位置,⊙O 自转了多少周?请说明理由. 周. 周;若 AB = l,则⊙O 自转 周.在阅读n 周. 360周;若∠ABC = 60° ,则⊙O 在点 B 处自转1 c.⊙O 从⊙O1 的位置出发,在∠ABC 外部沿 A-B-C 滚动到⊙O4 2② 如图 5,点 D 的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点 D 的位置,直接 写出⊙O 自转的周数. ..4. 开放探究型 (1) (09 崇文一模)在等边 ABC 的两边 AB、AC 所在直线上分别有两点 M、N,D 为 ABC 外一 点,且 MDN 60 , BDC 120 ,BD=DC. 探究:当 M、N 分别在直线 AB、AC 上移动时,BM、 NC、MN 之间的数量关系及 AMN 的周长 Q 与等边 ABC 的周长 L 的关系. (I)如图 1,当点 M、 N 边 AB、AC 上, 且 DM=DN 时,BM、 NC、MN 之间的数量关系 是 ; 此时Q L;(II)如图 2,点 M、N 边 AB、AC 上,且当 DM DN 时,猜想(I)问的两个结论还成立吗?写出 你的猜想并加以证明; (III) 如图 3,当 M、N 分别在边 AB、CA 的延长线上时, 若 AN= x ,则 Q= (用 x 、L 表示) .(2) (09 昌平一模)请阅读下列材料: 问题:如图 1,点 A , B 在直线 l 的同侧,在直线 l 上找一点 P ,使得 AP BP 的值最小. 小明的 点 A 关B Al思路是:如图 2,作B Al于直线 l 的对称点 接 AB ,则 AB 与A , 连直 线 lP A'的交点 P 即为所求.图1图2请你参考小明同学的思路,探究并解决下列问题: ① 如图 3,在图 2 的基础上,设 AA 与直线 l 的交点为 C ,ABC A'PDl过点 B 作 BD l ,垂足为 D . 若 CP 1 , PD 2 , AC 1 , 写出 AP BP 的值; ② 将①中的条件“ AC 1 ”去掉,换成“ BD 4 AC ”,其它条件不变, 写出此时 AP BP 的值; ③ 请结合图形,直接写出 2m 321 8 2m2 4 的最小值.三. 复习建议 1. 对于综合题的复习,是要通过数量有限的题目的练习、分析和讲解,来提高学生的分析问题、解 决问题的能力,适宜“以点带面” 、 “以问题带方法”的方法. 即在选择典型问题加以分析的基础上, 将题目讲深、讲透,也可将问题适当进行变化、类比,力求充分让学生体会数学思想与数学方法在解 决问题中的灵活、综合的应用. 2. 可以将一道综合题拆分成若干个小问题,将一个复杂图形拆分成若干个基本图形,这样做,一方 面帮助学生提高分析问题的能力,另一方面也可以提高学生处理综合题的自信. 3. 轴对称、平移和旋转变换在“考试说明中”均有“C”级的要求,要引起注意. 4. 针对“运动变换型” 、 “实验操作型”和“阅读理解型”问题,重点要教给学生分析和解决这类问 题的通用的、简单易行的方法. 例如: “运动变换型”问题一定要多画图形,并注意一般位置和特殊 位置的关系; “阅读理解型”通常有定义新概念和定义新方法两类,等等.四. 08、09 年北京市各区模拟试题选编 08 朝阳二模 23.已知:如图,在梯形 ABCD 中,AD∥BC,BC=3AD. (1)如图①,连接 AC,如果三角形 ADC 的面积为 6,求梯形 ABCD 的面积; (2)如图②,E 是腰 AB 上一点,连结 CE,设△ BCE 和四边形 AECD 的面积分别为 S1 和 S 2 , 且 2S1 3S 2 ,求AE 的值; BE(3)如图③,AB=CD,如果 CE⊥AB 于点 E,且 BE=3AE,求∠B 的度数.24.已知:在等边△ ABC 中,点 D、E、F分别为边 AB、BC、AC 的中点,点 G 为直线 BC 上一动 点, 当点 G 在 CB 延长线上时, 有结论“在直线 EF 上存在一点 H, 使得△ DGH 是等边三角形”成立 (如 图①) ,且当点 G 与点 B、E、C 重合时,该结论也一定成立. 问题:当点 G 在直线 BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出 相应图形并证明相关结论. :D AA A A FFDF BDD CFB G H ECB ECEB EC图①图②图③图④08 大兴二模 23. 如图所示, 在平面直角坐标中, 四边形 OABC 是等腰梯形, BC∥OA, OA=7, AB=4, ∠ COA=60° , 点 P 为 x 轴上的—个动点,但是点 P 不与点 0、点 A 重合. 连结 CP, D 点是线段 AB 上一点,连 PD. (1)求点 B 的坐标; (2)当点 P 运动到什么位置时,△OCP 为等腰三角形, 求这时点 P 的坐标; (3)当∠CPD=∠OAB,且BD 5 = ,求这时点 P 的坐标. AB 8第 23 题图24.我们知道:将一条线段 AB 分割成大小两条线段 AC、CB,若小线段 CB 与大线段 AC 的长度之 比等于大线段 AC 与线段 AB 的长度之比, 即CB AC 5 1 0.6180339887 4989 ... 这种分割 AC AB 2称为黄金分割,点 C 叫做线段 AB 的黄金分割点. (1) 类似地我们可以定义,顶角为 36 的等腰三角形叫黄金三角形,其底与腰之比为黄金数,底角平分线与腰的交点为腰的黄金分割点.如图 24-1,在 ABC 中, A 36 , AB AC, ACB 的 角平分线 CD 交腰 AB 于点 D,请你说明 D 为腰 AB 的黄金分割点的理由.(2) 若腰和上底相等,对角线和下底相等的等腰梯形叫作黄金梯形,其对角线的交点为对角线的黄金分割点. 如图24-2,AD ‖BC ,DC AD AB ==,,试说明O 为AC 的黄金分割点.(3) 如图24-3,在ABC Rt ∆中, 图24-1 图24-2 图24-3︒=∠90ACB ,CD 为斜边AB 上的高,ACB B A ∠∠∠、、的对边分别为c b a 、、.若D 是AB 的黄金分割点,那么c b a 、、之间的数量关系是什么?并证明你的结论.08房山二模24.如图1中的△ABC 是直角三角形,∠C =90º.现将△ABC 补成矩形,使△ABC 的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合条件的矩形可以画出两个,如图2所示. (1)设图2中的矩形ACBD 和矩形AEFB 的面积分别为S 1和S 2,则S 1 S 2(填“>”,“=”或“<)”;(2)如图3中的△ABC 是锐角三角形,且三边满足BC >AC >AB ,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出 个,并在图3中把符合要求的矩形画出来.(3)在图3中所画出的矩形中,它们的面积之间具有怎样的关系?并说明你的理由;(4)猜想图3中所画的矩形的周长之间的大小关系,不必证明.08门头沟二模23.如图1,P 为Rt △ABC 所在平面内任一点(不在直线AC 上),∠ACB=90°,M 为AB 的中点.操作:以PA 、PC 为邻边作平行四边形PADC ,连结PM 并延长到点E ,使ME=PM ,连结DE.(1)请你猜想与线段DE 有关的三个结论,并证明你的猜想;BBDEABB 图1ABC图3图1MPDCBA(2)若将“Rt △ABC”改为“任意△ABC”,其他条件不变,利用图2操作,并写出与线段DE 有关的结论(直接写答案).25. 如图,把一副三角板如图1放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm ,DC=7cm ,把三角板DCE 绕点C 顺时针旋转15得到△D /CE /如图2.这时AB 与CD /相交于点O ,D /E /与AB 相交于点F .(1)求∠OFE /的度数;(2)求线段AD /的长.(3)若把三角形D /CE /绕着点C 顺时针再旋转30得△D //CE //,这时点B 在△D //CE //的内部、外部、还是边上?证明你的判断.F08石景山二模23.如图,Rt △ABC 中,∠C=90°,∠B 的平分线交AC 于E ,DE ⊥BE. (1)试说明AC 是△BED 外接圆的切线; (2)若CE=1,BC=2,求△ABC 内切圆的面积.09石景山一模25.已知:如图(1),射线//AM 射线BN ,AB 是它们的公垂线,点D 、C 分别在AM 、BN 上运动(点D 与点A 不重合、点C 与点B 不重合),E 是AB 边上的动点(点E 与A 、B 不重合),在运动过程中始终保持EC DE ⊥,且a AB DE AD ==+. (1)求证:ADE ∆∽BEC ∆;(2)如图(2),当点E 为AB 边的中点时,求证:CD BC AD =+;(3)设m AE =,请探究:BEC ∆的周长是否与m 值有关?若有关,请用含有m 的代数式表示BEC∆图2BA ACBED图1/ ACB OD /图2的周长;若无关,请说明理由.09朝阳一模25.图① 图②(1) 已知:如图①,Rt △ABC 中,∠ACB=90°,AC=BC ,点D 、E 在斜边AB 上,且 ∠DCE=45°. 求证:线段DE 、AD 、EB 总能构成一个直角三角形;(2)已知:如图②,等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE=30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数; (3)在(1)的条件下,如果AB=10,求BD·AE 的值.09西城一模23.已知:反比例函数2y x =和8y x= 在平面直角坐标系xOy 第一象限中的图象如图所示,点A 在8y x=的图象上,AB ∥y 轴,与2y x =的图象交于点B ,AC 、BD 与x 轴平行,分别与2y x =、8y x=的图象交于点C 、D .(1)若点A 的横坐标为2,求梯形ACBD 的对角线的交点F 的坐标; (2)若点A 的横坐标为m ,比较△OBC 与△ABC 的面积的大小;(3)若△ABC 与以A 、B 、D 为顶点的三角形相似,请直接写出点A 的坐标.25.已知:PA =4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧. (1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.09昌平一模25. 已知90AOB ∠=︒,OM 是AOB ∠的平分线.将一个直角RPS 的直角顶点P 在射线OM 上移动,点P 不与点O 重合.(1)如图,当直角RPS 的两边分别与射线OA 、OB 交于点C 、D 时,请判断PC 与PD 的数量关系,并证明你的结论;(2)如图,在(1)的条件下,设CD 与OP 的交点为点G,且PG =,求GD OD 的值; (3)若直角RPS 的一边与射线OB 交于点D ,另一边与直线OA 、直线OB 分别交于点C 、E ,且以P 、D 、E 为顶点的三角形与OCD ∆相似,请画出示意图;当1OD =时,直接写出OP 的长. 09房山一模25.已知:△ABC 和△ADE 均为等腰直角三角形, ∠ABC =∠ADE=90︒, AB= BC ,AD=DE ,按图1放置,使点E 在BC 上,取CE 的中点F ,联结DF 、BF. (1)探索DF 、BF 的数量关系和位置关系,并证明;(2)将图1中△ADE 绕A 点顺时针旋转45︒,再联结CE ,取CE 的中点F (如图2),问(1)中的结论是否仍然成立?证明你的结论;(3)将图1中△ADE 绕A 点转动任意角度(旋转角在0︒到90︒之间),再联结CE ,取CE 的中点F (如图3),问(1)中的结论是否仍然成立?证明你的结论09门头沟一模25.如图1,在△ACB 和△AED 中,AC =BC ,AE =DE ,∠ACB =∠AED =90°,点E 在AB 上, F 是线段BD 的中点,连结CE 、FE .(1)请你探究线段CE 与FE 之间的数量关系(直接写出结果,不需说明理由);(2)将图1中的△AED 绕点A 顺时针旋转,使△AED 的一边AE 恰好与△ACB 的边AC 在同一条直线上(如图2),连结BD ,取BD 的中点F ,问(1)中的结论是否仍然成立,并说明理由;CBAE(3)将图1中的△AED 绕点A 顺时针旋转任意的角度(如图3),连结BD ,取BD 的中点F ,问(1)中的结论是否仍然成立,并说明理由.09延庆一模24.如图24-1,正方形ABCD 和正方形QMNP , M 是正方形ABCD 的对称中心,MN 交AB 于F ,QM 交AD 于E .(1)猜想:ME 与MF 的数量关系(2)如图24-2,若将原题中的“正方形”改为“菱形”,且∠M =∠B ,其它条件不变,探索线段ME 与线段MF 的数量关系,并加以证明.(3)如图24-3,若将原题中的“正方形”改为“矩形”,且AB:BC=1:2,其它条件不变,探索线段ME 与线段MF 的数量关系,并说明理由.(4)如图24-4,若将原题中的“正方形”改为平行四边形,且∠M =∠B ,AB:BC = m ,其它条件不变,求出ME :MF 的值. (直接写出答案)09宣武一模23.如图, 已知等边三角形ABC 中,点D 、E 、F 分别为边AB 、AC 、BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动).(1)如图1,当点M 在点B 左侧时,请你连结EN ,并判断EN 与MF 有怎样的数量关系?点F 是否PN图1图2F CCD E F EDA图3EAAFCDAD在直线NE 上?请写出结论,并说明理由;(2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M 在点C 右侧时,请你判断(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请直接写出结论;若不成立,请说明理由.(第23题图1) (第23题图2) (第23题图3)25.如图,矩形OABC 的边OC 、OA 分别与x 轴、y 轴重合,点B 的坐标是)1,3(,点D 是AB 边上一个动点(与点A 不重合),沿OD 将△OAD 翻折,点A 落在点P 处. (1)若点P 在一次函数21y x =-的图象上,求点P 的坐标;(2)若点P 在抛物线2y ax =图象上,并满足△PCB 是等腰三角形,求该抛物线解析式;(3)当线段OD 与PC 所在直线垂直时,在PC 所在直线上作出一点M ,使DM+BM 最小,并求出这个最小值.y xOPDCBAABCOxy ABCOxy(第25题图) (第25题备用图1) (第25题备用图2)09丰台一模22.把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠,45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与CD 1相交于点O ,与D 1E 1相交于点F . (1)求1ACD ∠的度数; (2)求线段AD 1的长;NMADO(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2, 这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.09顺义一模22. 取一副三角板按图①拼接,固定三角板ADC ,将三角板ABC 绕点A 依顺时针方向旋转一个大小为α的角(045α<≤得到ABC '△,如图所示. 试问:(1)当α为多少度时,能使得图②中AB DC ∥?(2)连结BD ,当045α<≤时,探寻DBC CAC BDC ''∠+∠+∠值的大小变化情况,并给出你的证明.25. 已知:在Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 的中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明;(2)如果将图①中的△ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.图1图2 C图3E09通州一模25.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB = AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE′,连结E′D , 使问题得到解决.请你参考小明的思路探究并解决下列问题: (1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,并对你的猜想给予证明; 图(1) (2) 当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时, 如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明 你的猜想并给予证明.图(2)09怀柔二模22.取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图1;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为B ',得R t △A B 'E ,如图2;第三步:沿EB '线折叠得折痕EF ,使A 点落在EC 的延长线上,如图3.利用展开图4探究: (1)△AEF 是什么三角形?证明你的结论;(2)对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.25.如图:已知,四边形ABCD 中,AD//BC , DC ⊥BC ,已知AB=5,BC=6,cosB=35.点O 为BC 边上的一个动点,连结OD ,以O 为圆心,BO 为半径的⊙O 分别交边AB 于点P,交线图1图2图3 图4段OD 于点M ,交射线BC 于点N ,连结MN . (1)当BO=AD 时,求BP 的长; (2)点O 运动的过程中,是否存在 BP=MN 的情况?若存在,请求出当 BO 为多长时BP=MN ;若不存在, 请说明理由;(3)在点O 运动的过程中,以点C 为圆心,CN 为半径作⊙C ,请直接写出当⊙C 存在时,⊙O 与⊙C 的位置关系,以及相应的⊙C 半径CN 的取值范围.09东城二模22.请设计一种方案:把正方形ABCD 剪两刀,使剪得的三块图形能够拼成一个三角形,画出必要的示意图.(1)使拼成的三角形是等腰三角形.(图1)(2)使拼成的三角形既不是直角三角形也不是等腰三角形.(图2)(图1) (图2)09海淀二模23、已知△ABC,∠ABC=∠ACB=630.如图1所示,取三边中点,可以把△ABC 分割成四个等腰三角形. 请你在图2中,用另外四种不同的方法把△ABC 分割成四个等腰三角形,并标明分割后的四个等腰三角形的底角的度数(如果经过变换后两个图形重合,则视为同一种方法)ABCDOPMN ABCD(备用图)(如图2)C(如图3)C(如图1)CBA CBA CBA CBA24.点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ∆和BCF ∆,连接AF ,CE .取AF 、CE 的中点M 、N ,连接BM ,BN , MN .(1)若ABE ∆和FBC ∆是等腰直角三角形,且090=∠=∠FBC ABE (如图1),则MBN ∆ 是 三角形.(2)在ABE ∆和BCF ∆中,若BA=BE,BC=BF,且α=∠=∠FBC ABE ,(如图2),则MBN ∆是 三角形,且=∠MBN .(3)若将(2)中的ABE ∆绕点B 旋转一定角度,(如同3),其他条件不变,那么(2)中的结论是否成立? 若成立,给出你的证明;若不成立,写出正确的结论并给出证明.09朝阳二模25.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O. (1)如图①,当AC=BC 时,D A ':E B '的值为 ;(2)如图②,当AC=5,BC=4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB=60°,且E 为BC 的中点,求△OAB 面积的最小值.09大兴二模。
初三数学总复习辅导学习资料(5)——几何综合题一、典型例题例1(重庆)如图,在△ABC 中,点E 在BC 上,点D 在AE 上, 已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。
例2(2005南充)如图2-4-1,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.例3.用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.EBACBAMCDM图3图4图1图2ABCDE二、强化训练练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.已知∠a=60°,∠AOB=3∠a,OC是∠AOB的平分线,则∠AOC = ___ .3.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为4.等腰Rt△ABC, 斜边AB与斜边上的高的和是12厘米, 则斜边AB= 厘米.5.已知:如图△ABC中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF的度数为________.6.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面积为8cm,则△AOB的面积为 .7.如果圆的半径R增加10% , 则圆的面积增加_________ .8.梯形上底长为2,中位线长为5,则梯形的下底长为 .9. △ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是 .10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°,那么AD等于 .练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于 [ ]A.30°B.45°C.60°D.75°2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ ]A.矩形 B.三角形C.梯形 D.菱形3.下列图形中,不是中心对称图形的是[ ]A.B. C. D.4.既是轴对称,又是中心对称的图形是 [ ]A.等腰三角形B.等腰梯形C.平行四边形D.线段5.依次连结等腰梯形的各边中点所得的四边形是 [ ]A.矩形B.正方形C.菱形D.梯形6.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆的位置关系是[ ]A.相交B.内切C.外切D.外离7.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为[ ]8.A.B.C三点在⊙O上的位置如图所示,若∠AOB=80°,则∠ACB等于 [ ]A.160° B.80° C.40° D.20°9.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是[ ]A.160°B.150°C.70°D.50°(第9题图)(第10题图)10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC相交于E,图中全等三角形共有[ ] A.2对 B.3对 C.4对 D.5对练习三:几何作图1.下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。
2. 正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。
3.将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移2个单位;(2)关于y轴对称;ODCBA4. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地 方, 可使所用的水管最短?(写出已知, 求作, 并画图)练习四:计算题1. 求值:cos 45°+ tan 30°sin60°.2.如图:在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,AB=4cm ,AD=34cm.(1)判定△AOB 的形状. (2)计算△BOC 的面积.3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD 和上弦AC 的长(答案可带根号)4.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm, BC=10cm ,求AE 的长.练习五:证明题1.阅读下题及其证明过程:已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE , 求证:∠BAE=∠CAE.证明:在△AEB 和△AEC 中,⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB ABDFEC∴△AEB ≌△AEC(第一步) ∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;2. 已知:点C.D 在线段AB 上,PC =PD 。
请你添加一个条件,使图中存在全等三角形并给予证明。
所加条件为_____,你得到的一对全等三角形是△___≌△___。
证明:3.已知:如图 , AB=AC , ∠B=∠C .BE 、DC 交于O 点. 求证:BD=CE练习六:实践与探索1.用两个全等的等边△ABC 和△ACD 拼成如图的菱形ABCD 。
现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A 重合,两边分别与AB 、AC 重合。
将三角板绕点A 逆时针方向旋转。
(1)当三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(图a )①猜想BE 与CF 的数量关系是__________________; ②证明你猜想的结论。
(2)当三角板的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F 时(图b ),连结EF ,判断△AEF 的形状,并证明你的结论。
B P ACD ABC D EF图a ABC DE F 图b2.如图,四边形ABCD 中,AC=6,BD=8,且AC ⊥BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去得到四边形A n B n C n D n 。
(1)证明:四边形A 1B 1C 1D 1是矩形;(2)仔细探索·解决以下问题:(填空)(2)四边形A 1B 1C 1D 1的面积为____________ A 2B 2C 2D 2的面积为___________; (3)四边形A n B n C n D n 的面积为____________(用含n 的代数式表示); (4)四边形A 5B 5C 5D 5的周长为____________。
3.如图,在平面直角坐标系中,四边形ABCO 是正方形,点C 的坐标是(4,0)。
(1)直接写出A 、B 两点的坐标。
A ______________ B____________(2)若E 是BC 上一点且∠AEB=60°,沿AE 折叠正方形ABCO ,折叠后点B 落在平面内点F 处,请画出点F 并求出它的坐标。
(3)若E 是直线..BC 上任意一点,问是否存在这样的点E ,使正方形ABCO 沿AE 折叠后,点B 恰好落在x 轴上的某一点P 处?若存在,请写出此时点P 与点E 的坐标;若不存在,请说明理由。
AB DA 1CB 1C 1D 1A 2B 2C 2D 2A 3B 3C 3D 3 … ABCOE4. 已知抛物线y x px q =++2与x 轴交于A 、B 两点(点A 在原点的左侧,点B 在原点的右侧)与y 轴的负半轴交于点C ,若∠=︒ACB 90,且,求∆ABC 外接圆的面积。
5. 已知⊙M 的圆心在x 轴的负半轴上,且与x 轴的负半轴交于A 、B 两点,OC 切⊙M 于C 点(A 点在B 点左侧,OC 在第二象限),OC OM OB ==35,,求⊙M 的半径R 的长和A 、B 、M 三点的坐标。
6.已知抛物线y x kx =++21与x 轴两个交点A 、B 都在原点左侧,顶点为C ,∆ABC 是等腰直角三角形,求k 的值。
7.如图,边长为4的正方形ABCD 上,CE =1,CF=,直线EF 交AB 的延长线于G ,H 为FG 上一动点,HM ⊥AG ,HN ⊥AD ,设HM =x ,矩形AMHN 的面积为y 。
(1)求y 与x 之间的函数关系式;(2)当x 为何值时,矩形AMHN 的面积最大,最大是多少?8.如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BFAD ,EM 切⊙O 于M 。
⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE;⑶如果AB =2,EM =3,求cot∠CAD 的值。
参考答案例1证明:因为∠ABD=∠ACD,∠BDE=∠CDE。
而∠BDE=∠ABD+∠BAD,∠CDE=∠ACD+∠CAD 。
所以∠BAD=∠CAD,而∠ADB =180°-∠BDE,∠ADC=180°-∠CDE,所以∠ADB =∠ADC 。
在△ADB和△ADC 中,∠BAD =∠CADAD =AD∠ADB =∠ADC所以△ADB≌△ADC 所以 BD =CD。
例2(1)证明:连接OD,AD. AC 是直径,∴AD⊥BC.⊿ABC中,AB=AC,∴∠B=∠C,∠BAD=∠DAC.又∠BED是圆内接四边形ACDE的外角,∴∠C=∠BED.故∠B=∠BED,即DE=DB.∴点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD =∠ODA.∴OD⊥DF ,DF是⊙O的切线.(2)解:设BF=x,BE=2BF=2x.又BD=CD=21BC=6,根据BE AB BD BC⋅=⋅,2(214)612x x⋅+=⨯.化简,得27180x x+-=,解得122,9x x==-(不合题意,舍去).则BF的长为2.例3答案:(1)如图(2)由题可知AB=CD=AE,又BC=BE=AB+AE。