第十章 隔振技术与阻尼减
- 格式:ppt
- 大小:73.00 KB
- 文档页数:19
9.隔振技术与阻尼减振课程教学基本要求:了解振动的传播及危害,振动控制的基本方法,理解隔振原理,隔振的力传递率,隔振元件,具备隔振设计及应用的能力。
课程内容:振动的传播及危害,振动控制的基本方法,隔振原理,隔振的力传递率,隔振元件,隔振设计及应用,阻尼减振原理,阻尼材料,阻尼减振结构。
振动的危害及其控制的基本方法。
环境振动,机械振动,隔振的力传递率,隔振效率。
固体声隔绝,隔振技术,阻尼减振。
9.1振动概述一、振动的来源振动是自然界中普遍存在的现象,其来源可分为自然振源和人工振源两大类:自然振源如地震、海浪和风等;人工振源如运转的各种动力设备、运行的交通工具、电声系统中的扬声器、人工爆破等。
凡是运转的机器设备,如锻压冲压机械、电机、风机、空压机、内然机等等,由于机械部件之间力的传递,总是产生一定的振动。
这些振动的能量一部分由振动的机器直接向空中辐射,称之为空气声,另一部分能量则通过承载机器的基础向地层或建筑物结构传递,这种通过固体传导的声叫做固体声。
振源的振动除了向周围空间辐射在空气中传播的声音(称“空气声”)外,还通过与其相连的固体结构传播声波,简称“固体声”。
固体声在传播的过程中又会通过固体表面的振动向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。
固体声的隔绝与空气声隔绝在技术上是完全不同的。
二、振动的影响及危害振动不仅能激发噪声,而且还能通过固体直接作用于人体,振动也是危害身体健康,降低工作效率,影响居民生活的环境物理因素。
同时,振动会影响精密仪器正常工作,强烈的振动有损于机器结构和建筑物结构。
振动特别是l一100Hz的低频振动,直接对人有影响,长期暴露于强振动环境中,人的机体将受到损害,振动产生的噪声会干扰人的生活、学习和工作;振动也会影响设备特别是精密仪器的正常工作,有时甚至破坏设备和建筑结构。
在振动环境中劳动和工作的人不但身心健康受到损害,而且由于振动使他们的视觉受到干扰,手的动作受妨碍和精力难以集中,造成操作速度下降、生产效率降低,并且可能出现质量事故。
9.隔振技术与阻尼减振课程教学基本要求:了解振动的传播及危害,振动控制的基本方法,理解隔振原理,隔振的力传递率,隔振元件,具备隔振设计及应用的能力。
课程内容:振动的传播及危害,振动控制的基本方法,隔振原理,隔振的力传递率,隔振元件,隔振设计及应用,阻尼减振原理,阻尼材料,阻尼减振结构。
振动的危害及其控制的基本方法。
环境振动,机械振动,隔振的力传递率,隔振效率。
固体声隔绝,隔振技术,阻尼减振。
9.1振动概述一、振动的来源振动是自然界中普遍存在的现象,其来源可分为自然振源和人工振源两大类:自然振源如地震、海浪和风等;人工振源如运转的各种动力设备、运行的交通工具、电声系统中的扬声器、人工爆破等。
凡是运转的机器设备,如锻压冲压机械、电机、风机、空压机、内然机等等,由于机械部件之间力的传递,总是产生一定的振动。
这些振动的能量一部分由振动的机器直接向空中辐射,称之为空气声,另一部分能量则通过承载机器的基础向地层或建筑物结构传递,这种通过固体传导的声叫做固体声。
振源的振动除了向周围空间辐射在空气中传播的声音(称“空气声”)外,还通过与其相连的固体结构传播声波,简称“固体声”。
固体声在传播的过程中又会通过固体表面的振动向周围空气辐射噪声,特别是当引起物体共振时,会辐射很强的噪声。
固体声的隔绝与空气声隔绝在技术上是完全不同的。
二、振动的影响及危害振动不仅能激发噪声,而且还能通过固体直接作用于人体,振动也是危害身体健康,降低工作效率,影响居民生活的环境物理因素。
同时,振动会影响精密仪器正常工作,强烈的振动有损于机器结构和建筑物结构。
振动特别是l一100Hz的低频振动,直接对人有影响,长期暴露于强振动环境中,人的机体将受到损害,振动产生的噪声会干扰人的生活、学习和工作;振动也会影响设备特别是精密仪器的正常工作,有时甚至破坏设备和建筑结构。
在振动环境中劳动和工作的人不但身心健康受到损害,而且由于振动使他们的视觉受到干扰,手的动作受妨碍和精力难以集中,造成操作速度下降、生产效率降低,并且可能出现质量事故。
阻尼减震和隔振的原理区别阻尼减震和隔振是两种常见的减震控制方法,它们在原理和应用场景上有一定的区别。
阻尼减震是一种通过增加系统的阻尼来减小振动幅度的方法。
在实际系统中,振动往往是由于系统存在不稳定的共振频率或共振模态引起的,而阻尼可以通过吸收系统的振动能量来减小振幅,并且降低系统共振的危害性。
阻尼减震的原理可以通过振动系统的阻尼比以及阻尼对系统动力学特性的影响来解释。
阻尼比是描述阻尼效应强弱的比值,即阻尼力和系统的临界阻尼力之比。
当阻尼比小于1时,系统处于过阻尼状态,振动幅度较小且趋于稳定;当阻尼比等于1时,系统处于临界阻尼状态,振动幅度最小但需要的时间最长;而当阻尼比大于1时,系统处于欠阻尼状态,振动幅度大且持续时间较短。
因此,合理选择适当的阻尼比可以有效控制系统的振动幅度。
在阻尼减震中,常用的减震器有阻尼器、液体阻尼器、摩擦减震器等。
阻尼器中通常用高频阻尼器来吸收系统高频范围内的振动能量,而低频阻尼器则用来分散和吸收系统低频范围内的振动能量。
液体阻尼器通过液体的粘滞阻力和离心力来消耗振动所带来的能量,在大多数情况下能够提供较好的阻尼效果。
摩擦减震器则是通过材料之间的摩擦力来吸收振动能量,其实现简单且成本较低。
隔振是一种通过隔离系统与外界环境的接触来减小振动幅度的方法。
在实际工程中,许多设备受到地震、机械冲击或交通振动等外部振动的干扰,而隔振技术可以将这些外部振动隔离,从而保护设备的正常工作。
隔振的原理可以通过系统的共振频率以及隔振材料的固有频率来解释。
在隔振中,系统具有的共振频率是关键。
当外部振动频率接近系统的共振频率时,系统振幅会大幅度增大,从而产生共振现象。
而隔振系统则会添加隔振垫、弹簧、隔振支座等隔振材料,这些材料具有较低的固有频率,即其自身的共振频率较高。
通过合理设计隔振系统的刚度和阻尼等参数,可以使得系统的共振频率远离外部振动频率,从而减小振动幅度。
在隔振中,常见的隔振材料有弹簧、橡胶隔振垫、隔振支座等。
《环境噪声控制工程》课程教学指导一、本课程的性质、目的本课程是环境工程专业学生的专业必修课程,其目的在于使学生了解并掌握环境声学的基础理论,噪声控制的基本原理及方法,掌握环境噪声测试的基本知识及技能,为从事环境噪声污染治理奠定必要的理论基础。
二、本课程的教学重点本课程的教学应着重立足于:1、掌握声学的基础知识。
声学的基础知识包括:声波的产生、描述声波的基本物理量、声波的基本类型、声波的叠加、声波的反射、透射和衍射等。
噪声污染控制所针对的三个环节:声源、传播途径和受主都和声波的特性密切相关。
只有在掌握声学基本知识的基础上,才能展开对噪声污染控制原理及技术的教学。
2、掌握环境噪声测试、监测及控制的基本方法。
包括环境噪声测量中常用的一些仪器设备和相关方法,各种噪声的监测方法,噪声控制的基本原则和基本程序以及实际工程中常用的几种控制方法.明确各种方法的特点和使用环境。
3、掌握环境噪声影响评价的工作程序和内容。
能运用各种方法,采用系统分析法从区域整体出发,进行环境噪声污染综合治理,并寻求解决问题的最佳方案。
此外,还应了解我国目前的环境噪声法规和环境噪声标准。
三、本课程教学中应注意的问题鉴于本课程的理论性与实际应用性联系甚密的特点及其内容体系的不断更新等特点,本课程的教学过程中应该注意:1、注重声学基础知识的掌握,在此基础上展开对环境噪声控制基本原理及方法的教学;2、除教材提供的教学内容外,适当介绍当前国内外的一些新技术;3、应多用教学案例与课程教学内容密切结合,增加学生的可接受性和兴趣。
四、本课程的教学目的通过本课程所有教学环节,应使学生:1、掌握声学的基础知识。
包括:声波的产生、描述声波的基本物理量、声波的基本类型、声波的叠加、声波的反射、透射和衍射等。
2、掌握环境噪声测试、监测及控制的基本方法。
包括环境噪声测量中常用的一些仪器设备和相关方法,各种噪声的监测方法,噪声控制的基本原则和基本程序以及实际工程中常用的几种控制方法.明确各种方法的特点和使用环境。
振动是造成工程结构损坏及寿命降低的原因,同时,振动将导致机器和仪器仪表的工作效率、工作质量和工作精度的降低。
控制振动的一个重要方法就是隔振。
从振动控制的角度研究隔振,不涉及结构强度的计算,它只是研究如何降低振动本身。
这里所介绍的隔振方法,就是将振源与基础或连接结构的近刚性连接改成弹性连接,以防止或减弱振动能量的传递,最终达到减振降噪的目的。
隔振的作用有两个方面:一是减少振源振动传至周围环境;二是减少环境振动对物体或设备的影响。
原理是在设备和底座之间安装适当的隔振器,组成隔振系统,以减少或隔离振动的传递。
有两类隔振,一是隔离机械设备通过支座传至地基的振动,以减少动力的传递,称为主动隔振;另一种是防止地基的振动通过支座传至需保护的精密设备或仪表仪器,以减小运动的传递,称为被动隔振。
在一般隔振设计中,常常用振动传递比T 和隔振率η来评价隔振效果。
主动隔振传递比等于物体传递到底座的振动与物体振动之比,被动隔振传递比等于底座传递到物体的振动与底座的振动之比,两个方向的传递比相等。
隔振效率: η=(1- T ) ·100%传递比T : ]u D )u -/[(1u D (1T 222222++=)式中D 为阻尼比,0f u f =为激振频率和共振频率的比。
只有传递比小于1才有隔振效果。
因此T<1的区域称为隔振区。
隔振可以分为两类,一类是对作为振动源的机械设备采取隔振措施,防止振动源产生的振动向外传播,称为积极隔振或主动隔振;另一类是对怕受振动干扰的设备采取隔振措施,以减弱或消除外来振动对这一设备带来的不利影响,称为消极隔振或被动隔振。
对于薄板类结构振动及其辐射噪声,如管道、机械外壳、车船体和飞机外壳等,在其结构表面涂贴阻尼材料也能达到明显的减振降噪效果,我们称这种振动控制方式为阻尼减振。
隔振,就是在振动源与地基、地基与需要防振的机器设备之间,安装具有一定弹性的装置,使得振动源与地基之间或设备与地基之间的近刚性连接成为弹性连接,以隔离或减少振动能量的传递,达到减振降噪的目的。
噪声学-复习整理环境噪声控制⼯程第⼀章:绪论⼀、环境噪声标准分为以下三种:1.城市区域环境噪声标准GB3096-93;2.⼯业企业⼚界标准GB12348-90;3.⼯业企业⼚区各类场所噪声限制(噪声卫⽣标准)GBJ87-85。
掌握1和2的功能区分类等,如下:第⼆章:声波的物理基础⼀、频谱频谱图:把某⼀信号中所包含的频率成分,按其幅值或相位作为频率的函数作出的分布图,称作该信号的频谱图。
分:1.离散谱:2.连续谱3.复合谱(见书11)⼆、频程把某⼀范围的频率划分成若⼲⼩的频率段,每⼀段以它的中⼼频率为代表,然后求出声信号在各频率段的中⼼频率上的幅值,作为⼀种频谱,将这样分出来的频率段叫频程。
在划分频程时,使每⼀个频率段的下限频率与上限频率的⽐值为确定的常数。
掌握概念:倍频程和1/3倍频程(见书11)三、声强级、声压级、声功率级定义声强级:⼀个声⾳的声强级L I是该声⾳的声强与基准声强之⽐的常⽤对数乘以10,以分贝计,即: 基准声强I0在空⽓中为10-12W/m2,它是1000Hz声⾳的可听阈声强。
声压级:某声压p与基准声压p0之⽐的常⽤对数乘以20称为该乘以的声压级,以分贝计,即: 基准声压p0在空⽓中为2×10-5Pa。
声功率级:某声功率W与基准声功率W0之⽐的常⽤对数乘以10称为该乘以的声功率级,以分贝计,即:基准声压p0在空⽓中为10-12W。
四、声压级的叠加(计算)有n个不同的噪声源互不相⼲,其中第i个噪声源在某测点处测得的声压级为Lpi,当n个噪声源同时发声,在该点处产⽣的总声压级为:注意:2个⼤⼩相等的噪声叠加后,总声压级⽐原来单独时⾼3(dB)五、声波的反射和透射反射系数r p:反射声压幅值与⼊射声压幅值之⽐。
r p⼤,则吸声差,r值⼩的材料称为吸声材料。
声压透射系数t p:透射声压幅值与⼊射声压幅值之⽐。
t p⼤,则隔声差,t p值⼩的材料称为隔声材料。
六、声传播中的距离衰减(计算)点源:计算从距离r1传播到距离r2时,声强级或声压级衰减量△L,则有:连续线声源:当传播距离从r0⾄r2时,声压级或声强级的衰减量为:第三章:噪声基本评价量⼀、响度级以1KHz纯⾳为基准声⾳,任何声⾳如果听起来和某个1KHz纯⾳⼀样响,那么这个1KHz纯⾳声压级的分贝值就是该声⾳的响度级,单位phon。
机械设计中的减振与隔振技术机械设计中的减振与隔振技术在现代工程领域中具有重要的应用价值。
减振与隔振技术的目的是降低机械设备在工作过程中的振动,提高设备的稳定性和可靠性,减少设备出现故障和损坏的风险。
本文将介绍减振与隔振技术的原理、应用以及在机械设计中的重要性。
一、减振技术的原理和应用减振技术主要通过改变机械系统的结构和参数,以降低系统的共振频率和减小振幅,从而降低震动噪声和振动带来的不良影响。
常用的减振技术包括引入阻尼材料、采用减振器和改变机械系统的自然频率等方法。
1.1 引入阻尼材料引入阻尼材料是减振技术中常用的一种方法。
通过在机械系统的关键位置引入具有强大阻尼效果的材料,可以有效地吸收振动能量,减小振动幅值。
常见的阻尼材料包括橡胶、聚合物和金属材料等。
1.2 采用减振器减振器是减振技术中的一种常见设备。
减振器可以根据振动源的特性进行设计,通过改变其自身的振动特性,将振动能量转化为其他形式的能量损耗,从而降低振动幅值。
常见的减振器包括液压减振器、弹簧减振器和压电减振器等。
1.3 改变机械系统的自然频率改变机械系统的自然频率是减振技术中的一种有效方法。
通过改变机械系统的结构参数,如质量、刚度和阻尼等,可以改变机械系统的自然频率,从而改变振动的特性。
常见的方法包括增加或减小质量、调整结构的刚度和采用合适的阻尼措施等。
二、隔振技术的原理和应用隔振技术主要通过隔离振动源和被隔振系统之间的传递路径,减少振动的传递和扩散,以达到减低振动幅值的目的。
常用的隔振技术包括弹簧隔振、吸振材料隔振和惰性质量隔振等方法。
2.1 弹簧隔振弹簧隔振是一种常见的隔振技术。
通过在振动源和被隔振系统之间加入弹簧,可以减少振动的传递路径,从而实现隔振效果。
弹簧隔振器常应用于精密仪器、机械设备和汽车等领域。
2.2 吸振材料隔振吸振材料隔振是一种常用的隔振技术。
吸振材料可以吸收振动能量,减小振动的传递和扩散。
常见的吸振材料包括橡胶、泡沫塑料和聚合物等。