预应力大跨刚结构的空间
- 格式:pptx
- 大小:1.58 MB
- 文档页数:14
大跨度预应力张弦桁架结构设计与施工要点分析现如今,钢结构已经在建筑领域得到了广泛推广和应用,通过预应力技术,能够有效改善大跨度空间结构刚度,是一种新型的建设体系。
对此,本文首先对预应力大跨度空间钢结构进行了介绍,然后以大道速滑馆为研究对象,对大跨度预应力张弦桁架结构设计施工要点进行了详细探究,以期为类似工程提供借鉴。
标签:大跨度;张弦桁架结构;施工1、引言鋼结构自身稳定性较高,因此在建筑行业中,钢结构的使用十分普遍,钢结构未来的发展也会被人们所重视。
预应力大跨度空间钢结构的运用功能在房屋建设当中具有不可或缺的地位,因此对预应力大跨度空间钢结构施工要点进行详细探究具有十分重要的现实意义。
2、预应力大跨度空间钢结构概述现如今,在大型建筑工程施工中,预应力大跨度空间钢结构十分常见,具有承重性能强、刚度性能好、延伸性好、施工便捷等应用优势。
在以往大型建筑工程施工中,一般采用混凝土结构模式,但是,由于混凝土的结构模式采用单向板结构,因此,混凝土结构会随着空间的跨度增加而使楼板的厚度随之增加,而在工程计划中,所使用的钢筋数量无法满足厚度增加所带来的重量。
因此,在大型建筑工程施工中,可以应用预应力大跨度空间钢结构,这样不仅能够提高施工质量,而且还能够保证施工进度。
3、工程概况大道速滑馆钢主体结构形式为张弦桁架结构形式,张弦桁架与横向联系桁架组成屋盖钢结构系统。
建筑长度约为189.8m、宽度约为109.4m,高度最高为40.28m,最低为25.980m。
屋盖钢结构主要受力结构为张弦桁架通过支座落在混凝土柱顶上,桁架结构为倒置三角形桁架,张弦桁架最大跨度89.4m。
桁架节点一般采用相贯焊接节点、张弦桁架采用预应力索连接节形式。
根据钢结构设计图纸,山墙钢架由弦杆、横杆、撑杆及腹杆构成,钢材截面规格均为矩形管。
钢架与混凝土柱中预埋件焊接形式连接。
4、大跨度预应力张弦桁架结构设计与施工4.1钢结构吊装张弦桁架吊装方法:主桁架在场外指定区域地面胎架分成三段拼装,拼装好后搭设支撑架将三段桁架合拢成一整榀桁架,穿索张拉至50%,320吨履带吊(主臂工况)双机抬吊挪位安装。
大跨度预应力圆形屋顶空间钢结构施工工法一、前言大跨度预应力圆形屋顶空间钢结构施工工法是一种独特的空间结构施工技术,该技术的应用范围广泛,并且具有显著的优势。
本文将对该工法进行详细介绍,以便读者了解其特点、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面的内容。
二、工法特点大跨度预应力圆形屋顶空间钢结构施工工法具有以下特点:1.高自重:该工法的自重重量很大,能够提高结构的稳定性。
2.施工效率高:该工法施工效率较高,可以大大缩短工期。
3.施工简便:施工过程中,不需要使用大型设备进行拆卸或组装,因此施工较为简便。
4.适应多种环境:该工法适应多种环境,不受气候、地貌等条件影响。
三、适应范围大跨度预应力圆形屋顶空间钢结构施工工法适用于各种场合,如会议场馆、展览馆、体育馆、机场候机楼等。
该工法的优点在于其空间利用率高、施工效率快、施工简便、可适应多种环境等。
四、工艺原理大跨度预应力圆形屋顶空间钢结构施工工法的理论依据是在工程中对施工工法与实际工程之间的联系进行规划和调整,采取优化的技术措施来提高施工质量和效率。
采取的技术措施主要有以下几点:1. 施工过程中的预应力控制。
2. 确保施工过程中的钢材质量满足设计要求。
3. 设计合理的施工工艺。
通过以上技术措施,大跨度预应力圆形屋顶空间钢结构施工工法的理论依据得以确立,能够帮助提高施工质量和效率,达到预期效果。
五、施工工艺施工过程中,大跨度预应力圆形屋顶空间钢结构施工工法主要分为以下几个阶段:1. 制造工艺:按照工程要求制作,铺设预应力钢筋。
2. 组装工艺:采用模块化技术进行组装。
3. 竖直环向拉杆预应力:通过预应力拉杆实现竖直方向的预应力。
4. 环向拉杆预应力:通过预应力拉杆实现环向方向的预应力。
5. 吊装、拼接和调整:对各个模块进行吊装、拼接和调整,确保结构稳定。
6. 进行灌浆。
以上工艺的细节,都需要根据实际情况进行调整、完善。
阐述大跨度预应力钢筋混凝土空腹网架施工现代火车站通常要求有大空间的候车大厅,为了降低进站天桥的高度,满足功能需求,建筑的层高不宜高,而空调等设备管线占去较大的空间,留给结构的高度受到很大的限制,采用实腹式井字梁结构往往不容易满足建筑的需求而不得不采用空腹式结构。
混凝土空腹网架将大型空调管等放入空腹内,可最大限度地满足建筑的功能需求。
空腹式结构主要有钢筋砼空腹网架结构和钢网架结构,两者各有优缺点,其中钢筋砼空腹网架结构在结构整体刚度、耐久性、防火性、防腐蚀性方面有明显的优势。
1 空腹网架的特点1.1 大跨度、大荷载、高空间1.2 钢筋混凝土空腹网架比钢结构网架整体刚度要好,结构整体协同受力性能更优。
1.3 钢筋混凝土空腹网架耐久性、防火性均比钢结构有明显的优势。
1.4 钢筋混凝土空腹网架可将各种大型的设备、管、线等均置于网架内部,各种管线的位置及固定更为方便、灵活,且管线布置整齐、美观,最大限度的满足建筑的功能需求。
图1 网架架立面图1.5 钢筋混凝土空腹网架较普通实腹式井字梁结构减少了构件的截面尺寸,大大的减少钢筋、混凝土的用量,节约施工成本。
2 空腹网架施工工艺原理2.1 根据大跨度、重荷载的结构特点,通过计算确定网架空腹梁的起拱值,采用梁下模板预起拱方法起拱,密切检测施工各阶段拱值变化并及时修正及调整。
2.2 根据设计施工图纸,钢筋混凝土施工技术、预应力钢筋混凝土施工技术及施工现场条件等要求进行综合优化,确定施工顺序及关键部位的交叉节点的作业办法。
2.3 合理安排钢筋绑扎、模板支设、混凝土浇筑的施工顺序。
采取小模型样板工序、绘制三维控制节点、现场预控定位等方法措施确保工程施工质量。
2.4 针对节点部位钢筋分布密集且小空间的特点,制定针对性的钢筋绑扎和混凝土浇筑质量技术控制措施。
3 施工工艺及操作要点3.1 施工工艺流程场地夯实碾压平整→弹线定位→搭设碗扣架支撑体系→安装下弦杆底模→支架预压→安装下弦杆钢筋同时预应力预埋→安装竖杆钢筋→安装斜腹杆钢筋→安装下弦杆侧模→浇筑下弦杆混凝土→安装网架洞口模→安装上弦杆钢筋→安装上弦杆侧模、顶板模板→安装顶板钢筋→浇筑网架竖杆、腹杆、上弦杆、顶板混凝土→网架、顶板混凝土强度达到100%后拆模→预应力张拉、灌浆、固定。
浅谈大跨度空间钢结构施工摘要:文章详细介绍了大跨度空间钢结构的施工技术,通过对大跨度空间钢结构类型及其施工特征进行介绍,结合钢结构的主要施工方法类别,对钢结构施工技术中的关键工序进行重点分析、归纳与总结,包括吊装、滑移、拼装、焊接等工序,仅供相关工作人员参考。
关键词:大跨度空间钢结构;施工技术;滑移;拼装当前,随着经济及科技的不断发展,我国建筑行业也随之不断发展,加上借鉴国外先进技术及经验、理念等,越来越多的新型建筑出现,尤其是大型公共建筑,包括机场建筑、体育馆等都采用大跨度空间钢结构作为建筑物的屋盖结构体系。
现就大跨度空间钢结构及其具体施工技术进行分析。
1大跨度空间钢结构类型大跨度空间钢结构建筑是指横向跨越30m以上空间的各类结构形式的建筑,其结构形式多种多样,当前世界上使用大跨度空间钢结构的各大建筑中,最典型的代表即奥运建筑,大跨度空间结构技术对多种多样、形式丰富的奥运建筑起着推动作用。
其中,奥运历史上著名的罗马体育馆主要采用装配现浇式钢筋混凝土薄壳结构,而巴塞罗那圣乔地体育馆采用了网壳结构。
其中,大跨度钢结构的类别主要如下所述:1.1网架结构网架结构主要指的是由多根杆件按照一定的网格形式通过节点连结而成的空间结构。
网架结构具有工业化程度高、自重轻、稳定性好、外形美观的特点。
1.2网壳结构网壳结构与空间杆系结构较为相似,平板网架型的空间杆结构是通过杆件根据规律而组成网格,并结合壳体结构布置成一定的空间架构,因此,它不仅具备杆系的性质,而且同时具备壳体的性质。
网壳结构主要通过壳内两个方向的拉力、压力或剪力进行逐点传力。
例如: 1967年建成的郑州体育馆,采用肋环形穹顶网壳,其平面直径64 m,矢高9.14m,此为国内跨度最大的单层球面网。
又如1988年建成的北京体院体育馆,主要采用带斜撑的四块组合型双层扭网壳,其平面尺寸为59.2m2,矢高3.5m,挑檐3.5m,此为我国跨度最大的四块组合型扭网壳。
大跨预应力钢管桁架滑移施工技术摘要:江苏新海电厂煤棚封闭工程跨度126.5米,高度44.5米,采用预应力拉索技术保证大跨度空间结构的稳定性。
施工中针对作业面狭小采用一侧拼装,结构累积滑移的施工工艺。
对本工程的工程概况和主要滑移施工技术进行介绍,针对本工程跨度大,周围施工环境复杂,分析了滑移施工的难点及遇到的问题,并提出相应的对策。
关键词:大跨度,预应力,钢管桁架,结构累积滑移1.工程概况本工程煤棚结构采用门式拱形管桁架结构,立柱为四边形立体桁架,横梁为预应力立体管桁架梁,横梁断面主要为“三角形”。
煤棚结构外形长度390m,在12~13轴设置伸缩缝,将煤棚总长度分为205m和183m。
煤场现有2台门式堆取料机和2条矿料传输皮带,西侧有转运站、通长栈桥,且栈桥与桁架结构最近距离约为1.0m,施工场地条件极其复杂。
施工场地煤堆量大,场地狭小,施工期间电厂要求不能影响正常生产。
从而确定了屋盖结构地面分段拼装,高空吊装,累积滑移的施工方案。
1.滑移施工难点准备工作量大,周期长。
为满足滑移的需要必须铺设临时支撑设施和高空轨道,构思设计材料的制作施工都需要紧密配合。
实施难度较大,四条轨道对滑移过程中各顶推点的同步性要求较高。
1.滑移施工方案管桁架安装选用“分区积累滑移”的安装方案。
管桁架拼接安装支架设置在20轴~21轴位置。
滑移流程:(1)在A轴和B轴铺设2条通长的滑道,单条滑道长度为302.5m,用专用轨道压板将其安装固定在滑移梁上;由于本工程预应力索采用支架悬挑安装预应力索,主管桁架拼装完成,需向前滑移15m才能悬挑安装预应力索,需要在中间支撑架顶部位置安装两条临时保护滑移轨道,滑移轨道长度为20米;(2)利用临时支撑在高空拼装好“滑移单元一的主桁架(即2轴、3轴的主桁架)后,同时安装两榀桁架之间的次桁架等,使之形成整体;(3)当拼装单元安装完成后,在20轴位置安装2轴预应力索及附件。
(3)2轴预应力索及配件安装成后在2轴桁架支座处安装液压同步顶推器并进行调试;(4)调试结束后,按照设计顶推力逐级加载,直至滑移单元一开始滑动;(5)检查结构主体及滑移临时措施是否有异常情况,确认无异常情况后,继续滑移;(7)利用顶推滑移系统将滑移单元一整体顶推滑移15m后,暂停滑移;安装3轴线预应力索。
大跨度空间钢结构施工技术与质量控制摘要:大跨度钢结构是当前比较适合工程发展新形势的技术体系,其包含的类型丰富、特点突出。
具体施工过程中,施工单位需要规范该技术并加强工程质量控制,全面提高工程作业的综合水平。
本文结合工程实例,分析了高空原位单元安装技术、滑移施工技术、高空散装技术和整体提升安装技术等多个施工技术及其在应用期间的质量控制举措,以供参考。
关键词:大跨度空间;钢结构;施工技术前言:最近几年来,随着人们生活水平的不断提升,对建筑质量及应用效果提出了非常严格的要求,而作为建筑施工中应用形式多样、观赏性较强,且经济性较好的大跨度空间钢结构施工技术,受到了建筑领域的高度青睐。
目前,我国建筑工程建设活动中,大跨度空间结构在机场建筑和各大会展中心等一些屋盖结构中得到了广泛的普及。
1工程概况1.1工程简述本工程位于深圳市光明新区公常路以北,康弘路以东,羌下二路以西。
其中图书馆为一栋10层结构,地上9层加屋面檐口层共10层,建筑高度93.30m,总建筑面积6.8万㎡。
1.2钢结构简述图书馆屋面穹顶钢结构位于图书馆檐口层上部,整个穹顶钢结构底标高+63.900m(檐口层顶标高),结构顶标高+93.30m,穹顶钢结构总高度为29.4m。
钢结构体系由倒三角方管桁架、平面方管桁架、桁架之间方管连系梁、方管梁及H型梁顶盖组成。
倒三角方管桁架最大跨度约64米,平面方管桁架最大跨度57.1米,桁架内空跨度约46米,整个穹顶钢结构总用钢量约480吨。
2大跨度空间钢结构的施工与安装过去建筑大跨度空间钢结构施工安装中,操作人员一般仅注重结构应用期间受力情况,往往对施工期间受力问题有所忽视,这样一来,它增加了施工质量问题的概率,从而埋下了建筑的质量和安全隐患。
对于建筑工程大型构件吊装过程中涉及的模拟模拟,需要模拟钢结构各环节的受力情况,尤其是结构安装过程中容易变形的部位。
此外,还需要对建筑结构的拼接、卸载过程等内容进行建模。
大跨度钢结构预压、卸载方法的探讨发布时间:2021-03-11T15:39:39.407Z 来源:《建筑实践》2020年32期作者:沈源王宇安巨若冰冯瑞王静[导读] 近些年来,我国的大型工程建设力度不断在加强,沈源王宇安巨若冰冯瑞王静中国建筑第八工程局有限公司西北分公司陕西西安 710000摘要:近些年来,我国的大型工程建设力度不断在加强,工程建设的技术也在不断革新和完善,工程的安全质量有了显著提高,但是在大跨度钢结构预压和卸载方式上还存在一定的问题,影响工程质量安全的因素仍然存在。
因此,大跨度钢结构预压和卸载方式在工程建设过程中的应用和控制应当加以重视。
鉴于此,文章重点针对大跨度钢结构预压、卸载方法进行了分析,以供借鉴。
关键词:大跨度钢结构;预压;卸载方法1导言钢结构自身具备了较强的稳定性,对于建筑的运用过程不但十分便利,还尤为快捷,所以在相应的建筑行业当中,钢结构的使用十分普遍,钢结构未来的发展也会被人们所重视。
当前,钢结构的应用已经变成社会目前在建设发展当中的有效技术,大跨度空间钢结构预和卸载方法的运用功能在目前桥梁施工乃至房屋建设当中具有不可或缺的地位,从而加快了我国社会的进步。
2大跨度空间钢结构施工技术的特点第一,大跨度空间钢结构施工技术作为我国大型工程的主要施工技术,在我国大型工程建设中越来越发挥着不可替代的作用,因此其有着其自身独有的特点,其中主要的特点之一就是结合预应力技术。
结合预应力技术能够将钢结构的受力情况改变,从而使得钢结构的内力状态得到平衡,使得钢结构的用钢量得到改变,并且能够增加钢结构的结构刚度和材料强度。
除此之外,通过结合预应力技术,能够将钢结构的抗拉性能进行提升,从而使得钢结构有更好的抗弯能力和抗负载能力,这对于提高工程的质量来说是非常重要的。
因此,结合预应力技术是大跨度空间钢结构施工技术的一个主要特点;第二,构建精确度较高,焊接施工技术工作量较大,难度高。
大跨度空间钢结构施工技术的另一个特点就是构建精确度较高,焊接施工技术工作量较大,难度高。
大跨度钢结构施工要点分析摘要:现阶段,我国的建筑需要和建筑理念都在更新,出现了许多新型的复杂建筑,许多大型的公共建筑如机场建筑、体育场馆、会展中心等采用大跨度、复杂空间钢结构作为屋盖的结构体系。
现代预应力技术和新型材料的引入丰富了结构空间体形,这些大跨度钢结构建筑造型美观、经济实用、环保节能,是现代建筑的优秀作品。
但因为结构体系的和施工难度的复杂性,该技术的发展遇到极大的挑战,本文对大跨度空间钢结构的施工技术进行分析,寻求最优的建筑技术和施工模式。
关键词:大跨度空间钢结构;施工特点;施工技术引言大跨度钢结构的建筑应用发展迅速,功能的多样化和美学要求引发施工技术的变革,新材料的开发应用、施工设计的创新、施工工艺中新技术的使用、计算机结构动态的控制等,为大跨度钢结构的推广提供了保障,大跨度空间钢结构建筑向高科技领域、机械化迈进。
1.大跨度空间钢结构施工技术的特点1.1现代预应力技术的应用效果明显现代技术和工程实践表明,对工程构件施加预应力可以提高钢材的强度。
预应力技术在索穹顶及张拉结构的使用中效果明显,同时对结构的抗震性有明显的增强,增加构件的耐久性,增加使用寿命。
1.2钢板的厚度和等级要求高大跨度空间钢结构的大跨度和悬臂较大的荷载要求钢材具备足够的强度。
传统建筑中梁体和柱体的应用可以减少同一构件的承受荷载。
大跨度空间钢结构的设计概念是减少梁柱的支撑,利用悬臂承受荷载的同时克服剪力,这就对钢材的强度和刚度提出较高的要求。
2.钢结构新技术2.1 高层钢结构新技术由于高层建筑的性质,在设计结构时,必须严格按照建筑物的高度和设计选择框架、支架等构件。
在高层钢结构新技术中,结构构件采用硬质钢筋混凝土和钢管混凝土。
刚性钢筋混凝土构件不仅刚度高,而且解决了传统钢结构防火性能差的问题,防火性能大大提高。
高层钢结构新技术适用于下部结构或高层建筑。
2.2 空间钢结构技术空间钢结构以钢管为构件节点、网格、网壳、多层变截面网格等。
大跨度预应力圆形屋顶空间钢结构施工工法一、前言随着科学技术的不断发展和进步,预应力圆形屋顶空间钢结构已经成为一种新兴的建筑结构,极大地推动了建筑结构行业的发展。
该工法具有质量优良、施工周期短、使用寿命长等特点,广泛应用于大型商业、体育、娱乐、文化、住宅等建筑领域。
本文将对大跨度预应力圆形屋顶空间钢结构施工工法进行详细介绍。
二、工法特点大跨度预应力圆形屋顶空间钢结构的主要特点包括:强度高、刚度好、可抵御自然灾害、增加室内自由度、可实现建筑集中控制等。
三、适应范围大跨度预应力圆形屋顶空间钢结构适用于建筑跨度大、空间高度相对较大、建筑功能要求高、建筑承重要求高等场所,如大型综合体、体育场馆、歌舞剧场等。
四、工艺原理预应力圆形屋顶空间钢结构的施工工法主要依据结构力学原理和预应力原理而设计。
在施工过程中,施工人员需要对每个节点进行处理,将预应力的力向钢板上施加,从而达到对圆形屋顶的预应力处理。
此外,钢板焊接和整体加工过程中,还需要应用数值模拟程序,以完善实际的施工方案。
五、施工工艺1.准备工作:包括建设现场、测量、预制构件、材料码放、安全防护等。
2.搭设脚手架及架设吊篮:为了使工人在施工过程中更加安全、方便,同时保证工作效率达到最优,我们必须在施工前进行脚手架的搭设和吊篮的架设等工作。
3.焊接构件:该阶段的施工包括钢板的裁切、封边、焊接等操作,完成预制构件的制作。
4.吊装预制构件:逐步将焊接好的构件按照施工图要求进行吊装、安装,其间还需涉及多种吊装工具,如吊钩、起重机、吊车等机具设备。
5.安装预制构件:施工人员按照预制构件的位置和顺序依次进行安装。
6.预应力处理:通过对预制构件的预应力加工,使得圆形屋顶空间钢结构的整体强度和稳定性得到提高。
7.钢板加工:施工人员对钢板进行尺寸和形成的处理,以实现圆形屋顶钢结构的拆装。
8.水平固定:采用整体加工的方法,以确保圆形屋顶的水平性和垂直性。
9.验收与交付:对圆形屋顶结构的整体性能进行综合评价,以实现施工、验收和交付的全过程管理。
大跨空间结构新体系概论1.张拉整体结构张拉整体结构(tensegrity system)的概念最早是由美国著名建筑师富勒在20世纪40年代提出的。
所谓张拉整体体系就是一组不连续的压杆与一组连续的受拉单元组成的自支撑、自应力的空间平衡体系。
这种结构体系的刚度由受拉索和受压单元之间的平衡预应力提供,在施加预应力之前,结构几乎没有刚度,并且初始预应力的值对结构的外形和结构刚度的大小起着决定作用。
富勒认为宇宙的运动是按照张拉整体的原理运行的,万有引力是一种平衡的张力网,而各个星球是这个网中互相独立的受压体。
自然界中总是趋于有孤立的压杆所支撑的连续的张力状态,大自然符合“间断压连续拉”的规律,我们一定能制造出基于这个原理的结构模型。
在张拉整体结构体系的发展中,多面体几何构成了张拉整体几何研究的基础,结构拓扑的研究完善了张拉整体体系的形态学内容,特别是过去的十多年中,力学方法得到了长足的发展,逐步建立起了模型制作的理论框架。
由于张拉整体体系固有的符合自然规矩的特点,最大限度的利用了材料和截面的特性,因为可以用尽量少的钢材建造超大跨度的空间。
张拉整体体系的刚度是受拉索与受压单元之间自应力平衡的结果而与外界作用无关。
张拉整体体系从最初的设想到工程实践,大约经过了以下几个阶段:想象和几何学、拓扑和图形理论、力学分析及试验研究,其中力学分析包括找形(form-finding)、自应力准则、工作机理和外力作用下的性能等。
在张拉整体几何学方面做出重要贡献的是富勒和艾默里奇。
因为主要从形态学的角度出发,所以这些几何学上的工作多以多面体几何为基础。
富勒构思了一种由三角形网格的索网组成的张拉整体穹顶(tensegrity dome),于1962年申请了专利,这也是有关张拉整体结构的第一个专利。
在这项专利中,富勒详尽的描述了他的结构思想,即:在结构中尽可能减少受压状态,因为受压存在屈曲现象,张拉整体使结构处于连续的张拉状态。
1963年,在艾默里奇在他的专利中给出了张拉整体的另一个定义:张拉整体结构由压杆和索组成,其组成方式使压杆在连续的索中处于孤立状态,所有压杆都必须严格地分开同时靠索的预应力连接起来,结构整体不需要外部的支撑和锚固,像一个自支承结构一样稳定。
北京工业大学体育馆创造了世界建筑史上的一个纪录——世界上跨度最大的预应力弦支穹顶结构,最大跨度达93米。
随着北京奥运会羽毛球、艺术体操比赛陆续在这里举行,将会有更多的人关注这座建筑的独特魅力。
怀着对这座建筑特殊钢结构的探究心情,我们走进了这座建筑,访问了负责该项目预应力弦支穹顶结构施工技术的北京市建筑工程研究院副总工秦杰博士。
北京工业大学体育馆建筑总面积24383平方米,屋盖最大跨度93米,矢高9.3米,其结构形式为下部钢筋混凝土框架结构,上部采用新型空间结构体系——弦支穹顶结构。
如果用单层网壳支撑如此大的跨度,势必要增大构件的截面尺寸,进而会导致建筑整体结构笨重,用钢量增大。
目前采用的弦支穹顶结构上部是一个球冠顶面的单层网壳,下部是径向高强度钢拉杆和环向高强度钢索,借助垂直的竖向撑杆支撑网壳。
这种新型结构形式,结构新颖,构思巧妙,受力合理。
也正是弦支穹顶结构这种“刚柔并济、柔中带刚”的特性,才使得体育馆呈现出一种轻盈飘逸的形态,使人们自然联想到羽毛球、艺术体操的项目所表达的清灵飘逸。
仿真计算与施工监测确保安全施工和结构质量虽然体育馆已经竣工,但秦杰依然保留着他们最初制作的弦支穹顶结构模型,因为这个工程项目的施工确实让他们呕心沥血。
他谈到,大跨度预应力钢结构是由高强度、抗腐蚀、抗疲劳钢索与各种形式的空间钢结构组合而成的一种新型结构形式。
对于直径93米的世界最大跨度弦支穹顶结构,其最外圈环向索预应力张拉值达到250吨,钢结构施工的难度实属世界罕见,其中预应力拉索施工是这个工程的最大特色和难点。
由于北京工业大学体育馆工程的特殊性,在施工前工程师们必须进行大量的深化设计和仿真计算等准备工作。
在施加预应力完成前结构尚未成形,弦支穹顶的结构整体钢度较差,因此必须应用有限元计算理论,使用有限元计算软件ANSYS进行弦支穹顶结构的施工仿真计算,并采用APDL语言编写仿真计算程序,以期能很好地模拟该结构形式的施工过程,保证结构施工过程及结构使用期的安全性。
大跨度空间预应力钢结构讲义一、引言在现代建筑领域中,大跨度空间结构的应用越来越广泛。
其中,大跨度空间预应力钢结构以其独特的优势,成为了众多大型建筑的首选结构形式。
为了让大家更好地了解和掌握这一结构形式,本讲义将对其进行详细的介绍和分析。
二、大跨度空间预应力钢结构的概念与特点(一)概念大跨度空间预应力钢结构是指通过对钢结构构件施加预应力,从而提高结构的承载能力、刚度和稳定性,实现大跨度空间覆盖的一种结构形式。
(二)特点1、跨越能力强能够实现较大的跨度,满足大型公共建筑如体育场馆、展览馆等对空间的需求。
2、结构轻盈通过合理的设计和预应力的施加,减少了结构的自重,使得建筑更加轻盈美观。
3、经济性好相比传统结构形式,在满足相同功能要求的前提下,能够降低材料用量和工程造价。
4、施工便捷采用预制构件和现场拼装的方式,缩短了施工周期。
三、大跨度空间预应力钢结构的组成与分类(一)组成1、钢结构构件包括钢梁、钢柱、钢桁架等,是承受荷载的主要部件。
2、预应力索通常采用高强度钢绞线或钢丝束,通过施加预应力来改善结构的性能。
3、节点连接钢结构构件和预应力索的关键部位,其设计和施工质量直接影响结构的整体性能。
(二)分类1、张弦结构由上弦刚性构件、下弦柔性索和中间撑杆组成,通过对下弦索施加预应力来提高结构的承载能力。
2、弦支穹顶结构将穹顶结构与预应力索相结合,形成一种高效的空间结构体系。
3、吊挂结构通过吊挂在上部结构上的构件来承受荷载,预应力索用于调整结构的内力分布。
四、大跨度空间预应力钢结构的设计原理(一)力学分析需要考虑结构在各种荷载作用下的内力、变形和稳定性,采用有限元分析等方法进行精确计算。
(二)预应力的施加与控制根据结构的受力特点和设计要求,确定预应力的大小、分布和施加方式,并通过监测和调整来保证预应力的有效性。
(三)结构优化设计在满足结构性能要求的前提下,通过优化构件的尺寸、形状和布置,实现材料的合理利用和经济性最优。