几何光学浅讲义
- 格式:pdf
- 大小:1.58 MB
- 文档页数:32
几何光学实验讲义1.薄透镜焦距测量实验目的1.掌握薄透镜焦距的常用测定方法,研究透镜成像的规律。
2.理解明视距离与目镜放大倍数定义;3.掌握测微目镜的使用。
实验仪器1.LED白光点光源〔需加毛玻璃扩展光源〕2.毛玻璃3.品字形物屏4.待测凸透镜〔Φ = ,f = 150,200mm〕5.平面反射镜6.JX8测微目镜〔15X,带分划板〕7.像屏2个〔有标尺和无标尺〕8.干板架2个9.卷尺10.光学支撑件〔支杆、调节支座、磁力表座、光学平台〕基础知识1.光学系统的共轴调节在开展光学实验时,要先熟悉各光学元件的调节,然后按照同轴等高的光学系统调节原则进行粗调和细调,直到各光学元件的光轴共轴,并与光学平台平行为止。
1、粗调:将目标物、凸透镜、凹透镜、平面镜、像屏等光学元件放在光具座〔或光学平台〕上,使它们尽量靠拢,用眼睛观察,进行粗调〔升降调节、水平位移调节〕,使各元件的中心大致在与导轨〔平台〕平行的同一直线上,并垂直于光具座导轨〔平台〕。
2、细调:利用透镜二次成像法来判断是否共轴,并进一步调至共轴。
当物屏与像屏距离大于4f时,沿光轴移动凸透镜,将会成两次大小不同的实像。
假设两个像的中心重合,表示已经共轴;假设不重合,以小像的中心位置为参考〔可作一记号〕,调节透镜〔或物,一般调透镜〕的高低或水平位移,使大像中心与小像的中心完全重合,调节技巧为大像追小像,如下列图所示。
图1-1 二次成像法中物与透镜位置变化对成像的影响图1-1(a〕说明透镜位置偏低〔或物偏高〕,这时应将透镜升高〔或把物降低〕。
而在图(b〕情况,应将透镜降低〔或将物升高〕。
水平调节类似于上述情形。
当有两个透镜需要调整〔如测凹透镜焦距〕时,必须逐个进行上述调整,即先将一个透镜〔凸〕调好,记住像中心在屏上的位置,然后加上另一透镜〔凹〕,再次观察成像的情况,对后一个透镜的位置上下、左右的调整,直至像中心仍旧保持在第一次成像时的中心位置上。
注意,已调至同轴等高状态的透镜在后续的调整、测量中绝对不允许再变动2.薄透镜成像公式透镜分为会聚透镜和发散透镜两类,当透镜厚度与焦距相比甚小时,这种透镜称为薄透镜.值得注意的是,假设透镜太厚,光在透镜中的传播路径便无法忽略,光在透镜里的传播路径就必须做进一步的考虑。
专题十五 几何光学【扩展知识】一、光的独立传播规律当光线从不同方向通过透明媒质中一点时互不影响,不改变频率仍按原方向传播的规律。
二、折射率1.相对折射率:光从1媒质进入2媒质。
2.绝对折射率:任何媒质相对于真空的折射率。
三、发生全反射的临界角:n n n c 1arcsin arcsin12== 四、成像公式若u 为物距,v 为像距,而f 为焦距,则有: 放大率:物长像长==u vm (线放大率) 2⎪⎭⎫ ⎝⎛=u v k (面放大率) 说明:(1)上述公式适用范围:面镜,薄透镜。
(2)适用条件:近轴光线;镜的两侧光学媒质相同。
(3)符号规定:“实正、虚负”的原则。
五、球面镜的焦距可以证明,球面镜的焦距f 等于球面半径R 的一半。
且凹透镜的焦距为正值,凸透镜的焦距为负值。
六、光具组成像七、透镜成像的作图法1.利用三条特殊光线2.利用副光轴【典型例题】例题1:(第一届全国物理竞赛题)如图所示,凸透镜L 的主轴与x 轴重合,光心O 就是坐标原点,凸透镜的焦距为10cm 。
有一平面镜M 放在y =-2cm 、x >0的位置,眼睛从平面镜反射的光中看到发光点A的像位于A2处,A2的坐标见图。
(1)求出此发光点A的位置。
(2)写出用作图法确定A的位置的步骤并作图。
例题2:(第六届全国物理竞赛题)在焦距为f的会聚薄透镜L的主光轴上放置一发光圆锥面,如图所示。
圆锥的中心轴线与主光轴重合,锥的顶点位于焦点F,锥高等于2f,锥的母线与其中心轴线的夹角等于α,求圆锥面的像。
例题3:(第九届全国物理竞赛决赛题)在很高的圆柱形容器的上口平放一个焦距为90mm 凸透镜,在透镜下方中轴线上距透镜100mm处平放一个圆面形光源,如图所示。
(1)光源产生一个半径为45mm的实像,求此实像的位置。
(2)若往容器中注水,水面高于光源10mm,求此时像的位置。
(3)继续注水,注满容器但又恰好不碰上透镜,求此时像的大小。
例题4:(第十一届全国物理竞赛题)照相机镜头L前2.28m处的物体被清晰地成像在镜头后面12.0cm处的照相胶片P上,两面平行的玻璃平板插入镜头与胶片之间,与光轴垂直,位置如图所示。
1应用光学与设计第一章几何光学基本原理1-1 光波和光线1. . 光的本质电磁波(10nm~1mm )核心区域可见光380nm~780nm 2应用光学与设计第一章几何光学基本原理1-1 光波和光线可见光单色光复色光766.50706.52656.28589.29587.57486.13435.83434.05546.07404.66单位: nm 750700650600550500450400620590570475495450红橙黄绿青蓝紫颜色分界线典型谱线A ’b C Dd e F g G ’h 及波长可见光色谱带及典型谱线C ’643.9备注: 颜色的分界线有不同定义, 也与照度有关.3应用光学与设计第一章几何光学基本原理1-1 光波和光线2.波动光学的简单回顾真空中光速82.99810m sc =×介质中光速cn=v 光波在不同介质中传播,频率不变。
ν频率与波长和光速的关系cνλ=波面、波前与波线*4应用光学与设计第一章几何光学基本原理1-1 光波和光线3. 从波动光学到几何光学波线→光线λ→光线表示光波的传播方向, 在各向同性、均匀的介质中, 光线总垂直于波面. (马吕斯定律)*5应用光学与设计第一章几何光学基本原理1-1 光波和光线波面和光束的类型球面波同心光束S会聚光束S发散光束平面波平行光束6应用光学与设计第一章几何光学基本原理1-1 光波和光线非球面波像散光束7应用光学与设计第一章几何光学基本原理1-2 几何光学基本定律1.直线传播定律光在均匀透明的介质中按直线传播.2.反射定律折射定律光在两种均匀介质分界面上的规律.8应用光学与设计第一章几何光学基本原理1-2 几何光学基本定律I I ′R −角度正负的规定由光线转到法线:顺时针为正逆时针为负光路图中一律标正值. O 入射光线介质1介质2折射率n 折射率n ′N N ′折射光线反射光线sin sin n I n I ′′=I R=−入射光线、反射光线、折射光线与入射点处界面法线在同一平面内.反射可视为折射的特例:n n′=−9应用光学与设计第一章几何光学基本原理1-4 光路可逆和全反射一、光路可逆二、全反射三、费马原理四、马吕斯定律10应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式I I ′R −O 入射光线介质1介质2折射率n 折射率n ′N N ′折射光线反射光线单位矢量0Q 单位矢量′′Q 0′Q 单位矢量单位法线0N n n ′′×=×0000Q N Q N 即()00n n ′′−×=00Q Q N sin , sin , I I ′′×=×=∴0000Q N Q N ∵上式数值成立矢乘等式表明三个矢量和它们代表的三条光线共面.1.折射定律的向量形式11应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式折射定律的向量形式n n ′′×=×0000Q N Q N 令, n n ′′′==00Q Q Q Q ′×=×00Q N Q N 得()0′−×=0Q Q N 即表明与方向一致:()′−Q Q 0N 偏向系数Γ′−=0Q Q N ()cos cos n I n I Γ′′′=−=−0Q Q N i ()2222222222222cos sin sin cos n I n n I n n I n n n In n ′′′′′=−′=−′=−+′=−+0N Q ∵i ()222n n Γ′∴=−+−00N Q N Qi i Γ′=+0Q Q N 12应用光学与设计第一章几何光学基本原理1-5 基本定律的向量形式反射定律的向量形式cos cos n I n I Γ′′=−Γ′=+0Q Q N 2.直线传播定律的向量形式直线传播定律可视为折射定律的特例.n n ′=3.反射定律的向量形式′=Q Q反射定律可视为折射定律的特例.n n ′=−I I′=−()cos cos 2cos =2n I n I n I Γ∴=−−−=−−0N Qi ()2′=−00N Q N Q Q i ()222n n Γ′=−+−00N Q N Qi i13应用光学与设计第一章几何光学基本原理1-6 光学系统类别和成像的概念光轴共轴系统非共轴(离轴)系统光学系统各元件表面曲率中心在一条直线上.完善成像(点成像为点)的条件入射光是同心光束(球面波)时,出射光也是同心光束(球面波).共轴光学系统等价描述:共轭物像点间所有光线光程相等.14应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统理想像对光学系统成像的要求清晰成像(视场内)所有物点都完善成像, 每一个物点都对应唯一的像点.理想光学系统的性质(1) 直线成像为直线.O O A QQA ’理想光学系统成理想像的光学系统.15应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统理想光学系统的性质(2) 平面成像为平面.平面P A A’B’C’B C 平面P’F E E’F’16应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统子午面共轴理想光学系统的性质(1) 由系统的对称性决定的性质:共轴光学系统O O’光轴上物点的共轭像点也在光轴上.A A’子午面过光轴的某一截面, 它的共轭像平面也必过光轴. 各子午面成像性质相同. 可用一个子午面代表一个共轴系统.共轭的子午面共面.17应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴光学系统O A B O’A’B’垂直于光轴的物平面,它的像平面也必然垂直于光轴.18应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴理想光学系统的性质(2) 垂直于光轴的平面物所成的共轭平面像,其几何形状完全与物相似.即垂直于光轴的同一平面上各部分放大率相同.共轴光学系统注意一般来说,共轴理想成像系统的物像空间中的物与像并不一定相似.O’P’Q’Q P O A B E’G H A’B’G’H’E19应用光学与设计第一章几何光学基本原理1-7 理想像和理想光学系统共轴理想光学系统的性质(3) 如果已知两对共轭面的位置和放大率; 或者一对共轭面的位置和放大率, 以及轴上两对共轭点的位置, 则其他一切物点的像点都可以确定.基面基点共轴光学系统O ’P ’P O D D ’A A ’B B ’共轴光学系统D D ’OA B Q P Q ’P ’O ’A ’B ’。
i 1i2 i 3几何光学是光学的一个古老的分支,也是物理学中最早被研究的分支。
据传,阿基米德 就已经掌握了光的反射定律。
当然,如今我们要面对的几何光学元件是远远要比平面镜复杂 的。
随着光学的发展,费马提出了以自己名字命名的定理,费马定理几乎可以概括整个集合 光学。
本讲就为大家详细地介绍几何光学。
一、全反射全反射光从密度媒质 1 射向光疏媒质 2,当入射角大于临界角 a = sin -1 n 生全反射。
二、多层介质折射 如图:多层介质折射率分别为 n 1 , n 2 , n 3 则由折射定律得: n 1 sin i 1 = n 2 sin i 2 = = n k sin i k三、球面折射成像时,光线发n 1n 2n 3 (1)球面折射成像公式(a )单介质球面折射成像如图所示,如果球面左、右方的折射率分别为 1 和 n , S ' 为 S 的像。
因为 i 、r 均很小,所以n R知识点睛本讲导学高二物理竞赛 第 5 讲 几何光学21例题精讲是球心,O 是顶点,球面曲率半径为 R ,S 是物点, S ' 是像点,对于近轴光线n 1i 1 = n 2i 2i 1 = α + β , i 2 = β - θ ,α =A 0 , β =uA 0,θ = A 0 R vn联立上式解得 1 u + n 2 v=n 2 - n 1r同时,我们可以算出,放大率为s ‘ ·n sn ′四、费马原理:光总选择光程取极值的路径五、惠更斯原理:惠更斯指出,由光源发出的光波,在同一时刻 t 时它所达到的各点的 集合所构成的面,叫做此时刻的波阵面(又称为波前),在同一波阵面上各点的相位 都相同,且波阵面上的各点又都作为新的波源向外发射子波, 子波相遇时可以互相叠加,历时△t 后,这些子波的包络面就是 t +△t 时刻的新的波阵面。
波的传播方向与波阵面垂直, 波阵面是一个平面的波叫做平面波,其传播方向与此平面垂 直,波阵面是一个球面(或球面的一部分)的波叫做球面波, 其传播方向为沿球面的半径方向,如图 六、二次曲线由于具有特殊的几何性质,在某些条件下可以理 想成像。
光学•几何光学基本公式 z折射定律 折射光线在入射面内,且 n1 sin i1 = n2 sin i2 n : 介质的折射率 c n= u c : 真空光速 u : 介质中的光速 全反射 如果 n1 > n2 ,则当 i1 > ic 时发生全反射。
ic = arcsinn2 为临界角。
n1z 成像公式 球面反射镜 u 1+1 1 = v f焦距: f = 横向放大倍数 M≡ y′ v =− y ur 2 凹面镜: r > 0 凸面镜: r < 0 单球面透镜透镜透镜 n1 n2 n1 − n2 u+v=−R M =− n1 v ⋅ n2 u凸面迎光 R>0 凹面迎光 R < 0 薄透镜 1 1 1 + = u v fv M =− u 焦距公式: ⎛1 1 ⎞ 1 = (n − 1) ⎜ − ⎟ f ⎝ R1 R2 ⎠如像与物都在折射率为 n1 的介质中,则 n ⎛ 1 1 1 ⎞ = ( n′ − 1) ⎜ − ⎟ , n′ = n1 f ⎝ R1 R2 ⎠ 理想几何光学成像系统 物方任一点发出的所有经过成像系统的光线都汇聚于像方一点。
高二年级物理竞赛选修课程几何光学Tuesday, May 12, 2009一、光的直进性光的直进性只是在通光孔或障碍物的线度比光的波长大的多的情况的一种近似。
光程是指光在相同时间内实际路程所折合成光在真空中的路程。
光若在折射率为n 的介质中传播l 的路程,则这段时间内光程就是nl 。
二、光的反射与折射1、反射定律2、折射定律3、绝对折射率与相对折射率当光从媒质1射向折射率不同的另一种媒质2时,媒质2相对媒质1的相对折射率用n 12表示,有:211221121sin sin n n n v v r i n ==== 例1:极限法测液体折射率的装置如图所示,ABC是直角棱镜,其折射率n g 为已知。
将待测液体涂一薄层于其上表面AB ,覆盖一块毛玻璃,用扩展光源在掠入射方向照明毛玻璃,从棱镜的AO 面出射的光线的折射角将有一下限i 0/ (用望远镜观察,则在视场中出现有明显分界线的半明半暗区)。
试求待测液体的折射率n 。
用这种方法测液体折射率,测量范围受什么限制?4、全反射当光从光密煤质射向光疏煤质,即当n 1>n 2时,由折射定律可知,折射角将大于入射角。
当入射角增大至某—值⎪⎪⎭⎫ ⎝⎛==1212arcsin arcsin n n n i C 时,折射角r =90°。
当入射角大于i C 时,折射光消失。
光全部被反射,这种现象称为全反射,i C 称为临界角。
全反射现象常被用来增强反射光的强度,减少光因透射而造成的能量损失。
如在各种全反射棱镜、光导纤维中即是。
例1:如图所示,在水中有两条平行光线1和2,光线2射到水和平行平板玻璃的分界面上。
(1)两光线射到空气中是否还平行?(2)如果光线1发生全反射,光线 2能否进入空气?例2:一个立方玻璃块的中心有一个斑点,要使人们无论从哪个方向都看不见这斑点,必须把这立方块表面的哪些部分遮盖起来,被遮盖的面积占立方块表面积的百分比必须有多大?假定立方块的边长为1.0厘米,玻璃的折射率为1.50.(不考虑光线受到内反射以后的行为)三、光的可逆性原理由反射定律和折射定律可知,若光逆着反射光方向入射,则其反射光必逆着入射光的方 向传播;.若光逆着折射光方向由媒质2射向媒质1,则折射光也必逆着原入射光的方向传 播。