遗传算法的优化计算
- 格式:doc
- 大小:43.50 KB
- 文档页数:6
遗传算法是一种优化技术,基于生物进化原理,包括交叉、突变和自然选择等过程。
遗传算法通常用于解决复杂的优化问题,例如机器学习、数据挖掘和控制系统等。
以下是一些遗传算法的优化技巧:1.选择合适的编码方案:编码方案是将问题的解空间映射到遗传算法能够处理的搜索空间的方法。
对于某些问题,二进制编码可能更适合,而其他问题可能需要实数编码或有序编码。
选择合适的编码方案可以使遗传算法更加有效。
2.合理设计适应度函数:适应度函数是用来评估每个个体的优劣程度的函数。
适应度函数的设计应该与问题的目标函数相匹配,并且应该尽可能简单和高效。
同时,适应度函数还应该具有明确的物理意义或实际意义,以便更好地理解算法的性能和结果。
3.选择合适的交叉和突变算子:交叉和突变算子是遗传算法中的两个重要操作,它们可以增加种群的多样性,并有助于算法跳出局部最优解。
选择合适的交叉和突变算子可以提高算法的性能和效率。
4.使用精英策略:精英策略是一种保留优秀个体的策略,即将每一代中的最优个体直接复制到下一代中。
使用精英策略可以加快算法的收敛速度,并提高找到的解的质量。
5.控制种群大小:种群大小是影响遗传算法性能的一个重要参数。
种群大小太小可能会导致算法陷入局部最优解,而种群大小太大则可能会导致计算时间和内存消耗增加。
因此,需要根据问题的规模和复杂度选择合适的种群大小。
6.合理设置终止条件:终止条件是控制遗传算法运行时间和终止条件的方法。
常见的终止条件包括达到最大迭代次数、找到满意的解或达到某个收敛标准等。
选择合适的终止条件可以平衡算法的运行时间和找到的解的质量。
7.并行化遗传算法:对于大规模的优化问题,可以将遗传算法并行化以提高计算效率和性能。
并行化遗传算法可以通过将种群分成多个子种群,并在不同的处理器上同时进行进化来实现。
8.与其他优化方法结合使用:遗传算法可以与其他优化方法结合使用,例如梯度下降法、模拟退火法等。
这些方法可以弥补遗传算法的不足之处,提高算法的性能和效率。
使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。
遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。
本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。
一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。
这包括确定问题的目标函数和约束条件。
例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。
在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。
具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。
二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。
选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。
交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。
变异操作通过改变个体某些基因的值,引入新的基因信息。
替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。
三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。
常见的编码方式有二进制编码和实数编码等。
当问题的变量是二进制形式时,采用二进制编码。
当问题的变量是实数形式时,采用实数编码。
在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。
四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。
在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。
适应度值越大表示个体越优。
使用遗传算法进行优化问题求解的技巧遗传算法是一种模拟自然进化过程的优化算法,被广泛应用于各种优化问题的求解中。
它通过模拟自然界中的遗传、交叉和变异等过程,不断演化出更优解的种群。
本文将介绍使用遗传算法进行优化问题求解的一些技巧。
一、问题建模在使用遗传算法求解优化问题之前,首先需要将问题进行合理的建模。
建模的关键是定义适应度函数,即评价解的好坏程度的函数。
适应度函数应该能够准确地反映出问题的目标和约束条件。
在建模时,还需要确定问题的变量范围、约束条件等。
二、编码与解码遗传算法对问题的解进行编码,将解表示为染色体或基因的形式。
编码的方式有很多种,常见的有二进制编码、实数编码和排列编码等。
编码的选择应根据问题的特点和求解的要求进行合理的选择。
解码是将编码后的染色体或基因解码成问题的实际解。
解码过程应与编码过程相逆,保证解码后的结果能够准确地表示问题的解。
三、种群初始化种群初始化是遗传算法的起点,它决定了算法的初始状态。
种群的初始化应该尽量保证多样性,避免陷入局部最优解。
常见的初始化方法有随机初始化和启发式初始化等。
在初始化时,还可以利用问题的特点进行有针对性的初始化,提高算法的效率。
四、选择操作选择操作是遗传算法中的关键步骤,它决定了哪些个体能够生存下来并参与后续的交叉和变异操作。
选择操作的目标是根据个体的适应度值,按照一定的概率选择优秀个体,并保留下来。
常见的选择方法有轮盘赌选择、锦标赛选择和排名选择等。
选择操作应该保证优秀个体有更高的生存概率,同时也应该给予较差个体一定的生存机会,以保持种群的多样性。
五、交叉操作交叉操作是遗传算法中的重要步骤,它模拟了自然界中的基因交叉过程。
交叉操作通过将两个个体的染色体或基因进行交叉,产生新的个体。
交叉操作的目标是将两个个体的优秀特征结合起来,产生更优解的个体。
常见的交叉操作有单点交叉、多点交叉和均匀交叉等。
在进行交叉操作时,应该根据问题的特点和求解的要求进行合理的选择。
遗传算法求解优化问题实例
一个常见的优化问题是旅行商问题(Traveling Salesman Problem,TSP)。
给定一组城市和每对城市之间的距离,旅行商问题要求找到一条经过所有城市一次且回到起点的最短路径。
以下是使用遗传算法求解TSP的实例:
1. 随机生成一个初始种群,种群中的每个个体表示一条路径。
每个个体由一个城市序列表示,例如[1, 2, 3, ..., n],其中n是城市的数量。
2. 计算种群中每个个体的适应度。
适应度可以定义为路径的总长度,即经过所有城市的距离之和。
3. 选择适应度较高的个体作为父代,进行交叉和变异操作以生成新的子代。
交叉操作可以是将两条路径的一部分交换,变异操作可以是随机改变路径中的一个或多个城市顺序。
4. 计算新生成的子代的适应度。
5. 重复步骤3和4,直到达到终止条件(例如达到最大迭代次数)。
6. 返回适应度最好的个体作为最优解,即最短路径。
遗传算法的优势在于可以在大规模问题中寻找较好的解,虽然不一定能找到最佳解,但可以得到相对较优的解。
遗传算法与优化计算随着计算机技术和科学的发展,优化计算成为了各个学科领域中必不可少的一部分。
它能够帮助我们更快、更精确的寻找最优解,解决各种问题。
而遗传算法作为一种常见的优化计算算法,近年来引起了广泛的关注。
一、遗传算法的基本原理遗传算法的基本原理源于达尔文的“适者生存”理论。
它将基因的选择和进化的过程抽象出来,转化成计算机算法。
遗传算法通过对问题的可行解的染色体编码、随机选择、遗传变异、遗传交叉等操作进行模拟,从而达到寻找最优解的效果。
在遗传算法中,第一步是将问题的可行解表示成染色体,可以是二进制、十进制或其他编码。
第二步是通过选择操作,选择优良的个体进行生存,有些个体可能因为落后而被淘汰。
第三步是对优良的个体进行变异和交叉操作,从而产生新的后代。
这种基于群体自适应的方法可以最终得到一个全局最优解或局部最优解。
二、遗传算法的应用遗传算法在各种领域都有着广泛的应用,比如优化控制和组合优化等。
以下是几个应用遗传算法的例子:1.车辆路径优化问题在市中心,旅游车辆需要遵守一定的规则,不能随意进入某些区域。
车辆路径优化问题就是需要找到一种最短路径,使得车辆在规定的规则下从起点到终点。
2.人工神经网络遗传算法被用于神经网络空间的搜索,借鉴了人类的自然进化历程。
这种想法是根据遗传算法的进化过程,通过评价神经网络的误差性能,集成遗传算法搜索和人工神经网络模型的参数学习过程。
3.参数优化在科学实验和仿真中,经常需要优化参数以达到最优性能。
遗传算法可以被应用于这一问题,通过最优化参数以优化计算的结果。
三、遗传算法与其他算法的比较与其他优化计算算法相比,遗传算法具有以下优点:1.不容易跳出局部最优解由于遗传算法采用了类似于随机搜索的方式,可以避免局部最优解的陷阱。
2.计算量较小遗传算法的计算量相对较小,不需要对大量的解进行评估。
因此,对于大规模的问题,遗传算法有着显著的优势。
3.并行化遗传算法可以实现并行化,使用多个进程或多个线程同时进行跑遗传算法,效率更高。
遗传算法在优化问题求解中的改进策略分析引言:遗传算法是一种基于自然选择和遗传机制而产生的优化算法。
它主要通过模拟生物进化过程中的遗传、交叉和变异等基本操作,来搜索问题的最优解。
然而,由于遗传算法在求解过程中存在一些局限性和不足,研究学者们提出了一些改进策略,以提高算法的收敛速度和求解精度。
本文将分析遗传算法在优化问题求解中的常见改进策略,并探讨其优点和不足。
一、精英保留策略精英保留策略是指在遗传算法的演化过程中保留上一代中的最优个体,不参与遗传操作,而直接复制到下一代中。
这种策略可以有效地防止优良基因的丢失,保持种群的多样性,并提高算法的收敛速度和求解精度。
通过精英保留策略,可以保证种群中至少有一个较优个体,从而减少了搜索空间的范围,加快了算法的收敛速度。
然而,精英保留策略也存在一些问题。
例如,当优秀个体较少时,精英保留策略可能导致种群陷入局部最优解而无法跳出。
此外,过多的精英保留也会增加算法的计算复杂度和存储空间。
二、种群多样性维持策略种群多样性维持策略是指通过一些手段来维持种群的多样性,避免早熟收敛和局部最优问题。
常见的策略包括杂交距离控制、变异概率控制、群体大小控制等。
杂交距离控制是通过设置杂交概率,限制执行杂交操作的个体之间的距离,防止过早收敛和进化陷入局部最优解。
变异概率控制是通过设定合适的变异概率,引入随机性来保持种群的多样性,并提高全局搜索能力。
群体大小控制是指根据优化问题的规模和复杂度来调整种群的大小,过小会导致缺乏多样性,过大则会浪费计算资源。
种群多样性维持策略的优点在于能够提高算法的全局搜索能力,避免算法过早陷入局部最优解。
然而,该策略也会增加计算复杂度和耗费存储空间。
三、自适应参数调节策略自适应参数调节策略是指根据算法的演化过程,动态调整算法中的参数,以提高算法的性能。
常见的自适应参数调节策略包括自适应变异概率、自适应杂交概率等。
自适应变异概率是根据种群的适应度情况动态调整变异概率的大小。
组合优化问题的遗传算法求解一、简介组合优化问题指的是在有限个元素中选取某些元素,以达到最优化的目标。
组合优化问题的求解在实际中应用广泛,如旅行商模型、调度问题、网络优化等领域。
但是这类问题求解面临着复杂度高、难以精确求解等困难。
在这种情况下,遗传算法是一种有效的求解方法。
遗传算法是一种基于达尔文进化论的计算方法,通过模拟生物进化的方式求解组合优化问题。
本文将介绍遗传算法在组合优化问题求解中的应用,着重介绍遗传算法基本框架、编码方法、适应度函数的构建以及遗传算法的优化策略等。
二、遗传算法基本框架遗传算法的求解过程主要包括初始种群生成、适应度评价、选择操作、交叉操作和变异操作等基本步骤。
(1)初始种群生成遗传算法首先需要生成一定数量的初始种群,初始种群可以通过随机生成或其他启发式算法生成。
例如,在旅行商问题中,初始种群可以随机生成多条路径。
(2)适应度评价适应度函数是遗传算法的核心,适应度函数的构建直接关系到遗传算法的性能。
适应度函数是对每个染色体的优劣进行量化评价,用以指导后续优化操作。
适应度函数构建需要根据问题特点进行设计。
(3)选择操作选择操作是指将上一代种群中的某些个体复制到下一代种群中,个体复制的概率与其适应度大小有关。
适应度越高的个体被选择的概率越大,从而使适应度高的个体更有机会进化到下一代。
选择操作可以通过轮盘赌选择、锦标赛选择等方式实现。
(4)交叉操作交叉操作是指对选择后的个体进行杂交,交叉操作是遗传算法的核心,它通过随机杂交个体的染色体,产生新的杂交染色体,从而增加搜索空间。
交叉操作可分为单点交叉、多点交叉、均匀交叉等。
(5)变异操作变异操作是指在交叉操作之后对个体发生变异,从而产生新的个体。
变异操作是通过随机改变染色体中的基因,从而增加多样性。
变异操作可以是简单变异、非一致变异、高斯变异等。
以上是遗传算法的基本框架,遗传算法的性能因素有适应度函数的设计、进化代数、群体大小、交叉概率、变异概率等。
遗传算法参数的动态优化方案遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过不断进化,逐步优化变量组合,得到最优解。
然而,遗传算法的性能和效果受到诸多参数的影响,而如何选择恰当的参数,以进一步提高遗传算法的性能和效果,成为研究者关注的问题之一。
因此,本文将探讨一种动态优化遗传算法参数的方案。
一、遗传算法参数的分类遗传算法中,常用的参数包括种群大小、交叉率、变异率等。
其中,种群大小是指每一代中所包含的个体数量,交叉率是指个体之间进行交叉的概率,变异率则表示每个变量在进化过程中突变的概率。
二、动态优化遗传算法参数方案1. 模型选择首先,需要确定一个代价函数(或目标函数),该函数将用于评估遗传算法的性能和效果。
对于复杂的问题,一般选择替代模型,如支持向量回归模型、决策树模型等。
然后,针对模型参数,设计基于遗传算法的优化策略。
2. 参数初始化在遗传算法启动之前,为遗传算法参数设置初值,并通过几十代的进化来寻找最优解。
一般来说,种群大小可以设为50到100左右,交叉率可以设为0.8到0.9,变异率可以设为0.005到0.01。
然后,将初值作为代价函数或目标函数的输入,以检验初值选择是否合理。
3. 优化策略基于上述的初值,开始进行动态优化遗传算法参数。
具体而言,在每次进化时,根据当前进化代数和遗传算法性能的变化情况,实时调整遗传算法参数。
如在前几代时,可以采用较小的交叉率和变异率,以保持种群多样性。
当进化代数较大时,应考虑加大交叉率和变异率,以加速收敛并求得最优解。
4. 优化终止当遗传算法达到预定的停止条件时,不再进行进化。
一般而言,停止条件包括代数足够、收敛到最优解等。
此时,通过对遗传算法参数的调整,得到优化后的遗传算法模型参数,以获取进一步的性能提升。
三、优化效果分析本方案将基于实验数据来验证其优化效果。
取50个连续函数优化问题和10个离散函数优化问题,分别采用传统的遗传算法(未设置动态优化参数)和本文所提出的动态优化方案进行比较。
组合优化问题中的遗传算法优化研究随着信息技术不断发展,计算机算法也在不断创新和优化。
其中,遗传算法在组合优化问题中得到了广泛的应用和重视。
本文将从遗传算法的基本原理、组合优化问题、遗传算法优化等方面展开讨论。
一、遗传算法的基本原理遗传算法是一种基于生物进化过程的优化算法,通过模拟进化过程,寻求给定问题的优化解。
遗传算法包括以下基本步骤:1.初始化种群,即初始候选解的随机生成。
2.选择算子,即选取适应度函数值高的候选解。
3.交叉算子,即两个父代个体之间产生子代的操作。
4.变异算子,即对种群中的某些个体进行基因突变的操作。
5.根据预设的停止准则,判断是否满足结束条件。
二、组合优化问题组合优化问题是指从一给定集合中选择一定的元素,并使其满足某些条件的问题。
组合优化问题涉及到多个领域,如图论、操作研究、信息学等。
在组合优化问题中,遗传算法可以帮助确定最优解。
组合优化问题通常有以下几个分类:1.背包问题:即在限定容量下,选取可能的物品使得其总价值最大。
2.图问题:即在一张给定的图中找到满足条件的最佳路径或图。
3.集合问题:即在给定一定条件下找到一个最合适的子集。
三、遗传算法优化遗传算法优化在组合优化问题中发挥着重要作用。
在遗传算法优化过程中,我们需要寻找到最优解,即使得适应度函数值最高。
在优化过程中,我们需要考虑以下问题:1.如何定义适应度函数适应度函数是衡量个体成功的度量标准,它需要合理地衡量每个个体的特定性。
适应度函数通常使用一些常见软件包进行计算。
2.如何选取交叉算子和变异算子交叉和变异算子可以影响解的质量。
交叉算子是指选择两个个体并获得两个子代。
在变异算子中,我们可以随机改变某些基因以获得更好的结果。
3.如何确定种群大小和停止准则种群大小和停止准则是遗传算法中最重要的两个参数。
种群的大小可以影响优化效果。
停止准则也非常重要,当满足停止准则时,算法将终止运行并返回结果。
4.如何选择合适的遗传算法模型遗传算法有多种模型,如标准遗传算法、粒子群优化等。
基于遗传算法的最优化问题求解遗传算法是一种启发式算法,受到进化生物学中的自然选择和遗传机制启发而设计。
它可以用于解决许多最优化问题,比如函数优化、组合优化和排程优化等。
本文将介绍遗传算法的基本原理和应用,并探讨如何使用遗传算法来求解最优化问题。
1. 遗传算法的基本原理遗传算法的基本过程包括初始化种群、选择、交叉、变异和替换等步骤。
首先,通过随机生成一组个体来构建初始种群。
个体通常是由一组变量表示的解向量。
接下来,通过选择操作从当前种群中选择出适应度较高的个体作为父代。
选择操作可以使用各种方法,如轮盘赌选择、竞争选择和排名选择等。
然后,通过交叉操作将父代个体的基因片段进行交换和组合,产生一组新的个体。
交叉操作可以使用单点交叉、多点交叉或均匀交叉等方法。
随后,对新个体进行变异操作,通过改变个体的基因值来引入新的多样性。
变异操作可以是改变一个基因位的值,或者改变一组基因位的值。
最后,使用替换操作将新个体替换掉部分原始种群中的个体,以形成下一代种群。
以上步骤可以循环迭代执行,直到满足终止条件,如达到最大迭代次数或找到满意的解。
2. 遗传算法的应用遗传算法在各种最优化问题中都有广泛的应用。
函数优化是最常见的应用领域之一。
遗传算法可以通过调整自变量的取值来最小化或最大化特定的目标函数。
它的优势在于能够通过遍历解空间,找到全局最优解或接近最优解的解。
组合优化是另一个常见的应用领域。
组合优化问题通常涉及在给定约束条件下,选择一组对象或变量来满足特定的目标。
例如,旅行商问题就是一个经典的组合优化问题,遗传算法可以用于找到旅行商的最短路径。
排程优化也是遗传算法的重要应用领域之一。
排程问题涉及将若干任务安排在一定时间内,以最大化或最小化某种指标。
遗传算法可以用于求解复杂的排程问题,如工厂作业调度、航班排班和员工排班等。
此外,遗传算法还可以应用于参数优化、神经网络训练和机器学习等问题。
3. 使用遗传算法求解最优化问题的步骤使用遗传算法求解最优化问题通常包括以下步骤:首先,需要定义问题的目标函数和约束条件。
function Val=de_code(x)% 全局变量声明global S P_train T_train P_test T_test mint maxtglobal p t r s s1 s2% 数据提取x=x(:,1:S);[m,n]=find(x==1);p_train=zeros(size(n,2),size(T_train,2));p_test=zeros(size(n,2),size(T_test,2));for i=1:length(n)p_train(i,:)=P_train(n(i),:);p_test(i,:)=P_test(n(i),:);endt_train=T_train;p=p_train;t=t_train;% 遗传算法优化BP网络权值和阈值r=size(p,1);s2=size(t,1);s=r*s1+s1*s2+s1+s2;aa=ones(s,1)*[-1,1];popu=20; % 种群规模initPpp=initializega(popu,aa,'gabpEval'); % 初始化种群gen=100; % 遗传代数% 调用GAOT工具箱,其中目标函数定义为gabpEvalx=ga(aa,'gabpEval',[],initPpp,[1e-6 1 0],'maxGenTerm',gen,...'normGeomSelect',0.09,'arithXover',2,'nonUnifMutation',[2 gen 3]); % 创建BP网络net=newff(minmax(p_train),[s1,1],{'tansig','purelin'},'trainlm'); % 将优化得到的权值和阈值赋值给BP网络[W1,B1,W2,B2]=gadecod(x);net.IW{1,1}=W1;net.LW{2,1}=W2;net.b{1}=B1;net.b{2}=B2;% 设置训练参数net.trainParam.epochs=1000;net.trainParam.show=10;net.trainParam.goal=0.1;net.trainParam.lr=0.1;net.trainParam.showwindow=0;% 训练网络net=train(net,p_train,t_train);% 仿真测试tn_sim=sim(net,p_test);% 反归一化t_sim=postmnmx(tn_sim,mint,maxt);% 计算均方误差SE=sse(t_sim-T_test);% 计算适应度函数值Val=1/SE;endfunction [sol,Val]=fitness(sol,options)global Sfor i=1:Sx(i)=sol(i);endVal=de_code(x);end%% 遗传算法的优化计算——输入自变量降维%%% 清空环境变量clear allclcwarning off%% 声明全局变量global P_train T_train P_test T_test mint maxt S s1 S=30;s1=50;%% 导入数据load data.mata=randperm(569);Train=data(a(1:500),:);Test=data(a(501:end),:);% 训练数据P_train=Train(:,3:end)';T_train=Train(:,2)';% 测试数据P_test=Test(:,3:end)';T_test=Test(:,2)';% 显示实验条件total_B=length(find(data(:,2)==1));total_M=length(find(data(:,2)==2));count_B=length(find(T_train==1));count_M=length(find(T_train==2));number_B=length(find(T_test==1));number_M=length(find(T_test==2));disp('实验条件为:');disp(['病例总数:' num2str(569)...' 良性:' num2str(total_B)...' 恶性:' num2str(total_M)]);disp(['训练集病例总数:' num2str(500)...' 良性:' num2str(count_B)...' 恶性:' num2str(count_M)]);disp(['测试集病例总数:' num2str(69)...' 良性:' num2str(number_B)...' 恶性:' num2str(number_M)]);%% 数据归一化[P_train,minp,maxp,T_train,mint,maxt]=premnmx(P_train,T_train);P_test=tramnmx(P_test,minp,maxp);%% 创建单BP网络t=cputime;net_bp=newff(minmax(P_train),[s1,1],{'tansig','purelin'},'trainlm'); % 设置训练参数net_bp.trainParam.epochs=1000;net_bp.trainParam.show=10;net_bp.trainParam.goal=0.1;net_bp.trainParam.lr=0.1;net_bp.trainParam.showwindow=0;%% 训练单BP网络net_bp=train(net_bp,P_train,T_train);%% 仿真测试单BP网络tn_bp_sim=sim(net_bp,P_test);% 反归一化T_bp_sim=postmnmx(tn_bp_sim,mint,maxt);e=cputime-t;T_bp_sim(T_bp_sim>1.5)=2;T_bp_sim(T_bp_sim<1.5)=1;result_bp=[T_bp_sim' T_test'];%% 结果显示(单BP网络)number_B_sim=length(find(T_bp_sim==1 & T_test==1));number_M_sim=length(find(T_bp_sim==2 &T_test==2));disp('(1)BP网络的测试结果为:');disp(['良性乳腺肿瘤确诊:' num2str(number_B_sim)...' 误诊:' num2str(number_B-number_B_sim)...' 确诊率p1=' num2str(number_B_sim/number_B*100) '%']);disp(['恶性乳腺肿瘤确诊:' num2str(number_M_sim)...' 误诊:' num2str(number_M-number_M_sim)...' 确诊率p2=' num2str(number_M_sim/number_M*100) '%']);disp(['建模时间为:' num2str(e) 's'] );%% 遗传算法优化popu=20;bounds=ones(S,1)*[0,1];% 产生初始种群% initPop=crtbp(popu,S);initPop=randint(popu,S,[0 1]);% 计算初始种群适应度initFit=zeros(popu,1);for i=1:size(initPop,1)initFit(i)=de_code(initPop(i,:));endinitPop=[initPop initFit];gen=100;% 优化计算[X,EndPop,BPop,Trace]=ga(bounds,'fitness',[],initPop,[1e-6 10],'maxGenTerm',...gen,'normGeomSelect',0.09,'simpleXover',2,'boundaryMutation',[2 gen 3]);[m,n]=find(X==1);disp(['优化筛选后的输入自变量编号为:' num2str(n)]);% 绘制适应度函数进化曲线figureplot(Trace(:,1),Trace(:,3),'r:')hold onplot(Trace(:,1),Trace(:,2),'b')xlabel('进化代数')ylabel('适应度函数')title('适应度函数进化曲线')legend('平均适应度函数','最佳适应度函数')xlim([1 gen])%% 新训练集/测试集数据提取p_train=zeros(size(n,2),size(T_train,2));p_test=zeros(size(n,2),size(T_test,2));for i=1:length(n)p_train(i,:)=P_train(n(i),:);p_test(i,:)=P_test(n(i),:);endt_train=T_train;%% 创建优化BP网络t=cputime;net_ga=newff(minmax(p_train),[s1,1],{'tansig','purelin'},'trainlm'); % 训练参数设置net_ga.trainParam.epochs=1000;net_ga.trainParam.show=10;net_ga.trainParam.goal=0.1;net_ga.trainParam.lr=0.1;net_ga.trainParam.showwindow=0;%% 训练优化BP网络net_ga=train(net_ga,p_train,t_train);%% 仿真测试优化BP网络tn_ga_sim=sim(net_ga,p_test);% 反归一化T_ga_sim=postmnmx(tn_ga_sim,mint,maxt);e=cputime-t;T_ga_sim(T_ga_sim>1.5)=2;T_ga_sim(T_ga_sim<1.5)=1;result_ga=[T_ga_sim' T_test'];%% 结果显示(优化BP网络)number_b_sim=length(find(T_ga_sim==1 & T_test==1));number_m_sim=length(find(T_ga_sim==2 &T_test==2));disp('(2)优化BP网络的测试结果为:');disp(['良性乳腺肿瘤确诊:' num2str(number_b_sim)...' 误诊:' num2str(number_B-number_b_sim)...' 确诊率p1=' num2str(number_b_sim/number_B*100) '%']);disp(['恶性乳腺肿瘤确诊:' num2str(number_m_sim)...' 误诊:' num2str(number_M-number_m_sim)...' 确诊率p2=' num2str(number_m_sim/number_M*100) '%']);disp(['建模时间为:' num2str(e) 's'] );%%%% <html>% <table align="center" > <tr> <td align="center"><font size="2">版权所有:</font><a% href="/">Matlab中文论坛</a> <script % src="/stat.php?id=971931&web_id=971931&show=pic" language="JavaScript" ></script> </td> </tr></table>% </html>%。