星载激光雷达探测能力的数值模拟分析
- 格式:pdf
- 大小:421.60 KB
- 文档页数:6
| 62 激光雷达成像技术及应用星载大气探测激光雷达发展和数据应用刘 东,王英俭,王志恩,周 军中国科学院安徽光学精密机械研究所中国科学院大气成分与光学重点实验室摘要:大气探测激光雷达向大气发射激光脉冲,使用望远镜接收大气的后向散射光,经过光电探测器的转换,再将电信号采集、数字化和记录,通过相应的反演方法,得到所需要的大气参数,它是集“光、机、电、理”为一体的、定量的光学主动廓线遥感工具。
自上世纪60年代激光器发明以来,激光雷达大气探测技术就迅猛发展,根据激光脉冲与大气不同的作用原理,米散射、拉曼散射、偏振、差分吸收、多普勒、高光谱分辨、共振荧光、白光探测等技术应运而生,用于探测大气气溶胶和云,大气温度、湿度,大气风场,温室和污染气体等,充分应用到气象、气候、灾害、环境、生化和军事等领域。
随着激光技术,光学集机械加工技术和电子学采集技术的发展,大气探测激光雷达的平台也从基地,发展为可移动、船舰载和空基平台。
近20年来,由于空间激光技术和大口径轻质望远镜加工技术的发展,大气探测激光雷达已经可以成为卫星载荷,并且已经成为光学主动遥感载荷的主要发展方向之一。
目前,星载大气激光雷达主要应用于大气气溶胶和云的测量,先后经历了LITE(The lidar In‐space Technology Experiment)、GLAS(Geoscience Laser Altimeter System)和CALIPSO(The Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations)三个阶段。
另外,NASA(National Aeronautics and Space Administration)和ESA(The European Space Agency)都已经开始发展下一代的测量的云和大气气溶胶的高光谱分辨率星载激光雷达,来对云和大气气溶胶进行更准确的定量测量。
第49卷第11期V ol.49N o.ll红外与激光工程Infrared and Laser Engineering2020年11月Nov. 2020基于自然地表的星载光子计数激光雷达在轨标定赵朴凡,马跃,伍煜,余诗哲,李松(武汉大学电子信息学院,湖北武汉430072)摘要:在轨标定技术是影响星载激光雷达光斑定位精度的核心技术之一。
介绍了目前国内外星载 激光雷达的在轨标定技术发展现状,分析了各类在轨标定技术的特点。
针对新型的光子计数模式星载 激光雷达的特性,提出了一种基于自然地表的星载光子计数激光雷达在轨标定新方法,使用仿真点云 对标定算法的正确性进行了验证,并分别使用南极麦克莫多干谷和中国连云港地区的地表数据和美国ICESat-2卫星数据进行了交叉验证实验,实验结果表明:算法标定后的点云相对美国国家航空航天 局提供的官方点云坐标平面偏移在3 m左右,高程偏移在厘米量级。
文中还利用地面人工建筑等特征 点对比了算法标定后的点云与官方点云之间的差异,最后对基于自然地表的在轨标定方法的精度以及 标定场地形的影响进行了讨论。
关键词:光子计数激光雷达;自然地表;在轨标定;卫星激光测高中图分类号:TN958.98 文献标志码:A DOI:10.3788/IRLA20200214Spaceborne photon-counting LiDAR on-orbitcalibration based on natural surfaceZhao Pufan,Ma Yue,Wu Yu,Yu Shizhe,Li Song(School of Electronic Information, Wuhan University, Wuhan 430072, China)Abstract:On-orbit calibration technique is a key factor which affects the photon geolocation accuracy of spaceborne LiDAR. The current status of spaceborne LiDAR on-orbit calibration technique was introduced, and the characteristics of various spaceborne LiDAR on-orbit calibration technique were analyzed. Aiming at the characteristics of the photon counting mode spaceborne LiDAR, a new on-orbit calibration method based on the natural surface was derived, simulated point cloud was used to verify the correctness of the calibration algorithm, and a cross validation experiment was made with the surface data of the Antarctic McMudro Dry Valleys and China Lianyungang areas and ICESat-2 point cloud data, the experimental results show that the plane offset between the point cloud calibrated by proposed algorithm and point cloud provided by National Aeronautics and Space Administration is about 3 m, elevation offset is in centimeter scale. The differences between the point cloud calibrated by the algorithm and the point cloud provided by National Aeronautics and Space Administration were also compared by using the feature points of artificial construction on the ground. Finally, the accuracy of the on- orbit calibration method based on natural surface and the influence of the calibration field topography were discussed.Key words:photon-counting LiDAR; natural surface; on-orbit calibration; spaceborne laser altimetry收稿日期:2020-05-28;修订日期:2020-06-29基金项目:国家自然科学基金(41801261);对地高分国家科技重大专项(11-Y20A12-9001-17/18,42-Y20A11-9001-17/18);中国博士后 科学基金(2016M600612, 20170034)作者简介:赵朴凡(1996-),男,博士生,主要从事激光标定理论与方法方面的研究工作:Email:****************.cn导师简介:李松(1965-),女,教授,博士生导师,博士,主要从事卫星激光遥感技术与设备方面的研究工作Email:**********.cn20200214-1第11期红外与激光工程第49卷0引言星载激光雷达是一种主动式的激光测量设备,它 根据激光脉冲的渡越时间(Time of Flight,ToF)获得 卫星与地表目标间的精确距离值,结合卫星平台的精 确姿态、位置信息以及激光指向信息后可以获得目标 的精确三维坐标。
《基于星载激光雷达数据的京津冀地区气溶胶垂直分布特征研究》篇一一、引言随着工业化和城市化的快速发展,京津冀地区面临着严重的空气污染问题。
气溶胶作为大气污染的主要成分之一,其垂直分布特征对于理解污染成因、评估空气质量及制定有效的治理措施具有重要意义。
星载激光雷达(SLD)作为一种遥感技术手段,能够提供高分辨率、高精度的气溶胶垂直分布信息。
本文旨在利用星载激光雷达数据,对京津冀地区的气溶胶垂直分布特征进行研究,以期为该地区的空气质量改善提供科学依据。
二、研究区域与方法2.1 研究区域本研究选取京津冀地区作为研究区域,该地区是我国重要的经济、政治和文化中心,同时也是大气污染较为严重的地区之一。
2.2 研究方法本研究采用星载激光雷达(SLD)数据,通过数据处理和分析,提取气溶胶的垂直分布信息。
具体方法包括数据预处理、气溶胶反演、垂直分布特征分析等。
三、数据处理与分析3.1 数据预处理首先,对星载激光雷达数据进行预处理,包括数据格式转换、噪声去除、云层识别等步骤,以保证数据的准确性和可靠性。
3.2 气溶胶反演通过对比分析多种气溶胶反演算法,选择适合本研究区域的反演算法,提取气溶胶的光学厚度、消光系数等参数。
3.3 垂直分布特征分析根据反演得到的气溶胶参数,分析京津冀地区气溶胶的垂直分布特征,包括气溶胶层的高度、厚度、光学厚度等参数的时空变化规律。
四、研究结果4.1 气溶胶垂直分布概况京津冀地区气溶胶垂直分布呈现出明显的季节变化和地域差异。
春季和冬季气溶胶层较厚,夏季和秋季相对较薄;城市区域气溶胶层高度较低,农村区域则相对较高。
4.2 气溶胶层高度与厚度的时空变化气溶胶层的高度和厚度在不同季节和地域存在显著差异。
一般来说,城市区域的气溶胶层高度较低,且在冬季由于供暖等因素的影响,气溶胶层厚度较大。
而农村区域的气溶胶层高度较高,且在夏季由于农作物秸秆焚烧等因素的影响,气溶胶层厚度也会有所增加。
4.3 气溶胶光学厚度的分析气溶胶的光学厚度与空气质量密切相关。
浅析星载激光测高数据处理方法摘要:地球科学激光测高系统GLAS (Geoscience Laser Altimeter System)作为全球首个连续对地观测的星载激光雷达测高系统,在极地冰川监测、陆地林业资源调查和平坦地区高程控制点提取等多领域得到了广泛应用。
目前,在建筑区等非平坦地形区域使用大光斑激光雷达测高数据作为高程控制点辅助遥感影像摄影测量的相关研究和应用成果非常稀少。
基于此,本文阐述了激光雷达系统的观测机理,主要包括激光雷达方程推导和回波信号的高斯模型简化;最后对全波形激光雷达的测距原理、波形滤波和全波形分解参数提取等基础内容进行了系统的总结。
关键词:星载激光;测高;数据处理;1引言星载激光测高(SLA)、卫星雷达测高(SRA)和卫星激光测距(SLR)三种技术既有关联又有区别。
受激光测高仪硬件载荷以及数据处理软件等技术条件限制,人们对星载激光测高技术的关注度相对较少,在一定程度上制约了对地观测领域的国产激光测高卫星发展。
为凸显星载激光测高技术的独特地位,对三种技术进行系统的对比分析是非常必要的。
星载激光测高技术足通过将激光测高仪搭载在卫星平台上,向地面固定频率发射激光脉冲,通过测量激光脉冲往返的时间间隔计算星地的绝对距离,结合精密的卫星轨道、姿态和激光指向角等参数来获得激光足印点的绝对高程值。
其中最具代表性的星载激光测高系统是全球首颗用于连续对地观测的地球科学测高系统(GLAS)。
卫星雷达测高技术同样采用卫星平台搭载微波雷达高度计戟荷,进行地面点定位以及测定地球形状、大小和重力场。
卫星激光测跖技术则采取地对帘的观测方A,在地面工作站人工目视跟踪观测装有激光发射棱镜的人造卫星或月球等地外天体,通过测定发射激光脉冲到接收脉冲的时间间隔来测定地面观测站的激光测距系统几何中心到地外天体的绝对距离。
其次,足印大小和观测对象是区分卫星雷达测高与星载激光测高的显著指标。
卫星雷达测高的足印大小基本在千米级,观测对象以海洋为主;而星载激光测高的足印大小一般在10-100m,如GLAS的标称足印大小为72m,主要对极地冰盖和陆地林区进行观测。
第47卷㊀第2期2023年3月南京林业大学学报(自然科学版)JournalofNanjingForestryUniversity(NaturalSciencesEdition)Vol.47,No.2Mar.,2023㊀收稿日期Received:2022⁃01⁃26㊀㊀㊀㊀修回日期Accepted:2022⁃04⁃07㊀基金项目:国家自然科学基金面上项目(31870621,31971580);中央高校基本科研业务费专项资金项目(2572021BA08)㊂㊀第一作者:董瀚元(2406854898@qq.com)㊂∗通信作者:于颖(yuying4458@163.com),教授㊂㊀引文格式:董瀚元,于颖,范文义.星载激光雷达GEDI数据林下地形反演性能验证[J].南京林业大学学报(自然科学版),2023,47(2):141-149.DONGHY,YUY,FANWY.VerificationofperformanceofunderstoryterraininversionfromspacebornelidarGEDIdata[J].JournalofNanjingForestryUniversity(NaturalSciencesEdition),2023,47(2):141-149.DOI:10.12302/j.issn.1000-2006.202201041.星载激光雷达GEDI数据林下地形反演性能验证董瀚元,于㊀颖∗,范文义(森林生态系统可持续经营教育部重点实验室,东北林业大学林学院,黑龙江㊀哈尔滨㊀150040)摘要:ʌ目的ɔ新一代天基测高系统全球生态系统动力学调查(GEDI)对森林观测及经营具有重要意义,为探究GEDIV2(GEDI第2版)数据反演林下地形的性能,利用机载雷达数据验证林下地形反演精度,并探究反演精度的影响因素㊂ʌ方法ɔ分别以美国西波拉森林与中国帽儿山森林为研究对象,利用G⁃liht及帽儿山高精度机载雷达数据验证GEDIV2数据在针叶林及针阔叶混交林下反演地形的性能,并分析不同光束强度㊁光斑时间㊁坡度及植被覆盖度对地形反演精度的影响㊂ʌ结果ɔ美国西波拉针叶林地区地形反演精度均方根误差(RMSE)为2 33m,平均绝对误差(MAE)为1 48m;帽儿山针阔叶混交林地区地形反演精度RMSE为4 49m,MAE为3 33m㊂随着坡度㊁植被覆盖度增大,两种森林类型地形反演精度均降低㊂ʌ结论ɔGEDIV2数据反演针叶林林下地形精度要优于针阔叶混交林,强光束优于覆盖光束,湿润地区白天效果更优,干旱地区黑夜效果更优;平缓地区数据使用效果极好,陡峭地区精度降低;中低植被覆盖度区域地形反演精度较高,高植被覆盖区域地形测定性能有所下降㊂关键词:星载激光雷达;全球生态系统动力学调查(GEDI);林下地形;反演精度;坡度;植被覆盖度中图分类号:S771.8㊀㊀㊀㊀㊀㊀文献标志码:A开放科学(资源服务)标识码(OSID):文章编号:1000-2006(2023)02-0141-09VerificationofperformanceofunderstoryterraininversionfromspacebornelidarGEDIdataDONGHanyuan,YUYing∗,FANWenyi(KeyLaboratoryofSustainableForestEcosystemManagement,MinistryofEducation,CollegeofForestry,NortheastForestryUniversity,Harbin150040,China)Abstract:ʌObjectiveɔThenewgenerationofthespace⁃basedaltimetryglobalecosystemdynamicsinvestigation(GEDI)systemisofgreatsignificancetoforestobservationandmanagement.InordertoexploretheperformanceofGEDIversion2data(V2data)inversionofunderstorytopography,thisstudyusesairborneradardatatoverifytheaccuracyofunderstorytopographyinversion,andexploresthefactorsaffectingtheaccuracy.ʌMethodɔTakingtheCibolaforestintheUnitedStatesandtheMaoerMountainforestinChinaastheresearchobjects,theperformancesofGEDIV2datainconiferousforestsandmixedconiferousandbroad⁃leavedforestswereverifiedusingG⁃lihtandMaoerMountainhigh⁃precisionairborneradardata.Theeffectsofdifferentbeamintensities,spottimes,slopesandvegetationcoverageontheaccuracyofterraininversionwereanalyzed.ʌResultɔTherootmeansquareerror(RMSE)oftopographicinversionaccuracyintheCibolataigaareaoftheUnitedStateswas2.33m,andtheaverageabsoluteerror(MAE)was1.48m.TheRMSEvalueofthetopographicinversionaccuracyintheconiferousandbroad⁃leavedmixedforestareaofMaoerMountainwas4.49m,andtheMAEvaluewas3.33m.Withtheincreaseinslopeandvegetationcoverage,thetopographicinversionaccuracyofthetwoforesttypesdecreased.ʌConclusionɔTheGEDIV2datainversionaccuracyofunderstorytopographyinconiferousforestswashigherthanthatofmixedconiferousandbroad⁃leavedforests.Strongbeamswerebetterthancoveragebeams,andtheaccuracywashigherduringthedaytimeinhumidareas,andbetteratnightinaridareas.Theaccuracyofsteepareaswasreduced,theterraininversionaccuracywashigherinareaswith南京林业大学学报(自然科学版)第47卷mediumandlowvegetationcoverage,andtheperformancesofterraindeterminationinareaswithhighvegetationcoverageweredecreased.Keywords:spacebornelidar;globalecosystemdynamicsinvestigation(GEDI);terrainunderforest;inversionaccuracy;slope;vegetationcoverage㊀㊀森林是陆地生态系统中具有最大生物量和生物生产力的生态系统,约占全球陆地面积的25%[1-2],高精度的林下地形测量无论在森林经营管理还是大范围高精度数字高程模型(DEM)制作以及测绘工作等方面均有重要意义,是森林制图及林业科学等方面的关键组成部分㊂林下地形测量是林学㊁测绘科学㊁地图学等学科重点研究内容,在国家土地资源的管理与调研利用部分也具有举足轻重的地位㊂拥有对地观测能力的星载激光雷达系统可以提供全球范围内基于激光雷达的地面高度以及森林高度度量[3],且拥有大尺度㊁多时相的特性,为大范围地面观测㊁森林高度观测提供重要的基础数据㊂现有的星载激光雷达地形高度反演研究大多使用上一代卫星数据,ICESat/GLAS已广泛应用于森林冠层高度以及生物量的观测中[4-7],且在地面高程测量方面也有大量研究[8-10]㊂2018年,美国航空航天局NASA发射了两项新的天基测高系统,分别是2018年9月发射的ICESat⁃2[11]以及2018年12月发射的全球生态系统动力学调查(GEDI)雷达[12]㊂ICESat⁃2是以光子计数的方式进行测高的数据,而GEDI则是与ICESat/GLAS相同的线性体制全波形测高数据㊂GEDI搭载了全球首台用于高分辨率森林垂直结构测量的多波束线性体制的激光测高仪,主要用于热带和温带地区的森林冠层高度㊁垂直结构㊁地面高程等的精准测量㊂与IC⁃ESat/GLAS约70m的足迹大小相比,GEDI的光斑大小为25m左右,光斑密度更大,且在与其他类型数据如Landsat㊁TANDEM⁃X等结合使用时效果较好,更适合于进行森林结构㊁林下地形的观测㊂现今GEDI数据的研究尚处于初始阶段,Qi等[13]使用TANDEM⁃XINSAR与模拟的GEDIV1数据结合进行了森林结构制图㊂Adam等[14]利用机载激光雷达数据(AirborneLaserScanning,ALS)评价了德国中部图林根自由州两个温带森林研究区GEDIV1数据地面高程和冠层高度估计值的准确性,结果表明地形高度的平均绝对误差(MAE)为2.55m,冠层高度的MAE为3.10m㊂Guerra等[15]利用ALS数据和GEDIV1数据估计3个快速增长的森林生态系统的森林动态,评估了西班牙地区GEDIV1数据反演地形高度的精度,均方根差(RMSE)为4.48m㊂Liu等[16]利用NEON数据评价了美国地区GEDIV2以及ICESat⁃2数据地面高程及冠层高度估计值的准确性,得出在地面高程方面中低纬度地区ICESat⁃2以及GEDI的RMSE分别为2.24和4.03m,高纬度地区ICESat⁃2的RMSE为0 98m㊂以上研究大多使用V1版本数据,而对最新发布的V2版本数据研究并不充足,且缺少不同森林类型及气候等条件下的对比实验以及影响因素的具体探究,用于验证的ALS数据精度也各有不同,难以充分说明最新版本GEDI数据对于地形的测定能力㊂为充分验证最新版本GEDI数据反演林下地形的性能,本研究以L2AV2级数据为研究对象,选取不同森林气候类型及植被覆盖条件区域,探究不同时间下强光束与覆盖光束反演林下地面高程的精度,并研究坡度及植被覆盖率对于反演精度的影响㊂1㊀材料与方法1.1㊀研究区概况由于GEDI数据主要用于温带和热带地区的森林观测,为对不同森林类型㊁气候条件㊁植被覆盖条件下GEDIV2(第2版)数据进行验证,结合机载雷达数据获取情况,选取地区为美国新墨西哥州的西波拉森林,共选取了其中两个站点,其经纬度的范围分别为(106.456ʎ 106.365ʎW,35.156ʎ 35.253ʎN)㊁(108 162ʎ 108.108ʎW,35 103ʎ 35 234ʎN),以及中国黑龙江省尚志市帽儿山地区(127 424ʎ 127 759ʎE,45 207ʎ 45 486ʎN)㊂西波拉森林位于美国新墨西哥州西部和中部,占地面积超过65万hm2,属于半干旱沙漠气候,研究区海拔较高,在2000m以上,植被以道格拉斯冷杉(Pseudotsugamenziesii)㊁美国黄松(Pinusponderosa)㊁西南白松(Pinusstrobiformis)㊁白冷杉(Abiesconcolor)㊁蓝色云杉(Piceapungens)为主,森林类型为针叶林㊂帽儿山森林位于中国黑龙江省尚志市,地貌属低山丘陵区,属温带湿润地区㊂地势由南向北逐渐升高海拔范围250 805m,研究区植被以珍贵阔叶林㊁杨桦林㊁柞木林等为主的天然241㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证次生林与红松(Pinuskoraiensis)㊁落叶松(Larixgmelinii)㊁樟子松(P.sylvestrisvar.mongolica)等人工林镶嵌分布,森林类型为以阔叶树种为主的温带针阔叶混交林㊂两组研究区气候条件以及森林类型完全不同,海拔相差较大,光斑覆盖区域地势较为平缓,美国西波拉森林地区植被覆盖度大多在60%左右,而帽儿山森林地区植被覆盖度大多在80%以上(图1)㊂A.基于全球行政区划数据库GADM网站下载的2015年7月2.5版行政区划图制作㊂Basedontheadministrativedivisionmapversion2.5,July,2015,downloadedfromtheGADMwebsiteoftheglobaladministrativedivisiondatabase.B.底图审图号为GS(2020)4619BasedonthestandardmapnumberGS(2020)4619㊂图1㊀西波拉森林研究区站点及帽儿山研究区位置示意图Fig.1㊀ThemapofthesiteoftheCibolaforestresearchareaandthelocationoftheMaoerMountainresearcharea1.2㊀研究数据1.2.1㊀GEDIL2A数据GEDI搭载了全球首台用于高分辨率森林垂直结构测量的多波束线性体制激光测高仪,主要用于热带和温带地区的森林冠层高度㊁垂直结构㊁地面高程等的精准测量(表1㊁图2)㊂GEDI为全波形数据,共有8条光束轨道,分别为4条全功率光束以及4条覆盖光束,每个光斑直径约为25m,光斑中心点间隔60m,跨轨间距为600m,坐标系为WGS84地理坐标系,高程基准为WGS84基准面㊂与ICESat/GLAS约70m的足迹大小相比,光斑密度更大,且在与其他类型数据如Landsat㊁TANDEM⁃X等结合使用时效果较好,更适合于进行森林结构㊁林下地形的观测㊂数据从2019年3月25日开始发布,并在2021年4月16日发布了V2版本㊂其中L2A级别产品提供了每个光斑内的高度指标,可以从波形中提取出地面高程㊁冠层高度以及相对高度指标[17]㊂在本研究中使用最新的V2版本产品,收集了美国西波拉森林两个站点2019年6月至11月㊁2020年3月至6月以及中国帽儿山研究区2019年5月至11月间的GEDIL2AV2级别数据㊂GEDI传感器的运作模式见图2㊂表1㊀GEDI的技术指标参数Table1㊀TechnicalparametersofGEDI项目project参数parameter发射时间launchtime2018年12月5日周期cycle2a探测器detector硅雪崩光电二极管Si:APD脉冲激光波长pulsedlaserwavelengthpulsedlaserwavelength1064nm轨道倾角和覆盖范围orbitalinclinationandcoverage轨道倾角51.6ʎ;覆盖范围51.6ʎN 51.6ʎS轨道track3个激光器共8轨光束beam一束激光分裂为两束覆盖光束;另外两束为全功率,4束光束抖动为8条轨迹功率(全功率/覆盖)power(fullpower/coverage)15mJ/4.5mJ光斑直径spotdiameter25m沿轨间距distancealongthetrack60m跨轨间距cross⁃railspacing600m341南京林业大学学报(自然科学版)第47卷图2㊀GEDI运作模式Fig.2㊀TheGEDIoperationmode1.2.2㊀G⁃liht数据G⁃liht是Goddard航天飞行中心研发的便携式机载成像仪,共包含激光雷达㊁高光谱及热红外成像系统3个主要子系统,可搭载于各种机载平台上,测量包括地面高度㊁植被高度㊁叶片光谱等内容,空间分辨率高达1m[18]㊂本研究使用2018年西波拉森林地区G⁃liht激光雷达数据(https://gliht.gsfc.nasa.gov)根据KeyholeMarkupLanguage(KML)文件以及GEDI雷达的运行轨迹来确定研究的范围㊂G⁃liht数据发布了空间分辨率为1m的数字地面模型(DigitalTerrainModel,DTM),数据格式为Tiff,数据使用UTM投影坐标系,水平参考高程基准为EGM96水准模型㊂1.2.3㊀帽儿山地区机载Lidar数据帽儿山地区机载Lidar数据于2016年9月获取,传感器为RieglLMS⁃Q680i,波长1550nm,平均点云密度为5pts/m2,以1m的空间分辨率测量出地面及植被高度㊂坐标系为UTM投影坐标系,高程基准为WGS84基准面,总覆盖范围约360km2㊂1.2.4㊀辅助数据为评估植被覆盖度对于GEDI测高精度的影响,使用多光谱数据Landsat8作为辅助数据进行研究㊂Landsat8是美国陆地卫星计划(Landsat)的第8颗卫星,于2013年2月11号在加利福尼亚范登堡空军基地由Atlas⁃V火箭搭载发射成功㊂携带陆地成像仪(operationallandimager,OLI)和热红外传感器(thermalinfraredsensor,TIRS),其数据的空间分辨率为30m[19]㊂本研究中根据所用GEDI数据时间㊁云量选择使用的美国西波拉森林地区Landsat8数据采集时间为2019年10月13日及2019年10月27日,云量0.02%及0.04%;中国帽儿山地区Landsat8数据采集时间为2019年9月24日,云量0.57%㊂1.3㊀研究方法验证激光测高数据精度的方法主要分为:基于野外GPS实测点数据验证,利用其他类型高度数据验证㊂本研究为探究GEDI对于林下地面高的测量能力,选取GEDIL2AV2级别数据进行实验㊂提取研究区域内GEDI数据的高程,利用处理后的帽儿山ALS数据及G⁃liht数据验证两个研究区内GEDI数据提取高程的精度,并分析坡度㊁植被覆盖度对于高程提取精度的影响1.3.1㊀数据预处理1)G⁃liht数据:对G⁃liht的数字地面模型(DTM)数据进行坡度分析,基于1m空间分辨率的高程产品数据生成美国西波拉森林地区地形坡度图㊂2)ALS数据:为生成帽儿山森林地区高精度DEM,研究使用帽儿山2016年机载雷达点云数据,点云去噪处理后利用改进的渐进加密三角网滤波算法分类出地面点[20],利用反距离权重插值算法生成DEM数据,空间分辨率为1m㊂对DEM数据进行坡度分析,基于1m空间分辨率的高程产品数据生成中国帽儿山森林地区地形坡度图㊂3)GEDI数据:为使GEDI数据能与验证数据结合使用,首先将下载好的GEDIL2A数据按G⁃liht数据的KML文件以及帽儿山机载雷达数据范围进行空间裁剪,并将数据格式转换;其次,按参数quality_flag㊁保留值为1的光斑点为有效光斑点,其余光斑点全部删除,在美国西波拉森林地区共筛选可用光斑点4051个,中国尚志市帽儿山森林可用光斑点共7731个;由于GEDI雷达的位置参数坐标使用WGS84地理坐标,因此按G⁃liht数据及帽儿山机载雷达数据的投影坐标系将GEDI数据坐标系转换为对应的UTM投影坐标系,使数据位置相匹配㊂4)Landsat8数据:为获取研究区内植被覆盖度情况,使用2019年西波拉及帽儿山地区Landsat8数据,将Landsat8数据经辐射定标㊁大气校正并重采样为10m分辨率,计算出归一化植被指数,利用像元二分法提取植被覆盖度(fractionalvegetationcover,FVC)[21]㊂1.3.2㊀地形高度提取方法利用G⁃liht数据与帽儿山ALS数据对GEDI光斑所测高程进行验证,将转换坐标系后的GEDI441㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证数据与G⁃liht的DTM数据㊁帽儿山ALS数据生成的DEM位置匹配,按GEDI光斑大小对DTM㊁DEM数据裁剪,提取每个裁剪区内平均高程来作为验证㊂为了对高程数据进行一致性分析,高度必须参考相同的垂直基准,GEDI数据与帽儿山DEM数据垂直基准均为WGS84椭球,而G⁃liht的DTM数据垂直基准为EGM96高程基准,因此利用vdatum软件将GEDI数据的垂直基准转换为EGM96高程基准,使数据间垂直基准一致㊂1.3.3㊀地形提取精度验证参数elev_lowestmode代表GEDI光斑内平均高程,利用裁剪区内平均高程对其进行精度评估,将二者绝对高程差值在20m以上的数据剔除㊂由于强光束与覆盖光束穿透森林冠层能力不同,且不同时间的大气效应及噪声情况不同,因此比较分析不同时间段以及不同光束类型GEDI数据所测高程与G⁃liht数据㊁ALS数据之间关系,根据参数beam_flag㊁delta_time分为白天强光束㊁黑夜强光束㊁白天覆盖光束㊁黑夜覆盖光束进行分组验证,利用验证数据来衡量GEDI数据测地形高度的准确度㊂统计的内容包含:平均偏差[Bias,式中记为σ(Bias)]㊁平均绝对误差[MAE,式中记为σ(MAE)]㊁决定系数R2㊁均方根误差[RMSE,式中记为σ(RMSE)]㊂σ(Bias)=1nˑðni=1(xi-yi);(1)σ(MAE)=1nˑðni=1|xi-yi|;(2)R2=1-ðni=1(xi-yi)2ðni=1(yi- y)2;(3)σ(RMSE)=1nðni=1(xi-yi)2㊂(4)式中:xi为GEDI测定的地形高度值,yi为G⁃liht与ALS测定的地形高度参考值, y为参考值的平均值,n为样本数㊂1.3.4㊀影响因素分析1)坡度㊂为更直观对比分析,提取出裁剪区内的坡度信息,将数据按坡度分组为0ʎ 5ʎ㊁ȡ5ʎ 10ʎ㊁ȡ10ʎ 15ʎ㊁ȡ15ʎ 20ʎ㊁ȡ20ʎ 30ʎ㊁ȡ30ʎ,分别进行测高精度对比,提出坡度对于GEDI测高精度的影响㊂2)植被覆盖度㊂将美国西波拉森林地区及中国帽儿山森林地区植被覆盖度分组为:0% 20%㊁ȡ20% 40%㊁ȡ40% 60%㊁ȡ60% 80%㊁ȡ80%90%㊁ȡ90% 100%,分别进行测高精度对比,提出植被覆盖度对于GEDI测高精度的影响㊂2㊀结果与分析2.1㊀美国西波拉森林地区GEDI反演林下地形高度精度分析㊀㊀对于美国西波拉森林地区,将GEDI数据得出的地形高度值与G⁃liht数据的参考值进行比较,统计了西波拉森林地区强光束与覆盖光束㊁黑夜与白天的不同类型GEDI数据反演出林下地面高程的精度(图3)㊂图3㊀西波拉森林不同条件下GEDI数据反演地形精度Fig.3㊀ThetopographicaccuracyofGEDIdatainversionunderdifferentconditionsofCibolaforest541南京林业大学学报(自然科学版)第47卷㊀㊀美国西波拉森林地区4051个GEDI样本数据的地形高度RMSE为2 33m,MAE为1 48m㊂这个结果相对于文献[18]中研究结果表现出更低的RMSE㊁MAE㊂在分组实验当中,得出结果为:白天强光束所测地形高度MAE为1 03m,RMSE为1 93m;夜间强光束所测地形高度MAE为1 09m,RMSE为1 47m;白天覆盖光束所测地形高度MAE为1 82m,RMSE为2 72m;夜间覆盖光束所测地形高度MAE为1 89m,RMSE为2 59m㊂可见,夜间强光束测高性能最佳,强光束的能量为覆盖光束的3 3倍,穿透植被的能力更强,但覆盖光束也表现出了良好的测高性能,而时间的影响相对来说要更小,黑夜的采集效果要稍好于白天的采集效果㊂2.2㊀中国帽儿山地区GEDI反演林下地形高度精度分析㊀㊀对于中国帽儿山地区,将GEDI数据得出的地形高度值与帽儿山ALS数据的参考值进行比较,统计了帽儿山地区强光束与覆盖光束㊁黑夜与白天不同类型GEDI数据反演出林下地面高程的精度(图4)㊂图4㊀帽儿山地区不同条件下GEDI数据反演地形精度Fig.4㊀TopographicaccuracyofGEDIdatainversionunderdifferentconditionsinMaoerMountainarea㊀㊀中国帽儿山森林地区7731个GEDI样本数据的地形高度RMSE为4.49m,MAE为3.33m㊂在分组实验当中,得出的结果为:白天强光束所测地形高度MAE为2.86m,RMSE为3.90m;夜间强光束所测地形高度MAE为4.66m,RMSE为5.96m;白天覆盖光束所测地形高度MAE为2.85m,RMSE为3.81m;夜间覆盖光束所测地形高度MAE为5 38m,RMSE为6.72m㊂由中国帽儿山森林地区实验可知,白天强光束与覆盖光束效果几乎相同,且要明显好于夜间对地形高度的测量性能,在夜间的分组来说,强光束的测量效果要明显好于覆盖光束㊂2.3㊀坡度对于反演精度的影响由于GEDI为全波形数据,类似ICESat/GLAS数据,坡度是引起误差的重要因素,按GEDI地形高度残差与分组坡度绘制箱线图(图5)㊂统计出美国西波拉森林地区以及帽儿山地区不同坡度条件GEDI反演高程精度(表2)㊂表2㊀西波拉森林与帽儿山地区不同坡度下GEDI反演地形高程的精度Table2㊀AccuracyofterrainelevationinversionbyGEDIunderdifferentslopesinCibolaforestandMaoerMountainarea坡度/(ʎ)slopeMAE/mR2RMSE/m0 50.59/0.971.00/1.000.83/1.74ȡ5 100.98/1.751.00/1.001.42/2.59ȡ10 151.40/2.821.00/1.001.89/3.78ȡ15 201.94/3.641.00/1.002.64/4.66ȡ20 302.91/4.681.00/1.003.77/5.74ȡ304.24/5.801.00/1.005.37/6.95㊀㊀注:表格中数据分别为美国西波拉森林/中国帽儿山地区的精度统计数据㊂下同㊂ThedatainthetablearetheaccuracystatisticsoftheCibolaforest/MaoerMountainarea.Thesamebelow.㊀㊀美国西波拉森林地区:坡度0ʎ 5ʎ分组地形反演精度MAE为0.59m,RMSE为0.83m;ȡ5ʎ 10ʎ分组MAE为0.98m,RMSE为1.42m;ȡ10ʎ 15ʎ641㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证分组MAE为1.40m,RMSE为1.89m;ȡ15ʎ 20ʎ分组MAE为1.94m,RMSE为2 64m;ȡ20ʎ 30ʎ分组MAE为2.91m,RMSE为3.77m;30ʎ及以上分组MAE为4.24m,RMSE为5.37m㊂图5㊀不同坡度下GEDI反演地形高度统计Fig.5㊀StatisticsofterrainheightinversionbyGEDIunderdifferentslopes㊀㊀中国帽儿山地区:0ʎ 5ʎ分组地形反演精度MAE为0.97m,RMSE为1.74m;ȡ5ʎ 10ʎ分组MAE为1.75m,RMSE为2.59m;ȡ10ʎ 15ʎ分组MAE为2.82m,RMSE为3.78m;ȡ15ʎ 20ʎ分组MAE为3.64m,RMSE为4.66m;ȡ20ʎ 30ʎ分组MAE为4.68m,RMSE为5 74m;30ʎ及以上分组MAE为5.80m,RMSE为6.95m㊂可见,随着坡度增大,RMSE呈线性上升趋势,坡度对于GEDI数据地形测高精度影响较大,在平缓的地形下,GEDI提供了相对较为精确的测高效果,在坡度增大时测高的效果会出现较多的误差,在进行高精度测量时尽量避免坡度较大的区域,或使用科学的方法进行地形校正后再使用数据㊂2.4㊀植被覆盖度对于反演精度的影响由于植被覆盖会对GEDI光束造成影响,按GEDI地形高度残差与分组植被覆盖度绘制箱线图(图6)㊂统计出美国西波拉森林地区以及帽儿山地区不同坡度条件GEDI反演高程精度(表3)㊂由表3可见,在中低植被覆盖度范围内,GEDI能较好测量出地面高程,在植被覆盖度达到60%后,其精度会出现明显的下降,在80%以上植被覆盖度区域,出现了较高的RMSE,分析其原因可能为植被覆盖密集区域GEDI地面波形中会混杂较多低矮植被,导致测高精度下降㊂图6㊀不同植被覆盖度下GEDI反演地形高度统计Fig.6㊀StatisticsofterrainheightretrievedbyGEDIunderthedifferentvegetationcoverages741南京林业大学学报(自然科学版)第47卷表3㊀西波拉森林与帽儿山地区不同植被覆盖度下GEDI反演地形高程的精度Table3㊀AccuracyofterrainelevationinversionbyGEDIunderthedifferentvegetationcoverageinCibolaforestandMaoerMountainarea植被覆盖度/%vegetationcoverageMAE/mR2RMSE/m00.90/ 1.00/ 1.19/>0 201.24/1.151.00/1.001.73/1.26>20 401.25/1.321.00/1.001.99/1.46>40 601.07/1.401.00/1.001.64/1.91>60 801.38/2.171.00/1.002.21/3.13>80 901.57/2.841.00/1.002.50/3.91>90 1001.69/3.851.00/1.002.60/5.00㊀㊀注:表格中数据分别为美国西波拉森林/帽儿山地区的精度统计数据㊂ThedatainthetablearetheaccuracystatisticsoftheCibolaforestintheUnitedStates/MaoerMountainarea.㊀㊀综上,在影响因素方面,平缓的地形以及中低植被覆盖度的条件下,GEDI有着较好的地形高度测量能力,而陡峭的地形以及较高的植被覆盖度会明显导致精度的下降,在进行高精度测量时,要进行地形校正以及波形分解处理后再使用㊂3㊀讨㊀论对比西波拉森林与帽儿山森林的结果,GEDIV2版本数据在针叶林地区测量精度误差RMSE为2 33m,在以阔叶树种为主的针阔叶混交林地区RMSE为4 49m,可见针叶林区域地形测定效果要明显好于以阔叶树种为主的针阔叶混交林地区,在时间与波束对比的实验中,美国亚热带地区的针叶林实验结果与Liu等[16]研究结果类似:强光束性能要好于覆盖光束,且夜间采集数据精度要好于白天所采集数据㊂帽儿山针阔叶混交林地区的实验结果与美国西波拉森林的结果有明显的不同,实验中白天强光束地区植被覆盖度为91 6%,白天覆盖光束地区植被覆盖度为86 7%,黑夜强光束地区植被覆盖度为90 73%,黑夜覆盖光束的植被覆盖度为90 35%,结合其他研究情况考虑原因为白天覆盖光束轨道所经区域植被相对稀疏引起,与针叶林地区结果不矛盾,因此出现白天覆盖光束精度略微高于强光束,而夜间强光束精度优于覆盖光束的情况,GEDI探测器的本底噪声要高于太阳噪声,因此太阳背景噪声不会成为白天与夜间性能差异的主要原因,由于帽儿山为温带湿润气候,美国西波拉地区为亚热带干旱到半干旱沙漠气候,原因考虑为湿润与干旱气候造成白天及黑夜不同云量及温差㊁雨水等因素引起误差,GEDI数据白天与黑夜的性能并非固定,要具体视当地气候因素来确定,湿润地区白天性能更佳,干旱地区黑夜性能更佳㊂坡度因素以及植被覆盖度均为影响GEDI数据性能的重要因素,在坡度20ʎ以下及植被覆盖度60%以下的区域,地形反演的精度很高,随着坡度增大㊁植被覆盖度增加,GEDI数据反演林下地形的性能会变弱,原因为陡峭地区全波形数据由于地面回波与植被回波信息混合在一起造成波形混淆,因此会出现坡度增加㊁反演精度降低的情况,高植被覆盖度区域GEDI激光能量会在穿透冠层时有所损耗,且多层级的冠层会更大程度地影响精度,因此出现植被覆盖度增加反演精度降低的情况㊂4㊀结㊀论1)GEDIV2数据反演林下地形的效果为针叶林要优于针阔叶混交林,强光束要优于覆盖光束,湿润地区白天效果更优,干旱地区黑夜效果更优㊂2)随着地面坡度提升,GEDIV2的测高精度会出现线性下降趋势,平缓地区数据使用效果极好,陡峭地区地面回波与植被回波混叠造成精度降低㊂3)GEDIV2数据在中低植被覆盖度区域地形反演精度较高,在高植被覆盖区域对于林下地形高度的测定性能会有所下降㊂参考文献(reference):[1]蒋有绪.世界森林生态系统结构与功能的研究综述[J].林业科学研究,1995,8(3):314-321.JIANGYX.Onstudyofstructureandfunctionofworldforestecosystem[J].ForestRes,1995,8(3):314-321.[2]LONGTF,ZHANGZM,HEGJ,etal.30mresolutionglobalannualburnedareamappingbasedonlandsatimagesandgoogleearthengine.[J].RemoteSens,2019,11(5):489.DOI:10.3390/rs11050489.[3]李然,王成,苏国中,等.星载激光雷达的发展与应用[J].科技导报,2007,25(14):58-63.LIR,WANGC,SUGZ,etal.DevelopmentandapplicationsofSpaceborneLiDAR[J].Sci&TechnolRev,2007,25(14):58-63.DOI:10.3321/j.issn:1000-7857.2007.14.010.[4]LEFSKYMA,HARDINGDJ,KELLERM,etal.EstimatesofforestcanopyheightandabovegroundbiomassusingICESat[J].GeophysResLett,2005,32(22):L22S02.DOI:10.1029/2005gl023971,2005.[5]DOLANK,MASEKJG,HUANGCQ,etal.RegionalforestgrowthratesmeasuredbycombiningICESatGLASandLandsatdata[J].JGeophysRes,2009,114(G2):G00E05.DOI:10.1029/2008JG000893,2009.[6]BALLHORNU,JUBANSKIJ,SIEGERTF.ICESat/GLASdataasameasurementtoolforpeatlandtopographyandpeatswamp841㊀第2期董瀚元,等:星载激光雷达GEDI数据林下地形反演性能验证forestbiomassinKalimantan,Indonesia[J].RemoteSens,2011,3(9):1957-1982.DOI:10.3390/rs3091957.[7]HAYASHIM.ForestcanopyheightestimationusingICESat/GLASdataanderrorfactoranalysisinHokkaido,Japan[J].ISPRSJPhotogrammandRemoteSens,2013,81:12-18.DOI:10.1016/j.isprsjprs.2013.04.004.[8]SHUMANCA,ZWALLYHJ,SCHUTZB.E,etal.ICESatAntarcticelevationdata:preliminaryprecisionandaccuracyas⁃sessment[J].GeophysResLett,2006,33(7):L07501.DOI:10.1029/2005gl025227,2006.[9]DONGCHENE,SHENQ,XUY,etal.High⁃accuracytopo⁃graphicalinformationextractionbasedonfusionofASTERstereo⁃dataandICESat/GLASdatainAntarctica[J].SciChinaSerDEarthSci,2009,52(5):714-722.DOI:10.1007/s11430-009-0055-6.[10]JAWAKSD,LUISAJ.SynergisticuseofmultitemporalRAMP,ICESatandGPStoconstructanaccurateDEMoftheLarsemannHillsregion,Antarctica[J].AdvSpaceRes,2012,50(4):457-470.DOI:10.1016/j.asr.2012.05.004.[11]ABDALATIW,ZWALLYHJ,BINDSCHADLERR,etal.TheICESat⁃2laseraltimetrymission[J].ProcIEEE,2010,98(5):735-751.DOI:10.1109/JPROC.2009.2034765.[12]DUBAYAHR,BLAIRJB,GOETZS,etal.Theglobalecosys⁃temdynamicsinvestigation:high⁃resolutionlaserrangingoftheEarth sforestsandtopography[J].SciRemoteSens,2020,1(C):100002.DOI:10.1016/j.srs.2020.100002.[13]QIW,DUBAYAHRO.CombiningTandem⁃XInSARandsimu⁃latedGEDIlidarobservationsforforeststructuremapping[J].RemoteSensEnviron,2016,187:253-266.DOI:10.1016/j.rse.2016.10.018.[14]ADAMM,URBAZAEVM,DUBOISC,etal.Accuracyassess⁃mentofGEDIterrainelevationandcanopyheightestimatesinEu⁃ropeantemperateforests:influenceofenvironmentalandacquisi⁃tionparameters[J].RemoteSens,2020,12(23):3948.DOI:10.3390/rs12233948.[15]GUERRAHJ,PASCUALA.UsingGEDIlidardataandairbornelaserscanningtoassessheightgrowthdynamicsinfast⁃growingspecies:ashowcaseinSpain[J].ForEcosyst,2021,8(1):14.DOI:10.1186/s40663-021-00291-2.[16]LIUA,CHENGX,CHENZQ.PerformanceevaluationofGEDIandICESat⁃2laseraltimeterdataforterrainandcanopyheightre⁃trievals[J].RemoteSensEnviron,2021,264:112571.DOI:10.1016/j.rse.2021.112571.[17]DUBAYAHR,HOFTONM,BLAIRJ,etal.GEDIL2AelevationandheightmetricsdataglobalfootprintlevelV002[R].NASAEOSDISLandProcessesDAAC,2021-05-07.DOI:10.5067/GEDI/GEDI02_A.002.[18]COOKB,CORPL,NELSONR,etal.NASAgoddard sLiDAR,hyperspectralandthermal(G⁃liht)airborneimager[J].RemoteSens,2013,5(8):4045-4066.DOI:10.3390/rs5084045.[19]ROYDP,WulderMA,LovelandTR,etal.Landsat⁃8:scienceandproductvisionforterrestrialglobalchangeresearch[J].RemoteSensEnviron,2014,145:154-172.DOI:10.1016/j.rse.2014.02.001.[20]柳红凯,徐昌荣,徐晓.基于渐进加密三角网机载LIDAR点云滤波改进算法研究[J].江西理工大学学报,2016,37(3):50-55,60.LIUHK,XUCR,XUX.Studyonimprovedalgo⁃rithmofpointcloudsfromairbornescannerbasedonprogressiveencryptionTIN[J].JJiangxiUnivSciTechnol,2016,37(3):50-55,60.DOI:10.13265/j.cnki.jxlgdxxb.2016.03.009.[21]佟斯琴,包玉海,张巧凤,等.基于像元二分法和强度分析方法的内蒙古植被覆盖度时空变化规律分析[J].生态环境学报,2016,25(5):737-743.TONGSQ,BAOYH,ZHANGQF,etal.SpatialtemporalchangesofvegetationcoverageinInnerMongoliabasedonthedimidiatepixelmodelandintensityanalysis[J].EcolEnvironSci,2016,25(5):737-743.DOI:10.16258/j.cnki.1674-5906.2016.05.002.(责任编辑㊀李燕文)941。
基于单光子的星载激光水下目标探测深度研究彭志兴;周保琢;陈华;张志;谭平【摘要】卫星对海探测具有大面积同步观测、全天时工作、不受领海领空限制等优点.为此,本文分析了卫星对海探测的激光链路损耗,构建了星载激光水下目标探测能量传输模型,探讨了基于单光子机制的星载激光对水下目标探测的极限深度.结果表明,在Ⅰ类海区,对于水下等效直径为2 m的物体,星载激光在200 km高度对水下目标探测的最大深度为212 m.因此,在中低轨道开展星载激光对深海水下目标进行探测是可能的.本文的研究工作为进一步开展星载激光深海水下目标探测提供支持.【期刊名称】《激光与红外》【年(卷),期】2018(048)007【总页数】6页(P809-814)【关键词】激光;探测深度;水下目标;卫星;单光子【作者】彭志兴;周保琢;陈华;张志;谭平【作者单位】四川航天系统工程研究所,四川成都610100;四川航天系统工程研究所,四川成都610100;四川航天系统工程研究所,四川成都610100;四川航天系统工程研究所,四川成都610100;四川航天系统工程研究所,四川成都610100【正文语种】中文【中图分类】TN2491 引言水下目标探测是海洋国土监视、反潜战等环境下的关键技术。
随着新型材料的研发和工艺水平的提高,现代水下航行器的噪声和磁性显著降低,下潜深度增大,其隐蔽性得到极大提高。
同时,用于侦察、探测、攻击等的各种小型水下武器平台也不断出现。
这些对反制方的水下目标探测能力提出了更高的要求。
目前,水下目标探测主要是基于船载和机载平台;探测方式包括水声探测、磁异常探测、红外尾流探测、激光雷达探测等[1]。
水声探测是利用舰船携带声纳和听响器,或利用在海底布设水听器构建网络来实现,通过计算目标发射声波到达不同水听器的时间差或相位差,再结合水听器本身的大地坐标来实现定位;磁异常探测是基于磁信号的目标探测技术,通过磁探仪对水下目标造成的地磁异常进行检测,从而发现水下目标;红外尾流探测是通过探测运动目标对周围水体加热后的水温异常来实现的;激光探测是利用海水对532 nm波段的蓝绿光的衰减要远小于对其他波段的电磁波的衰减开展蓝绿激光水下目标探测。
《星载大气探测激光雷达发展与展望》篇一一、引言随着科技的不断进步,星载大气探测激光雷达(简称大气激光雷达)在地球科学、气候研究、大气污染监测等领域的应用越来越广泛。
大气激光雷达以其高精度、高分辨率的探测能力,为大气环境监测和气候预测提供了重要手段。
本文将介绍星载大气探测激光雷达的发展历程、现状以及未来展望。
二、星载大气探测激光雷达的发展历程1. 初期研究与发展大气激光雷达的初期研究始于20世纪70年代,当时主要应用于地面大气探测。
随着技术的不断发展,研究人员开始尝试将激光雷达技术应用于卫星遥感领域,以实现对大气的远程探测。
2. 技术突破与卫星搭载进入21世纪,随着激光技术和卫星技术的不断发展,星载大气探测激光雷达技术取得了重大突破。
多个国家开始将大气激光雷达搭载在卫星上,实现对大气的全天候、全天时监测。
3. 多种类型激光雷达的研发随着应用需求的不断增加,多种类型的星载大气探测激光雷达被研发出来。
例如,差分吸收激光雷达(DIAL)和拉曼激光雷达等,它们在探测大气成分、气溶胶、云和降水等方面具有独特优势。
三、星载大气探测激光雷达的现状1. 技术成熟度目前,星载大气探测激光雷达技术已经相对成熟,多个国家已经成功将大气激光雷达搭载在卫星上,并实现了对大气的实时监测。
2. 应用领域星载大气探测激光雷达在地球科学、气候研究、大气污染监测等领域得到了广泛应用。
例如,它可以用于监测大气中的气溶胶、云和降水等成分,为气候变化研究和天气预报提供重要数据支持。
3. 发展趋势随着技术的不断发展,星载大气探测激光雷达的分辨率和精度不断提高,其在全球气候变化监测、大气污染防治等领域的应用前景广阔。
四、星载大气探测激光雷达的未来展望1. 技术创新与突破未来,随着技术的不断创新和突破,星载大气探测激光雷达的探测能力将进一步增强。
例如,研究人员将继续优化激光雷达的光源、接收器和数据处理算法,提高其探测精度和分辨率。
同时,新型的星载大气探测技术也将不断涌现,如量子级联激光雷达等。
第 54 卷第 11 期2023 年 11 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.11Nov. 2023星载光子计数激光雷达数据森林高度及林下地形反演研究进展李毅,朱建军,付海强,高士娟,吴可夫(中南大学 地球科学与信息物理学院,湖南 长沙,410083)摘要:森林高度是衡量森林生物量、森林生态系统碳汇的重要参数,位于森林下的地形(林下地形)是支撑国家重大基础设施建设、灾害监测的战略信息资源。
新一代星载激光雷达ICESat-2/ATLAS 采用一种多波束微脉冲的光子计数技术,以10 kHz 的重复频率对地发射激光脉冲,从而导致出现间隔为0.7 m 、光斑半径为8.5 m 的重叠光斑。
相比于ICESat-1/GLAS ,ICESat-2/ATLAS 具有更高的空间采样率以及对坡度的不敏感性,是目前反演森林高度参数和林下地形的重要手段。
本文介绍了ICESat-2/ATLAS 的主要参数指标,总结了各类误差因素对ATL08官方产品的影响,分析了各种森林区光子点云滤波方法、ICESat-2林下地形反演方法及森林高度参数反演方法的适用性及面临的主要问题,展望了ICESat-2/ATLAS 光子点云滤波、林下地形及森林高度参数反演的发展趋势及应用前景。
关键词:星载光子计数激光雷达ICESat-2;光子点云滤波;林下地形;森林高度;研究进展中图分类号:P237 文献标志码:A 文章编号:1672-7207(2023)11-4380-11Research progress on retrieving forest canopy height and sub-canopy topography from spaceborne photon-counting LiDAR dataLI Yi, ZHU Jianjun, FU Haiqiang, GAO Shijuan, WU Kefu(School of Geosciences and Info-physics, Central South University, Changsha 410083, China)Abstract: Forest height is an important parameter to measure forest biomass and carbon sink of the forest ecosystem. The topography under the forest(sub-canopy topography) is a strategic information resource supporting national infrastructure construction and disaster monitoring. The new generation space-borne lidar ICESat-2/ATLAS adopts a multi-beam micro-pulse photon counting technology for the first time, with a repetition frequency收稿日期: 2023 −01 −12; 修回日期: 2023 −03 −25基金项目(Foundation item):国家自然科学基金资助项目(41904004,42030112,62207032);中南大学中央高校基础科研基金资助项目(506021729) (Projects(41904004, 42030112, 62207032) supported by the National Natural Science Foundation of China; Project(506021729) supported by the Fundamental Research Funds for the Central Universities of Central South University)通信作者:朱建军,博士,教授,从事测量平差与数据处理、复数平差理论及其在InSAR/PolInSAR 中的应用研究;E-mail :***********.cnDOI: 10.11817/j.issn.1672-7207.2023.11.016引用格式: 李毅, 朱建军, 付海强, 等. 星载光子计数激光雷达数据森林高度及林下地形反演研究进展[J]. 中南大学学报(自然科学版), 2023, 54(11): 4380−4390.Citation: LI Yi, ZHU Jianjun, FU Haiqiang, et al. Research progress on retrieving forest canopy height and sub-canopy topography from spaceborne photon-counting LiDAR data[J]. Journal of Central South University(Science and Technology), 2023, 54(11): 4380−4390.第 11 期李毅,等:星载光子计数激光雷达数据森林高度及林下地形反演研究进展of 10 kHz to the ground. Compared with ICESat-1/GLAS, ICESat-2/ATLAS has a higher spatial sampling rate and insensitivity to slope and is currently important data for inverting the forest canopy height of forest ecosystems and sub-canopy topography. Some main indicators of ICESat-2/ATLAS were introduced and the influence of various errors on ATL08 products were summarized. The applicability of various photon point cloud filtering methods sub-canopy topography inversion and forest canopy height inversion were analyzed. The research progress and application prospects on photon point cloud filtering, sub-canopy topography inversion, and forest canopy height retrieval were put forward.Key words: space borne photon-countiong LiDAR ICESat-2; photon cloud filtering; sub-canopy topography;forest height; research progress森林生态系统是地球上最大的陆地碳库之一,拥有世界3/4以上的陆地生物[1],通过“碳汇”和“固碳”的方式调节全球范围内二氧化碳的含量[2],控制着全球碳循环。
星载雷达分析全球云相分布本文研究了全球纬向的云相分布和全球各区域的液态水云分数,利用2007年到2010年卫星雷达资料的再分析的数据,来确定各纬度上云相的多少和各云相的范围。
春季的过冷水云量非常多,远远大于夏秋冬季;在赤道附近的平均冰云比例要小于其它纬度。
在-15℃时,亚洲和欧洲的过冷水云量是40%左右,剩下的60%冰相或气态的水,南极洲、南美洲和非洲约占50%左右,在北美洲占60%左右,北美洲的冷云量多于其它大洲。
并在研究中得到冷云量与气溶胶有关系,在这之前的大部分研究,得到的一般结论是冷云量与温度成线性关系,气溶胶多了,冷云量就会减少,而气溶胶的多少是由许多因素决定的,并且气溶胶存在的高度也会对冷云量产生影响。
这对全球的气候模式修订和飞机的飞行安全有着重要的意义。
关键词:云相,过冷水,全球分布第一章引言1.1 研究意义和应用前景云相态是一个物理量,可以表示云是否由液水滴,冰晶,或水和冰混合组成。
当卫星观测到确定的云相时,超过一定的空间尺度,空间平均值是确定的,并且一朵云上的上半部分比下半部分更重。
各类云相态在全球存在着区域性的差异,在不同纬度或不同的大洲或不同的国家之间,各云相存在差异,不同云相会影响降水的形成,降水的大小,大气辐射的收支等等,还有地球大气中存在着混合相的冷云,研究过冷水云在全球的不同比例,可以对航空尤其是飞机的飞行安全作出相应的参考,不同的过冷水云相态可以显著的影响地球大气系统中的长短波辐射平衡,云相态不同发射率也不同(1-3)。
在混合相云中的云相组合是非常复杂的,除了温度对它有影响外,还有冰核气溶胶的影响,许多气候模型中,虽然已经计算出有限的云相组成,但是只作为平均网格的温度函数(4)。
在这种温度函数下,云的组成被假设成低于-40℃的完全冰相和大于0℃的液体粒子,混合相在0到-40℃之间。
这种过于简单的划分方法可能会导致许多气候模型中错误的计算和产生较大的误差。
云相态的反演是一种基于远程的云特性遥感卫星的先决条件。