最新对数函数优秀教案
- 格式:doc
- 大小:186.50 KB
- 文档页数:6
写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
高一数学教案:对数函数高一数学教案:对数函数精选2篇(一)教学目标:1. 了解对数函数的定义和性质。
2. 掌握对数函数的图像和性质。
3. 能够解决与对数函数相关的问题。
4. 培养学生的数学思维和解决问题的能力。
教学重点:1. 对数函数的定义和性质。
2. 对数函数的图像和性质。
教学难点:1. 对数函数的图像和性质。
2. 解决与对数函数相关的问题。
教学方法:1. 归纳法:通过观察和总结,引出对数函数的定义和性质。
2. 演绎法:通过例题分析,引导学生掌握对数函数的图像和性质。
3. 实例法:通过练习实例,训练学生解决与对数函数相关的问题的能力。
教学过程:Step 1:引入对数函数引导学生回顾指数函数的定义和性质,简要介绍对数函数与指数函数的关系。
Step 2:对数的定义通过观察指数运算的性质,引出对数运算的定义和性质。
例如:a^x = b 等价于 x = log_a bStep 3:对数函数的定义和性质介绍对数函数的定义和性质,包括:- 对数函数的定义:y = log_a x,其中 a > 0 且 a ≠ 1。
- 对数函数的性质:对数函数的定义域为 x > 0,值域为实数集,函数图像在直线 y = x 上,且经过点 (1, 0)。
Step 4:对数函数的图像通过例题和计算,了解对数函数的图像特点,包括:- 当 0 < a < 1 时,对数函数是递减函数,图像从正向下方弯曲。
- 当 a > 1 时,对数函数是递增函数,图像从负向上方弯曲。
- 当 a = 1 时,对数函数是常函数 y = 0。
Step 5:对数函数的性质通过例题和计算,掌握对数函数的性质,包括:- 对数函数与指数函数互为反函数,即 log_a(a^x) = x 和 a^(log_a x) = x。
- 对数函数的性质 log_a(x * y) = log_a x + log_a y,log_a(x / y) = log_a x - log_a y,log_a(x^n) = n * log_a x。
高中数学对数函数讲课教案
教学内容:对数函数的定义、性质和计算
教学目标:学生能够理解对数函数的概念,掌握对数函数的性质和计算方法
教学重点和难点:对数函数的定义、性质和计算方法
教学步骤:
一、导入(5分钟)
1. 引出对数函数的概念,让学生思考对数函数与指数函数之间的关系;
2. 提出对数函数的定义,引入对数的概念;
二、讲解对数函数的性质(15分钟)
1. 对数函数的定义:y=loga(x);
2. 对数函数的性质:对数函数的定义域、值域、图像、性质等;
3. 讲解对数函数的性质,解释对数函数的特点;
三、解题演练(20分钟)
1. 练习对数函数的基本计算,如对数函数的值计算、对数函数性质的应用等;
2. 指导学生做相应的练习题,巩固对数函数的计算方法;
四、综合应用(10分钟)
1. 结合实际问题,引导学生将对数函数应用到实际生活中,如幂函数、对数函数的应用等;
2. 指导学生做相应的应用题,提高对数函数的实际运用能力;
五、小结与评价(5分钟)
1. 总结本节课的重点知识点,强调对数函数的重要性;
2. 对学生的学习情况进行评价和反馈,并指导下节课的学习内容;
教学反思:在本节课的教学中,应注重对数函数的定义和性质的讲解,帮助学生建立对对
数函数的认识,同时通过练习和应用,提高学生对对数函数的理解和运用能力。
同时,教
师应根据学生的实际学习情况,适时调整教学方法和内容,提高教学效果。
高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
对数函数教学设计对数函数教学设计(精选10篇)作为一名教学工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
我们该怎么去写教学设计呢?以下是小编为大家收集的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga (1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53 又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数教学设计篇2一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
教学计划:《对数函数》一、教学目标1.知识与技能:o学生能够理解对数函数的概念,掌握对数函数的一般形式及其性质。
o学生能够识别并绘制对数函数的图像,理解图像与函数性质之间的关系。
o学生能够运用对数函数解决简单的实际问题,如计算复利、对数增长等。
2.过程与方法:o通过与指数函数的对比,引导学生理解对数函数的概念和必要性。
o通过观察、分析对数函数图像,培养学生的数形结合能力和逻辑推理能力。
o通过小组合作探究,培养学生的协作学习能力和问题解决能力。
3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。
o培养学生的耐心和细心,提高解决复杂问题的毅力。
o引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。
二、教学重点和难点●重点:对数函数的概念、一般形式、性质及其图像特征。
●难点:理解对数函数图像与函数性质之间的关系,以及运用对数函数解决实际问题。
三、教学过程1. 复习旧知,引入新课(5分钟)●复习指数函数:简要回顾指数函数的概念、性质和图像特征,为学习对数函数做好铺垫。
●生活实例引入:通过介绍天文学中的星等计算、地震震级等实例,引导学生思考这些实例中隐藏的数学规律,从而引出对数函数的概念。
●明确学习目标:阐述本节课将要学习的内容——对数函数,并明确学习目标。
2. 对数函数概念与性质讲解(15分钟)●定义讲解:详细讲解对数函数的概念,强调其与指数函数的互逆关系,并给出对数函数的一般形式(如y=log a x,其中a>0且a≠1,x>0)。
●性质探讨:引导学生根据对数函数的定义,探讨其定义域、值域、单调性、奇偶性等基本性质。
●对比分析:将对数函数与指数函数进行对比分析,帮助学生更好地理解两者的联系与区别。
3. 对数函数图像分析(10分钟)●图像绘制:利用多媒体设备展示不同底数下对数函数的图像,引导学生观察图像特征。
●特征归纳:引导学生根据图像特征归纳出对数函数的图像特征,如底数大于1时图像上升缓慢,底数在0和1之间时图像下降迅速等。
对数教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计【优秀5篇】高中数学对数教学教案有哪些篇一教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题。
对数函数及其性质教案一、教学目标1. 了解对数函数的定义及其性质;2. 掌握对数函数的常用计算方法;3. 能够应用对数函数解决实际问题。
二、教学重点1. 获取对数函数的定义;2. 掌握对数函数的性质;3. 能够应用对数函数解决实际问题。
三、教学准备教师:讲台、黑板、粉笔学生:课本、笔记本四、教学过程步骤一:对数函数的引入1. 引导学生回顾指数函数的概念和性质;2. 提问:你们对对数函数有什么了解吗?3. 引导学生思考对数函数和指数函数之间的关系。
步骤二:对数函数的定义1. 引导学生观察对数函数的定义,并与指数函数进行对比;2. 输入函数y=loga(x),解释其中a、x、y的含义;3. 让学生通过例题理解对数函数的定义。
步骤三:对数函数的性质1. 引导学生观察对数函数的图像,并总结对数函数的性质;2. 引导学生推导出对数函数的两个重要性质:底数为1时的结果和底数为0时的结果。
步骤四:对数函数的计算1. 让学生独立完成一些简单的对数函数计算;2. 引导学生注意对数函数计算的基本规则,例如:对数函数的乘法法则、对数函数的除法法则等;3. 提供一些练习题,让学生进行巩固。
步骤五:对数函数的应用1. 引导学生认识到对数函数在实际问题中的应用;2. 通过一些实际问题,让学生应用对数函数解决问题。
五、课堂小结1. 回顾课堂内容,确保学生对对数函数的定义和性质有一定的认识;2. 强调对数函数的计算方法和应用。
六、作业布置1. 求解对数函数的一些练习题;2. 思考并列举出自己身边能够应用对数函数解决问题的例子。
七、教学反思通过这节课的教学活动,学生对对数函数的定义和性质有了一定的认识,并能够应用对数函数解决实际问题。
但是,对于一些特殊情况的处理还需要进行更加细致的讲解和巩固练习。
下一节课应该重点讲解对数函数的图像和性质,以及在实际问题中的应用。
对数函数教案小学一、教学目标:1. 了解对数函数的定义和性质;2. 掌握对数函数的基本计算方法;3. 熟悉对数函数在实际问题中的应用;4. 发展学生的逻辑思维和解决问题的能力。
二、教学重点:1. 对数函数的定义和性质;2. 对数函数的基本计算方法。
三、教学难点:1. 对数函数在实际问题中的应用。
四、教学准备:教师:课件、教学挂图、实物模型等;学生:教材、文具等。
五、教学过程:步骤一:导入新知教师提出问题:“在数学中,我们经常会遇到很大很小的数字,如何方便地表示这些数字?”引导学生思考,并引入对数函数的概念。
步骤二:引入对数函数的定义1. 介绍对数函数的定义:对数函数是指以某个固定的底数为底,求这个底数乘积的对数。
2. 带入实例进行解释。
如对数函数log2(8)等于几,引导学生求解log2(8)=3。
步骤三:对数函数的性质1. 教师介绍对数函数的性质:对数函数的定义域都是正实数集合,值域都是实数集合。
2. 通过多个实例,帮助学生理解对数函数的性质。
如对数函数log2(1)=0、log2(2)=1、log2(4)=2等。
步骤四:对数函数的基本计算方法1. 教师介绍对数函数的基本计算方法。
如对数函数乘法法则logb(xy)=logb(x)+logb(y)、对数函数除法法则logb(x/y) = logb(x) -logb(y)等。
2. 通过示例,引导学生掌握对数函数的基本计算方法。
如log2(8*2)=log2(8)+log2(2)=3+1=4。
步骤五:对数函数在实际问题中的应用1. 介绍对数函数在实际问题中的应用。
如在计算机科学中,对数函数广泛用于数据的压缩和存储,以及在物理学中用于描述声音和光线的强度等。
2. 引导学生运用对数函数解决实际问题。
如给定一座电影院的座位数为1000个,每场电影的上座率为10%,学生可以运用对数函数计算出每场电影的上座人数。
步骤六:梳理知识点教师总结本课的重点内容,并向学生强调对数函数的重要性和实际应用意义。
4.2 对数函数的图象和性质课时一等奖创新教学设计4.4.2 对数函数的图象和性质(一)教学内容对数函数的图象和性质(二)教学目标1 掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2 能够用对数函数的性质去解决问题。
(三)教学重点及难点1.教学重点对数函数的图像、性质及其应用2.教学难点对数函数图像和性质与底数a的关系。
(四)教学过程设计问题1 :我们已经学习对数函数的概念,类比指数函数的学习过程,我们可以怎样研究对数函数?师生活动:(1)学生思考后回答。
先作函数图象,然后根据图象研究函数性质(包括定义域、值域、单调性、奇偶性、特殊点、图象的其他变化特征等方面)。
追问1:如何得到对数函数的图象?由特殊到一般的研究方法。
追问2:选取哪些特殊的对数函数来研究?追问3:通过什么方法得到这个对数函数的图象?学生小组内进行讨论,上台展示。
x … 1 2 4 ……2[ -1 0 1[来源:] 2 …设计意图:培养学生的能力,达到对函数概念以及指数函数的巩固的目的,并为本节课的研究理清思路。
问题2:我们知道,底数互为倒数的两个指数函数的图象关于y 轴对称.对于底数互为倒数的两个对数函数,比如和的图像,它们的图象是否也有某种对称关系呢?可否利用其中一个函数的图象画出另一个函数的图象?师生活动:(1)学生分组讨论思考后回答。
利用换底公式,可以得到,因为点(x,y)与(x,-y)关于x轴对称,所以图象上任意一点P(x,y)关于x轴的对称点Q(x,-y)都在的图象,反之亦然。
由此可知,底数互为倒数的两个对数函数的图象关于x轴对称。
根据这种对称性就能利用的图象画出的图象(2)追问1:函数以及的图象关于轴对称,可以解释吗?利用换底公式可以解释。
在函数的图象上任取一点(x1,y1),则,所以点(x1,-y1)在函数的图象上。
又点(x1,y1)和点(x1,-y1)关于轴对称,所以这两个函数图象关于轴对称。
《对数函数》优秀教案
一、教材分析
对数函数是在学习指数函数、对数的基础上引入的,由此我制定了这样的教学目标。
1、通过指数与对数的联系,掌握对数函数的概念、图象、性质并能简单应用。
2、在教学过程中,通过数形结合、分类讨论等数学思想方法,发展学生的逻辑思维能力,提高他们的信息检查和整合能力。
教学重点:对数函数的概念、图象和性质.
教学难点:由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
二、指导思想和教学方法
利用多媒体辅助教学,通过讨论启发学生归纳对数函数的概念图像及性质,同时在教学中渗透“类比联想”、“数形结合”及“分类讨论”的数学思想方法。
三、教学过程
1、提出问题
我们来看下上节课的2.1.2的例8:截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?
1999年底,我国人口约13亿;
经过1年(即2000年),人口数为13+13*1%=13*(1+1%)(亿)
经过2年(即2001年),人口数为13*(1+1%)+13*(1+1%)*1%=13*(1+1%)2(亿)
经过3年(即2002年),人口数为13*(1+1%)2+13*(1+1%)2*1%=13*(1+1%)3(亿)。
所以经过x 年,人口数为y=x %)11(*13+=x 01.1*13(亿)
当x=20时,1601.1*1320≈=y (亿)
所以经过20年后我国人口数最多为16亿。
咱们上节课的例题,我们能从关系式x y 01.1*13=中,算出任意一个年头x 的人口总数,那反之,如果问,哪一年的人口数可达到18亿,20亿,30亿,该如何解决? 上述问题实际上就是从x x x 01.113
30,01.11320,01.11318===,...中分别求出x ,即已知底数和幂的值,求指数这是我们这节课将要学习的对数函数问题,
通过我们学习的对数表示方法,咱们可以把上面的式子表示成:x y =01.1log ,其中y=人口数/13,y 是自变量,x 是y 的函数,但习惯上,用x 表示自变量,y 表示它的函数,
因此对上式进行改写:x y 01.1log =。
说明:这里,以学生熟悉的问题为背景,以旧有知识为基点,顺利切入学生的最近发展区,使学生亲历了对数函数模型的形成过程,初步理解对数函数的概念,感受研究对数函数的意义。
2、探究新知
根据上面的讨论,引出对数函数的定义。
(一般地,函数log (0,1)a y x a a =>≠叫做对数函数,它的定义域是(0,)+∞)
在类比联想的基础上,进行以下探究:
探究1:函数log a y x =与函数
x y a =(0,1)a a >≠的定义域、值域之间有什么关系? 说明:定义域、值域是函数的两大要素,再加上对数函数和指数函数的关系,因此,有必要对此问题进行讨论。
这里,让学生探究并汇报问题的结果(log a y x =的定义域和值域分别是x y a =的值域和定义域。
)(显示)通过比较,进一步感受指数函数与对数函数的内在联系。
探究2:描点作图,画出下列两组函数的图象,并观察各组函数的图象,给出它们之间的关系.
2(1) 2,log ;x y y x == 12
1(2) ,log .2x
y y x ⎛⎫== ⎪⎝⎭ 说明:图像是研究、验证性质的工具之一,也是函数的表示方法之一。
这里,要求学生自主绘出2log y x =,12log y x =的图像(指数函数的图像给出)。
目的有三:一是培养
学生的动手能力,二是让学生进一步感受指数函数与对数函数的关系,三是为下面学生探索对数函数的性质奠定基础。
在学生观察、讨论或动手翻折的基础上得出图像之间的关系:关于直线y x =对称,并由特殊到一般,得出(显示):当0,1a a >≠时,函数x y a =与log a y x =的图像关于直线y x =对称。
根据探究1、2的讨论,适时给出反函数的概念(不展开讲述),指出指数函数和对数函数互为反函数。
(我们把x y a =称为log a y x =的反函数,log a y x =称为x y a =的反函数,即它们互为反函数。
)
一般地,函数()y f x =的反函数记作:1()y f x -=.
探究3:观察图形,类比联想指数函数的性质,你发现了对数函数的那些性质?
说明:这是本节课的重点。
教学中,我准备这样处理:
(1)留给学生足够的时间进行探索、交流、讨论。
探索性质可以借助学生自己绘制的图像,也可利用老师给出的图像。
(显示)
(2)引导学生在类比联想指数函数的图像特征和函数性质基础上,由特殊到一般,充分发表意见,并与周围的人交流思维的过程和结果。
通过观察、分析、类比、交流讨论,使原来相互矛盾的意见、模糊不清的知识得以明朗、一致。
(3)让学生把自己总结出的结果和图像“整合”成知识图表,使学生头脑中的知识进一步条理化、系统化。
表:对数函数的图像与性质
1
a>01
a
<<
图象
图象1、图象的位置:在y轴的右侧;
2、图象过定点:(1,0)
(1,0) x
y
(1,0)
x
y
特
征 3、图象向上无限延伸,向下无限接近y 轴. 3、图象向下无限延伸,向上无限接近y 轴.
4、随着x 增大,图象是上升的
4、随着x 增大,图象是下降的
5、1x >时,函数图象在x 轴的上方; 01x <<时,函数的图象在x 轴的下方;
5、1x >时,函数图象在x 轴的下方;
当01x <<时,函数的图象在x 轴的上
方;
函
数
性
质 定义域 (0,)+∞ 值 域 R 单调性 单调递增 单调递减
奇偶性 非奇非偶 探究4:再仔细观察对数函数图象,你还有其他新的发现吗?
在学生深入观察、讨论、交流的基础上,总结自己的发现,这里主要指出两点发现:
(1)从特殊到一般,得出:函数log a y x =与函数1log a
y x =的图象关于x 轴对称;
(2)(2)底数a 的变化对对数函数图象的影响:当a>1时,a 越大,图像在第一象限内曲线越靠近x 轴;在第四象限内的曲线越靠近y 轴。
当0<a<1时,a 越小,图像在第四象限内曲线越靠近x 轴;在第一象限内的曲线越靠近y 轴。
对第二个发现,在学生充分发言后,教师通过课件演示,进一步印证学生的发现,并给学生更加直观的感受。
3、例题讲述
例1 求下列函数的定义域
(1)0.2log (4);y x =- (2)log 1(0,1).a y x a a =->≠
说明:通过例1要让学生明确,求解对数函数定义域问题的关键是要抓住“真数大于
零”,当真数为某一代数式时,可将其看作一个整体单独提出来求其大于零的解集即该函数的定义域
例2 利用对数函数的性质,比较下列各组数中两个数的大小
⑴ log 23.4 , log 28.5
⑵ log 0.31.8 , log 0.32.7
⑶ log a5.1 , log a5.9 ( a >0 , a ≠1 )
例3 比较下列各组中两个值的大小:
⑴ log 67 , log 7 6 ;
⑵ log 3π , log 2 0.8 .
说明:例2例3考察学生利用对数函数性质解决问题的能力,讲解时,先让学生回顾利用指数函数比较大小时的处理方法,然后引导学生采用类似的方法解决本题。
即:如果两个对数值同底,应构造一个同底的对数函数,利用它的单调性直接判断;如果底不同,应构造两个对数函数,借助两个对数函数的单调性和中间值“1”或“0”进行判断。
本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”;同时,形成这类问题的一般解题流程:“识别――判断――比较”。
其中,识别,指“模式识别”,这也是波利亚所提倡的一种重要数学解题思想。
在教学中渗透这样的数学思想,是发展学生数学素质的一项重要的基本训练。
4、巩固练习
根据课堂具体情况,处理课后相关练习题。
5、课堂小结
主要请学生总结并说出本节课学到了什么?还有哪些需要加强的地方?
6、布置作业
(1)P69 2,3.
(2)课后思考题:(p70,ex9)如图,已知函数
log ,log ,log ,log a b c d y x y x y x y x ====的图像分别
是1234,,,C C C C ,试判断1,1,a ,b ,c ,d 的大小。
说明:设置这样的两道课后思考题,使得课堂教
学得以很好的延续与深入。