因式分解复习课教案
- 格式:docx
- 大小:9.46 KB
- 文档页数:4
中考复习教案《因式分解》一、教学目标1. 掌握因式分解的基本概念和方法。
2. 能够运用提公因式法、公式法、分组分解法等方法进行因式分解。
3. 提高解决实际问题的能力,培养逻辑思维和运算能力。
二、教学重难点1. 重点:因式分解的方法和技巧。
2. 难点:灵活运用各种方法进行因式分解,解决实际问题。
三、教学方法1. 采用讲解法、示范法、练习法、讨论法等相结合的教学方法。
2. 以学生为主体,注重引导学生主动探究、合作交流。
四、教学内容1. 回顾因式分解的基本概念和方法。
2. 提公因式法:找出多项式的公因式,将其提出来进行因式分解。
3. 公式法:运用平方差公式、完全平方公式等进行因式分解。
4. 分组分解法:将多项式中的项进行合理分组,分别进行因式分解。
五、教学过程1. 导入:通过复习已学过的因式分解实例,引发学生对因式分解的兴趣和思考。
2. 新课讲解:讲解提公因式法、公式法、分组分解法等因式分解方法,并结合例题进行演示。
3. 课堂练习:布置一些因式分解的练习题,让学生独立完成,并及时给予指导和反馈。
4. 合作交流:组织学生进行小组讨论,分享各自的解题方法和经验,互相学习和借鉴。
6. 课后作业:布置一些综合性的因式分解题目,让学生进一步巩固所学知识。
六、教学评估1. 课堂练习环节,及时观察学生的掌握情况,针对性地进行个别辅导。
2. 通过课后作业的完成情况,了解学生对因式分解方法的掌握程度。
3. 在下一节课开始时,进行简短的测试,检验学生对上节课内容的复习情况。
七、教学拓展1. 引导学生思考:因式分解在实际生活中的应用,如分解数字、简化表达式等。
2. 鼓励学生探索更多的因式分解方法,提高解决问题的能力。
八、教学反思2. 根据学生的反馈,调整教学方法和策略,以提高教学效果。
九、课后作业1. 完成练习册上的因式分解题目,巩固所学知识。
2. 选择两道具有挑战性的题目进行思考和解答,提高自己的解题能力。
十、教学计划1. 下一节课将继续复习因式分解,重点讲解交叉相乘法和综合除法等高级因式分解技巧。
因式分解复习课教学设计教学目标:1、能理解好因式分解的概念并能正确判别2、会用提公因式法、运用公式法来分解因式教学重点:熟练运用三种方法来进行因式分解教学难点:因式分解三种方法的综合运用教学过程:导入:1. 计算: 22465-5352. 已知a+b=3,a-b=2,求22b -a 的值.一、知识回顾1、什么叫做因式分解?把一个多项式化成几个整式的积的形式1.下列从左到右的变形中,是因式分解的是( ) 222222.(3)(3)9.45(2)9.45(4) 5.44(2)A a a a B a a a C a a a a D a a a +-=---=----=---+=-2.下列多项式能分解因式的( )22222222. .. .A a b B a b C a a b b D a b+-+-+-- 2、因式分解的方法(1)提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式。
这种分解因式的方法叫做提公因式法。
练习:1、把多项式m2(a -2)+m(2-a)分解因式等于( )A .(a -2)(m2+m)B .(a -2)(m2-m)C .m(a -2)(m -1)D .m(a -2)(m+1)2、把下列多项式分解因式(1)(2)(3)()yx y x m +--2222axy y x a -c ab ab abc 249714+--公式法:利用平方差和完全平方公式,将多项式因式分解的方法。
练习:1、分解因式 9-x 2=__________。
2、分解因式 4x 4-x 2+ =____________________。
3、分解因式 49y x 14-y x 2+++)()( =_____________。
牛刀小试:把下列各多项式因式分解:总结经验:分解因式三步曲先看有无公因式,再看能否套公式,因式分解要彻底.164)1(2-x 42242)2(b b a a +-22)(4)(9)3(b a b a --+。
中考复习教案《因式分解》一、教学目标:1. 理解因式分解的概念和意义。
2. 掌握因式分解的基本方法和技巧。
3. 能够运用因式分解解决实际问题。
二、教学内容:1. 因式分解的定义和性质2. 提公因式法3. 公式法4. 交叉相乘法5. 分解因式的综合应用三、教学重点与难点:1. 教学重点:因式分解的方法和技巧。
2. 教学难点:灵活运用因式分解解决实际问题。
四、教学过程:1. 复习导入:回顾上节课的内容,巩固因式分解的基本概念。
2. 知识讲解:讲解因式分解的定义、性质和各种方法。
3. 例题解析:分析并解答典型的因式分解题目,引导学生掌握解题思路。
4. 课堂练习:布置适量的练习题,让学生巩固所学知识。
5. 总结提升:对本节课的内容进行总结,强调重点和难点。
五、课后作业:1. 完成教材后的练习题。
2. 选择两道难度较高的因式分解题目进行挑战。
3. 总结因式分解的心得体会,下周分享。
注意:教师在教学过程中要注重启发式教学,引导学生主动探索、积极思考,提高学生的动手能力和解决问题的能力。
要注意因材施教,针对不同学生的实际情况进行有针对性的辅导。
六、教学策略与方法:1. 案例分析:通过分析具体的数学案例,让学生理解因式分解的应用场景。
2. 互动讨论:鼓励学生参与课堂讨论,分享自己的解题心得。
3. 小组合作:组织学生进行小组合作,共同解决因式分解问题。
4. 信息技术辅助:利用多媒体教学资源,展示因式分解的动画和步骤,帮助学生形象理解。
七、教学评价:1. 课堂练习:通过课堂上的即时练习,评估学生对因式分解概念和方法的掌握程度。
2. 课后作业:通过学生完成的课后作业,检查其对课堂所学知识的应用能力。
3. 单元测试:安排单元测试,全面评估学生对因式分解的理解和运用能力。
4. 学生反馈:收集学生的学习反馈,了解其在学习过程中的困惑和需求。
八、教学资源:1. 教材:选用权威的数学教材,提供系统的因式分解知识体系。
2. 教学课件:制作精美的教学课件,辅助展示因式分解的步骤和例题。
初中数学因式分解复习教案教案:初中数学因式分解的复习一、教学目标:1.知识目标:了解因式分解的基本概念和步骤,能够正确分解一元多项式。
2.技能目标:掌握因式分解的方法和技巧,能够灵活运用于解决实际问题。
3.过程目标:培养学生的思维逻辑能力和解决问题的能力。
二、教学内容:1.复习因式分解的基本概念和步骤。
2.复习因式分解的基本方法和技巧。
3.练习因式分解的实际应用题。
三、教学过程:1.复习因式分解的基本概念和步骤:(1)因式分解的基本概念:因式分解是将一个多项式写成几个简单的因式相乘的形式。
(2)因式分解的步骤:①找出最大公因式;②利用分配律进行因式的提取。
2.复习因式分解的基本方法和技巧:(1)提取公因式法:对于多项式中的每一项,找出它们的最大公因式,将公因式提取出来,然后将剩余部分写在括号内。
(2)公式法:在使用公式法进行因式分解时,首先要确定要分解的多项式是否符合公式的形式。
常见的因式分解公式有:①二次平方差公式:$a^2-b^2=(a+b)(a-b)$;② 二次平方和公式:$a^2 + 2ab + b^2 = (a+b)^2$;③ 二次立方和公式:$a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$。
3.练习因式分解的实际应用题:(1)例题一:将多项式$3x^3-6x^2-3x$进行因式分解。
解析:首先找出最大公因式,发现$3x$是每一项的公因式,因此将其提取出来,有$3x(x^2-2x-1)$。
(2)例题二:将多项式 $4x^2y + 12xy^2 - 8xy$ 进行因式分解。
解析:首先找出最大公因式,发现 $4xy$ 是每一项的公因式,因此将其提取出来,有 $4xy(x + 3y - 2)$。
四、教学小结:通过本次复习,我们回顾了因式分解的基本概念、步骤、方法和技巧。
因式分解是数学中的重要内容,我们要善于运用所学的知识解决实际问题。
希望同学们能够加强练习,提高因式分解的能力。
课题:因式分解 复习案复习目标:1.牢固理解因式分解的概念并能辨别;2.熟练掌握因式分解的几种常用方法;3.灵活运用因式分解的解题思维顺序;4.基本了解因式分解的实际运用情景。
教学过程:一、学习回顾:本章知识归纳:一、定义 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解。
(反复强调化成乘积的形式,而且要进行到每个因式都不能再分解为止)二、常用的方法 (1)提公因式法 注意点:①公因式要提尽,先系数(最大公约数),再字母(指数最低次数) ②多项式的第一项系数为负数时,把“—”作为公式写在括号外,使第一项系数为正。
(2)运用公式法(平方差、完全平方公式)(3)十字相乘(4)分组分解法:把各项适当分组,使分组分解能分组进行 分组时要用到添括号:括号前面是“+”,括号里面各项都不变号;括号前面是“—”,括号里面各项都变号。
三、步骤 应先提公因式,注意要提尽,再应用公式。
如果多项式为二项式考虑用平方差;如果是三项式可以考虑用完全平方公式,如果不能用完全平方公式,考虑能否用十字相乘;如果是四项及以上的,可以先考虑分组,再分解。
二、学习过程:1.因式分解:把一个多项式化成几个整式积的形式叫因式分解(或分解因式). 下列从左到右的变形属于因式分解的是( )A. xy x y x x 62)3(22-=-B. 4)4(442++=++x x x xC. )2)(3()2)(3(--=--m m m mD.)2)(2(422y x y x y x -+=-2.常用方法: 提公因式法:=++mc mb ma .确定公因式:1)取系数的公约数 ;2)取相同字母(或整体)的最低指数幂。
A.abc ab 422+= ;B.32323m n n m --= ;C. )(6)(22y x m y x m +++= .公式法---平方差公式 =-22b a 。
1.42-a = ; 2.216x -= ;3.221b a -= ;4.229)(m y x -+= 。
中考复习教案《因式分解》一、教学目标1. 知识与技能:(1)掌握因式分解的基本概念和方法;(2)能够运用提公因式法、公式法、分组分解法等方法进行因式分解;(3)能够解决与因式分解相关的实际问题。
2. 过程与方法:(1)通过复习和练习,巩固已学的因式分解方法;(2)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和自信心;(2)培养学生的团队合作意识和克服困难的意志。
二、教学内容1. 回顾因式分解的基本概念和方法;2. 复习提公因式法、公式法、分组分解法等因式分解方法;3. 分析常见的因式分解题型及解题策略;4. 解决与因式分解相关的实际问题。
三、教学重点与难点1. 教学重点:(1)因式分解的基本概念和方法;(2)提公因式法、公式法、分组分解法的运用;(3)解决实际问题中的因式分解。
2. 教学难点:(1)复杂的因式分解题目;(2)灵活运用各种因式分解方法;(3)解决实际问题中的因式分解。
四、教学过程1. 导入:(1)回顾因式分解的基本概念和方法;(2)引发学生对因式分解的兴趣和思考。
2. 讲解与示范:(1)讲解提公因式法、公式法、分组分解法等因式分解方法;(2)示例讲解常见的因式分解题型及解题策略;(3)引导学生进行思考和讨论。
3. 练习与巩固:(1)布置针对性的练习题,让学生独立完成;(2)引导学生总结解题规律和方法;(3)进行分组讨论和交流,共同解决问题。
4. 拓展与应用:(1)引导学生解决与因式分解相关的实际问题;(2)让学生运用因式分解解决实际问题,培养学生的应用能力。
五、课后作业1. 完成课后练习题,巩固所学内容;2. 选择一道复杂的因式分解题目进行挑战;3. 尝试解决一个与因式分解相关的实际问题。
教学反思:本节课通过复习和练习,帮助学生巩固了因式分解的基本概念和方法,提高了学生的解题能力。
在教学过程中,注重引导学生思考和讨论,培养学生的逻辑思维能力和解决问题的能力。
因式分解教案【优秀8篇】作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。
我们应该怎么写教案呢?读书破万卷下笔如有神,下面本文为您精心整理了8篇《因式分解教案》,如果能帮助到您,本文将不胜荣幸。
因式分解教案篇一课型复习课教法讲练结合教学目标(知识、能力、教育)1、了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数)。
2、通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1、分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式。
2、分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
⑴运用公式法:平方差公式: ;完全平方公式: ;3、分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解。
(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4、分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准。
若有一项被全部提出,括号内的项1易漏掉。
分解不彻底,如保留中括号形式,还能继续分解等(二):【课前练习】1、下列各组多项式中没有公因式的是( )A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与nynxD.aba c与abbc2、下列各题中,分解因式错误的是( )3、列多项式能用平方差公式分解因式的是()4、分解因式:x2+2xy+y2-4 =_____5、分解因式:(1) ;(2);(3) ;(4);(5)以上三题用了公式二:【经典考题剖析】1、分解因式:(1);(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。
因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
《因式分解》复习课教案
复习目标:1、能熟练的运用提公因式法、公式法、十字相乘法进行
因式分解。
2、灵活选用各种方法进行因式分解。
3、各种因式分解方法的综合应用。
复习重点:灵活选用合适的方法进行因式分解。
复习难点:提炼因式分解的方法:一提二套三查
教学准备:提前发导学案,让学生有预习的时间。
教学过程:
一、检查导学案中的课前预习案。
方式:先幻灯片展示:回顾因式分解的各种方法。
小组内由组长负责, 统一评改,最后请两个小组派代表上来,展示答案,并简单交流本小组解题情况。
1、按要求分解因式:
①提公因式法:(1) 6x2— 8xy=
②平方差公式法:(1)x2— 9y2 =
③完全平方公式法:(1) a2 + 4a + 4= __________________
(2)_______________________ 4x2— 12x + 9y2
= _____________________________
④十字相乘法:(1)x2— x— 6= ________________
时间安排:7分钟左右。
共同交流导学案中的课中练习案
时间安排:20分钟左右
1、因式分解。
(1)a3— a (2) x2y-2xy+y
(3)2aX^8ax-10a ⑷ p2(y-x)+q2(x-y)
方法归纳:先 _____________ ,再进行因式分解。
幻灯片展示因式分
解的一般步骤。
方式:先独立思考完成,由小组长负责,内部交流,互相指导,点名演板并讲解解题思路。
2、选用合适的方法进行因式分解
(1) 1/2 x2+xy+12 y 2(2) 81-b4
⑶(x-y)2 - 6x +6y+9 (4)(x+1)(x+5) -21
方式:先学生思考独立完成,再在小组内交流。
每组派一个代表上来
展示答案并谈解题心得
三、布置导学案中的当堂检测案
方式:小组学生根据自己情况选做一组练习,当堂布置,当堂检测,当堂评改,讲解。
具体操作:教师巡视,学生独立完成,完成后教师马上批改。
小组第一、二
名学生,由老师批改,其他学生由已批改了的学生批改。
最后,由小组长通报小组检测结果。
时间安排: 10 左右。
A 层练习
一:将下列各式分解因式:
⑴ a2-ab ;⑵ 3am2-3an2;
⑶ x3-2x2+x;( 4)
B层练习
将下列各式分解因式:
(1) /(x-y)+y(y-x); (2) (2a-b)2-a 2b)2
(3) (x2-5)2+2(x2-5)+1 ;(4) m4- 81n4
四、归纳小结。
本节课的收获。
方式:学生先小组交流,再派代表发言。
最后教师做总结
五、小组互评。
六、作业布置。
1、完成课后应用案中的练习。
2、课堂作业:
(课后)应用案
应用:A层练习
(1)计算:252-242 = ___________________
(2)若 a+b=3 , ab=2 则 a2b+ab2二__________________
⑶ 若x2-8x+m是完全平方式,则m= _____________
⑷若9X2+axy+4了是完全平方式则a=()
A. 6
B. 12
C. 士 6
D. 士 12
应用:B层练习
(1)若100x2-kxy+49?是一个完全平方式,则k=( )
(2)计算(-2)101+(-2)100
⑶已知:2x-3=0,求代数式x(X2-x)+X?(5-x)-9的值
⑷若 x,y 满足 x2 + 2xy— 3y2 = 0,则-= _______
y。