单脉冲雷达测角原理
- 格式:docx
- 大小:36.41 KB
- 文档页数:1
雷达原理大作业单脉冲自动测角的原理及应用学院:电子工程学院作者:2016年5月21日单脉冲自动测角的原理及应用一.摘要单脉冲测角法是属于振幅法测角中的等信号法中的一种,其测角精度高,抗干扰能力强,在现实中得到了广泛的应用。
而其中对于接收支路要求不太严格的双平面振幅和差式单脉冲雷达,更是备受青睐。
本文首先讲述了单平面振幅和差式单脉冲雷达自动测角的原理,再简述了双平面振幅和差式单脉冲雷达自动测角的结构框图,接着简述了本文仿真所用的一些原理和公式推导,包括天线方向图函数及其导数的推导,最后做了基于高斯形天线方向图函数的单脉冲自动测角,基于辛克函数形天线方向图函数的单脉冲自动测角,和基于高斯形天线方向图函数的双平面单脉冲自动测角。
源代码在附录里。
二.重要的符号说明三.单平面振幅和差式单脉冲自动测角原理单脉冲测角法是属于振幅法测角中的等信号法中的一种。
在单平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。
将这两个波束接收到的回波信号进行比较就可以在一定范围内,一定精度要求下测到目标的所在角度。
因为两个波束同时接到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲即可,所以称之为“单脉冲”。
因取出角误差的具体方式不同,单脉冲雷达种类很多,其中应用最广的是振幅和差式单脉冲雷达,其基本原理说明如下:1.角误差信号雷达天线在一个平面内有两个重叠的部分,如下图1所示:图1.振幅和差式单脉冲雷达波束图(a)两馈源形成的波束 (b)和波束 (c)差波束振幅和差式单脉冲雷达取得角误差信号基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。
其中差信号即为该角平面内角误差信号。
若目标处在天线轴方向(等信号轴),误差角0ε=,则两波束收到的回波信号振幅相同,差信号等于0。
目标偏离等信号轴而有一个误差角ε时,差信号输出振幅与ε成正比而其符号则由偏离方向决定。
2.和差比较器这里主要使用双T 插头,示意图如下图2(a )所示。
单脉冲比相法测角代码引言单脉冲比相法是一种常用的测角方法,用于计算目标物体相对于测量者的角度。
通过测量两个脉冲信号之间的比例,可以精确计算出目标物体的角度。
本文将介绍单脉冲比相法的原理,并编写一个示例代码来演示该测角方法的实现。
原理单脉冲比相法是基于信号处理技术的测角方法,其原理可以分为以下几步:1. 发送脉冲信号首先,测量者向目标物体发送一个脉冲信号。
该脉冲信号可以是声波、电磁波等形式的信号。
发送脉冲信号的目的是为了探测目标物体的位置和距离。
2. 接收脉冲信号目标物体接收到发送的脉冲信号后,会产生一个反射信号。
这个反射信号会被测量者接收到。
接收到的信号通常会受到一些噪声和干扰,需要进行信号处理来提取有效信息。
3. 信号预处理在进行信号处理之前,需要对接收到的信号进行预处理。
这包括滤波、放大、去噪等步骤。
信号预处理的目的是提高测量的精度和准确性。
4. 相位差测量经过信号预处理后,我们可以得到两个脉冲信号的波形。
比如,我们可以使用傅里叶变换将波形转换为频谱,然后计算两个信号频谱之间的相位差。
相位差可以用来计算目标物体的角度。
5. 计算角度通过测量的相位差,我们可以计算出目标物体相对于测量者的角度。
这通常需要一些几何和三角计算。
示例代码下面是一个使用Python编写的示例代码,演示了如何使用单脉冲比相法来测量角度:import numpy as npdef measure_angle(pulse1, pulse2):# 信号预处理pulse1_processed = preprocess_signal(pulse1)pulse2_processed = preprocess_signal(pulse2)# 相位差测量phase_diff = calculate_phase_difference(pulse1_processed, pulse2_processed)# 计算角度angle = calculate_angle(phase_diff)return angledef preprocess_signal(signal):# 信号滤波filtered_signal = filter_signal(signal)# 信号放大amplified_signal = amplify_signal(filtered_signal)# 信号去噪denoised_signal = denoise_signal(amplified_signal)return denoised_signaldef filter_signal(signal):# 使用滤波算法对信号进行滤波filtered_signal = signal# TODO: 实现滤波算法return filtered_signaldef amplify_signal(signal):# 对信号进行放大amplified_signal = signal# TODO: 实现放大算法return amplified_signaldef denoise_signal(signal):# 对信号进行去噪denoised_signal = signal# TODO: 实现去噪算法return denoised_signaldef calculate_phase_difference(signal1, signal2):# 通过傅里叶变换计算相位差fft1 = np.fft.fft(signal1)fft2 = np.fft.fft(signal2)phase_diff = np.angle(fft2 / fft1)return phase_diffdef calculate_angle(phase_diff):# 根据相位差计算角度angle = phase_diff# TODO: 实现角度计算算法return angle结论单脉冲比相法是一种常用的测角方法,可以通过测量两个脉冲信号之间的比例来计算目标物体的角度。
单脉冲测角原理单脉冲测角(Monopulse Angle Measurement)是一种常用的雷达测角方法,它通过对目标返回信号的处理,实现对目标的方位角和俯仰角的测量。
单脉冲测角原理是基于相控阵雷达技术的,它具有测量精度高、抗干扰能力强等优点,在军事和民用雷达领域得到了广泛的应用。
单脉冲测角原理的基本思想是利用相控阵天线阵列的空间波束形成特性,通过对目标返回信号的相位差进行测量,从而实现对目标方位角和俯仰角的测量。
相控阵天线阵列由多个天线单元组成,每个天线单元都可以独立控制相位和幅度,从而实现对空间波束的形成和控制。
当目标位于相控阵的波束覆盖范围内时,每个天线单元接收到的目标返回信号会存在一定的相位差,通过对这些相位差的测量和处理,就可以得到目标的方位角和俯仰角信息。
在单脉冲测角中,常用的测量方法包括相位比较法、幅度比较法和双差法。
相位比较法是通过比较不同通道接收到的信号相位差来实现测角,它的测量精度较高,但对系统的动态范围和线性度要求较高;幅度比较法是通过比较不同通道接收到的信号幅度差来实现测角,它的测量精度相对较低,但对系统的动态范围和线性度要求较低;双差法是通过比较两个天线单元之间的相位差和幅度差来实现测角,它综合了相位比较法和幅度比较法的优点,具有较高的测量精度和较低的系统要求。
单脉冲测角原理的实现需要对雷达系统进行精确的设计和调试,包括天线阵列的设计、相控阵的控制和信号处理部分的设计等。
在实际应用中,还需要考虑目标信号的特性、系统的工作环境和干扰情况等因素,从而进一步提高测量精度和抗干扰能力。
总之,单脉冲测角原理是一种重要的雷达测角方法,它通过对目标返回信号的相位差进行测量,实现对目标方位角和俯仰角的精确测量。
在现代雷达系统中得到了广泛的应用,为目标探测、跟踪和定位提供了重要的技术支持。
随着雷达技术的不断发展和完善,相信单脉冲测角原理将会发挥越来越重要的作用,为雷达应用领域带来更多的技术创新和发展。
单脉冲雷达角度跟踪原理引言单脉冲雷达是一种精密跟踪雷达。
它有较高的测角精度、分辨率和数据率,但设备比较复杂。
单脉冲雷达早在60年代就已广泛应用。
美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。
目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。
中国的跟踪雷达技术的发展大体上分为两个阶段。
在50年代仿制圆锥扫描体制的炮瞄雷达、机载截击雷达等;50年代末期开始单脉冲技术的研究。
1960~1961年间研制出第一个微波复合比较器,对单脉冲天线的实现起了推动作用。
1963年研制成功第一部单脉冲体制试验雷达,随后陆续研制出各种用途的单脉冲跟踪雷达。
一、单脉冲雷达分类根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。
这3种测角法又可用3种角度鉴别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。
通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。
二、工作原理单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。
它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高;测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。
雷达测距、测角、测速基本原理目标在空间的位置可以用多种坐标系表示。
最常见的是直角坐标系,空间任一点目标P 的位段可用x,y,z三个坐标值来确定。
在雷达应用中,测定目标坐标常采用极(球)坐标系统.目标的斜距R为雷达到目标的直线距离OP;方位角a为目标的斜距R在水平面上的投影OB与某一起始方向(一般是正北方向)在水平面上的夹角;仰角B为斜距R与它在水平面上的投影OB在沿垂直面上的夹角,有时也称为倾角或者高低角。
如果需要知道目标的高度和水平距离,那么利用圆柱坐标系就比较方便。
在这种坐标系中.目标的位由三个坐标来确定:水平距离D;方位角。
;高度H, 球坐标系与圆柱坐标系之间的关系如下:D=RcosBH=RsinBa=a上述这些关系仅在目标的距离不太远时是正确的;当距离较远时,由于地面的弯曲,必须作适当的修正。
现以典型的脉冲雷达为例来说明雷达测量的基本工作原理。
它由发射机、发射天线、接收机和接收天线组成。
发射电磁波中一部分能量照射到雷达目标上,在各个方向上产生二次散射。
雷达接收天线收集散射回来的能量,并送至接收机对回波信号进行处理,从而发现目标,提取目标位置、速度等信息。
实际脉冲雷达的发射和接收通常共用一个天线,以简化结构.减小体积和重量。
脉冲雷达采用的发射波形通常是高频脉冲串.它是由窄脉冲调制正弦载波产生的,调制脉冲的形状一般为矩形,也可采用其他形状。
目标与雷达的斜距由电磁波往返于目标与雷达之间的时间来确定;目标的角位置由二次散射波前的方向来确定;当目标与雷达有相对运动时,雷达所接收到的二次散射波的载波频率会发生偏移,测量载频偏移就可以求出目标的相对速度,并且可以从固定目标中区别出运动目标来。
信息来源拓邦汽车电子网 地址:/news/2165.htm。
脉冲雷达原理脉冲雷达是一种利用脉冲波进行测距的雷达系统,它通过发射脉冲波并接收目标反射的信号来确定目标的距离、速度和方位。
脉冲雷达原理的核心在于脉冲波的发射和接收处理,下面将详细介绍脉冲雷达的工作原理。
首先,脉冲雷达系统由发射机、天线、接收机和信号处理器等组成。
当发射机产生高能量的脉冲波并发送到目标区域时,部分脉冲波会被目标反射回来,并被接收机接收。
接收机接收到反射信号后,信号处理器会对接收到的信号进行处理,从而得到目标的距离、速度和方位信息。
其次,脉冲雷达的工作原理基于脉冲波的特性。
脉冲波是一种短暂的高能量波形,它的特点是脉冲宽度很短,频率很高。
当脉冲波发射到目标区域时,它会与目标发生相互作用,一部分能量被目标反射回来,这就是所谓的回波信号。
接收机接收到回波信号后,通过测量回波信号的时间延迟,可以计算出目标的距离。
再次,脉冲雷达还可以通过多普勒效应来测量目标的速度。
当目标以一定速度运动时,它会导致回波信号的频率发生变化,这就是多普勒频移。
通过测量回波信号的频率变化,可以计算出目标的速度。
最后,脉冲雷达的方位测量是通过天线的方向性来实现的。
天线会旋转或者扫描目标区域,当接收到回波信号时,根据天线的方向可以确定目标的方位。
综上所述,脉冲雷达利用脉冲波的发射和接收处理来实现目标的测距、速度和方位测量。
它的工作原理基于脉冲波的特性和多普勒效应,通过精密的信号处理和天线方向性来实现对目标信息的获取。
脉冲雷达在军事、航空航天、气象、地质勘探等领域都有着广泛的应用,是一种非常重要的远程探测技术。
总之,脉冲雷达原理的理解对于工程技术人员和科研人员来说至关重要,只有深入理解其原理,才能更好地应用和改进脉冲雷达技术,推动雷达技术的发展和应用。
希望本文能够对脉冲雷达原理有所帮助,谢谢阅读!。
单脉冲雷达原理
单脉冲雷达是一种使用单个脉冲进行测量和探测的雷达系统。
其工作原理基于以下几个步骤。
首先,雷达系统发送一个短脉冲信号。
这个脉冲信号会以一定的速度传播到目标物体并被反射回来。
接着,雷达系统接收到从目标物体反射回来的信号。
这个接收到的信号称为回波信号。
然后,雷达系统会通过测量回波信号的时间延迟来计算目标物体的距离。
这是通过测量脉冲信号发送和回波信号接收之间的时间差来实现的。
根据电磁波在空气中的传播速度,可以将时间差转换为距离。
最后,利用回波信号的幅度变化,可以获取目标物体的强度信息。
这可以帮助雷达系统判断目标物体的大小、形状和反射特性。
总的来说,单脉冲雷达通过发送和接收一个脉冲信号,并利用时间差和幅度变化来对目标物体进行测量和探测。
相比于其他雷达系统,单脉冲雷达具有简单、高效的特点,并广泛应用于各种领域,如航空、远程测距和目标识别等。
脉冲雷达原理
脉冲雷达是一种利用电磁波进行探测和测距的技术,它通过发射短脉冲的电磁波,然后接收并分析被目标反射回来的信号来实现目标探测和测距。
脉冲雷达原理的核心在于利用电磁波的特性,通过测量信号的时间延迟和频率差异来获取目标的位置和速度信息。
脉冲雷达的工作原理可以简单地概括为,当脉冲雷达系统发射一个短脉冲的电磁波时,它会沿着一定方向传播并与目标相互作用。
目标会吸收、反射或散射部分电磁波,其中反射的信号会被接收器捕获并分析。
通过测量信号的时间延迟和频率差异,脉冲雷达系统可以计算出目标的距离和速度信息。
脉冲雷达的应用非常广泛,它被广泛应用于军事、民用航空、气象观测、地质勘探、交通监控等领域。
在军事领域,脉冲雷达可以用于目标探测、跟踪和导航;在民用航空领域,脉冲雷达可以用于飞行器的高度测量和地面障碍物的探测;在气象观测领域,脉冲雷达可以用于测量降水量和探测气象雷达等。
总之,脉冲雷达原理的应用给我们的生活带来了很多便利和安全保障,它在各个领域都发挥着重要作用。
随着科技的不断进步,脉冲雷达技术也将不断改进和完善,为人类的发展和进步做出更大的贡献。
单脉冲雷达测角原理
单脉冲雷达测角原理基于多普勒效应。
当脉冲雷达向目标发射一个窄脉冲时,目标会产生回波信号。
由于目标相对于雷达在运动,回波信号的频率会发生偏移。
根据多普勒效应的原理,回波信号的频率偏移与目标的速度成正比。
因此,通过测量回波信号的频率偏移,可以得知目标的速度。
单脉冲雷达采用相控阵天线,可以同时辐射多个窄脉冲,并接收多个回波信号。
通过比较不同天线元件接收到的回波信号的相位差,可以测量到目标的方位角。
具体来说,单脉冲雷达中的天线阵列会将脉冲信号分别发射到不同的方向。
当回波信号到达时,不同的天线元件会接收到不同的信号,经过处理后可以测得方位角。
为了保持高分辨率,单脉冲雷达通常会使用复杂的相控阵技术,如多元素阵列和接收信号的波束形成。
这些技术可以提高雷达的角分辨率和抗干扰能力。
总结来说,单脉冲雷达测角原理是通过测量回波信号的多普勒频率偏移,并结合相控阵技术,来确定目标的速度和方位角。