2013级《控制工程基础习题册》(9130007100)
- 格式:doc
- 大小:6.51 MB
- 文档页数:35
《控制工程基础》习题集第一部分 单项选择题1.闭环控制系统的主反馈取自【 】A.给定输入端B.干扰输入端C.控制器输出端D.系统输出端2.不同属性的物理系统可以有形式相同的【 】A.数学模型B.被控对象C.被控参量D.结构参数3.闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的误差信号为【 】A.X i (s )-H (s)X 0(s )B.X i (s )-X 0(s )C.X or (s )-X 0(s )D.X or (s )-H (s )X 0(s ) 3-1闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的偏差信号为【 】A.X i (s )-H (s)X 0(s )B.X i (s )-X 0(s )C.X or (s )-X 0(s )D.X or (s )-H (s )X 0(s )4.微分环节使系统【 】A.输出提前B.输出滞后C.输出大于输入D.输出小于输入5.当输入量发生突变时,惯性环节的输出量不能突变,只能按【 】A.正弦曲线变化B.指数曲线变化C.斜坡曲线变化D.加速度曲线变化6.PID 调节器的微分部分可以【 】A.提高系统的快速响应性B.提高系统的稳态性C.降低系统的快速响应性D.降低系统的稳态性 6-1.PID 调节器的微分部分可以【 】A.提高系统的稳定性B.提高系统的稳态性C.降低系统的稳定性D.降低系统的稳态性7.闭环系统前向传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.输出信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与输出信号的拉氏变换之比8.一阶系统的时间常数为T ,其脉冲响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-1.一阶系统的时间常数为T ,其单位阶跃响应为【 】A.T t e --1B.T t Te T t -+-C.T t e T-1 D.T t Te T -+ 8-2.一阶系统的时间常数为T ,其单位斜坡响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T -1 D.T t Te T -+ 8-3.一阶系统的时间常数为T ,其单位阶跃响应的稳态误差为【 】A.0B.TC.1TD.T t Te T -+ 8-4.一阶系统的时间常数为T ,其单位斜坡响应的稳态误差为【 】A.0B.TC.1TD.T t Te T -+ 9.过阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线10.干扰作用下,偏离原来平衡状态的稳定系统在干扰作用消失后【 】A.将发散离开原来的平衡状态B.将衰减收敛回原来的平衡状态C.将在原平衡状态处等幅振荡D.将在偏离平衡状态处永远振荡11.单位脉冲函数的拉普拉斯变换是【 】 A.1/s B.1 C. 21s D.1+1/s12.线性控制系统的频率响应是系统对输入【 】A.阶跃信号的稳态响应B.脉冲信号的稳态响应C.斜坡信号的稳态响应D.正弦信号的稳态响应13.积分环节的输出比输入滞后【 】A.090-B.090C.0180-D.018014.奈魁斯特围线中所包围系统开环传递函数)(s G 的极点数为3个,系统闭环传递函数的极点数为2个,则映射到)(s G 复平面上的奈魁斯特曲线将【 】A.逆时针围绕点(0,j0)1圈B.顺时针围绕点(0,j0)1圈C.逆时针围绕点(-1,j0)1圈D.顺时针围绕点(-1,j0)1圈15.最小相位系统稳定的条件是【 】A.γ>0和g L <0B.γ<0和g K >1C.γ>0和)(g L ω<0D.γ<0和)(g L ω>016.若惯性环节的时间常数为T ,则将使系统的相位【 】A.滞后1tan ()T ω-B.滞后1tan ω--C.超前1tan ()T ω- D.超前1tan ω-- 17.控制系统的误差是【 】A.期望输出与实际输出之差B.给定输入与实际输出之差C.瞬态输出与稳态输出之差D.扰动输入与实际输出之差18.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的零点就是系统闭环零点B.)(s F 的零点就是系统开环极点C.)(s F 的极点就是系统开环极点D.)(s F 的极点就是系统闭环极点19.要使自动调速系统实现无静差,则在扰动量作用点的前向通路中应含有【 】A.微分环节B.积分环节C.惯性环节D.比例环节20.积分器的作用是直到输入信号消失为止,其输出量将【 】A.直线上升B.垂直上升C.指数线上升D.保持水平线不变21.自动控制系统的控制调节过程是以偏差消除【 】A.偏差的过程B.输入量的过程C.干扰量的过程D.稳态量的过程22.系统输入输出关系为i o o o x x x x cos =++,则该系统为【 】 A.线性系统 B.非线性系统 C.线性时变系统 D.线性定常系统23.线性定常二阶系统的输出量与输入量之间的关系是【 】A.振荡衰减关系B.比例线性关系C.指数上升关系D.等幅振荡关系24. 微分环节可改善系统的稳定性并能【 】A.增加其固有频率B.减小其固有频率C.增加其阻尼D.减小其阻尼25.用终值定理可求得)8)(5(4)(++=s s s s F 的原函数f (s )的稳态值为【 】 A.∞ B .4 C.0.1 D.026.可以用叠加原理的系统是【 】A.开环控制系统B.闭环控制系统C.离散控制系统D.线性控制系统27.惯性环节含有贮能元件数为【 】A.2B.1C.0D.不确定28.一阶系统的单位阶跃响应在t =0处的斜率越大,系统的【 】A.响应速度越快B.响应速度越慢C.响应速度不变D.响应速度趋于零29.临界阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线30.欠阻尼二阶系统的输出信号振幅的衰减速度取决于【 】A.n ξωB.ξωC.g ξωD.c ξω31.单位加速度信号的拉氏变换为【 】 A.1 B. s 1 C. 21s D. 31s32.线性系统的输入信号为t t x i ωsin )(=,则其输出信号响应频率为【 】A.ωB.n ωC.ωjD.n j ω33.微分环节的输出比输入超前【 】A.090-B.090C.0180-D.018034.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的极点就是系统开环零点B.)(s F 的零点就是系统开环极点C.)(s F 的零点就是系统闭环极点D.)(s F 的极点就是系统闭环极点35.系统开环传递函数为)11.0()14.0()(2++=s s s K s G 不用计算或作图,凭思考就能判断该闭环系统的稳定状况是【 】A.稳定B.不稳定C.稳定边界D.取决于K 的大小36.为了保证系统有足够的稳定裕量,在设计自动控制系统时应使穿越频率附近)(ωL 的斜率为【 】A.-40 dB/decB.-20 dB/decC.+40 dB/decD.+20 dB/dec37.线性定常系统的偏差信号就是误差信号的条件为【 】A.反馈传递函数H(s)=1B.反馈信号B(s)=1C.开环传递函数G(s) H(s)=1D.前向传递函数G(s)=138.降低系统的增益将使系统的【 】A.稳定性变差B.稳态精度变差C.超调量增大D.稳态精度变好39.含有扰动顺馈补偿的复合控制系统可以显著减小【 】A.超调量B.开环增益C.扰动误差D.累计误差40.PID 调节器的微分部分可以【 】A.改善系统的稳定性B.调节系统的增益C.消除系统的稳态误差D.减小系统的阻尼比41.一般情况下开环控制系统是【 】A.不稳定系统B.稳定系统C.时域系统D.频域系统42.求线性定常系统的传递函数条件是【 】A.稳定条件B.稳态条件C.零初始条件D.瞬态条件43.单位负反馈系统的开环传递函数为G(s),则其闭环系统的前向传递函数与【 】A.反馈传递函数相同B.闭环传递函数相同C.开环传递函数相同D.误差传递函数相同44.微分环节是高通滤波器,将使系统【 】A.增大干扰误差B.减小干扰误差C.增大阶跃输入误差D.减小阶跃输入误差45.控制框图的等效变换原则是变换前后的【 】A.输入量和反馈量保持不变B.输出量和反馈量保持不变C.输入量和干扰量保持不变D.输入量和输出量保持不变46.对于一个确定的系统,它的输入输出传递函数是【 】A.唯一的B.不唯一的C.决定于输入信号的形式D.决定于具体的分析方法47.衡量惯性环节惯性大小的参数是【 】A.固有频率B.阻尼比C.时间常数D.增益系数48.三个一阶系统的时间常数关系为T2<T1<T3,则【 】A.T2系统响应快于T3系统B.T1系统响应快于T2系统C.T2系统响应慢于T1系统D.三个系统响应速度相等49.闭环控制系统的时域性能指标是【 】A.相位裕量B.输入信号频率C.最大超调量D.系统带宽50.输入阶跃信号稳定的系统在输入脉冲信号时【 】A .将变成不稳定系统 B.其稳定性变好 C.其稳定性不变 D.其稳定性变差51.二阶欠阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线52.单位斜坡信号的拉氏变换为【 】 A.1 B.s 1 C.21s D.31s53.线性控制系统【 】A.一定是稳定系统B.是满足叠加原理的系统C.是稳态误差为零的系统D.是不满足叠加原理的系统54.延迟环节Ts e s G -=)(的幅频特性为【 】A.)(ωA =1B.)(ωA =0C.)(ωA <1D.)(ωA >155.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的【 】A.闭环极点数B.闭环零点数C.开环极点数D.开环零点数56.频率响应是系统对不同频率正弦输入信号的【 】A.脉冲响应B.阶跃响应C.瞬态响应D.稳态响应57.传递函数的零点和极点均在复平面的左侧的系统为【 】A.非最小相位系统B.最小相位系统C.无差系统D.有差系统58.零型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s→ 59.降低系统的增益将使系统的【 】A.稳定性变差B.快速性变差C.超调量增大D.稳态精度变好60.把系统从一个稳态过渡到新的稳态的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差61.闭环控制系统除具有开环控制系统所有的环节外,还必须有【 】A.给定环节B.比较环节C.放大环节D.执行环节62.同一系统由于研究目的的不同,可有不同的【 】A.稳定性B.传递函数C.谐波函数D.脉冲函数63.以同等精度元件组成的开环系统和闭环系统其精度比较为【 】A.开环高B.闭环高C.相差不多D.一样高64.积分环节的积分时间常数为T ,其脉冲响应为【 】A.1B.1/TC.TD.1+1/T65.串联环节的对数频率特性为各串联环节的对数频率特性的【 】A.叠加B.相乘C.相除D.相减66.非线性系统的最主要特性是【 】A.能应用叠加原理B.不能应用叠加原理C.能线性化D.不能线性化67.理想微分环节的输出量正比于【 】A.反馈量的微分B.输入量的微分C.反馈量D.输入量68.若二阶系统的阻尼比和固有频率分别为ξ和n ω,则其共轭复数极点的实部为【】 A.n ξω B.n ξω- C.d ξω- D.d ξω69.控制系统的时域稳态响应是时间【 】A.等于零的初值B.趋于零的终值C.变化的过程值D.趋于无穷大时的终值70.一阶系统的时间常数T 越小,系统跟踪斜坡信号的【 】A.稳定性越好B.稳定性越差C.稳态性越好D.稳态性越差71.二阶临界阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线72.线性系统的输入信号为t A t x i ωsin )(=,则其稳态输出响应相位【 】A.等于输入信号相位B.一般为输入信号频率ω的函数C.大于输入信号相位D.小于输入信号相位73.延迟环节Ts es G -=)(的相频特性为【 】 A.T ωωϕ1tan )(--= B.T ωωϕ1tan )(-=C. T ωωϕ=)(D. T ωωϕ-=)(74.Ⅱ型系统的开环传递函数在虚轴上从右侧环绕其极点的无穷小圆弧线所对应的开环极坐标曲线是半径为无穷大,且按顺时针方向旋转【 】A.π2的圆弧线B.πv 的圆弧线C.-π2的圆弧线D.π的圆弧线75.闭环系统稳定的充要条件是系统开环对数幅频特性过零时,对应的相频特性【 】A. 180)(-<c ωϕB. 180)(->c ωϕC. 180)(>c ωϕ180)(<c ωϕ76.对于二阶系统,加大增益将使系统的【 】A.稳态性变差B.稳定性变差C.瞬态性变差D.快速性变差77.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 78.控制系统含有的积分个数多,开环放大倍数大,则系统的【 】A.稳态性能愈好B.动态性能愈好C.稳定性愈好D.稳态性能愈差79.控制系统的稳态误差主要取决于系统中的【 】A.微分和比例环节B.惯性和比例环节C.比例和积分环节D.比例和延时环节80.比例积分微分(PID)校正对应【 】A.相位不变 B .相位超前校正 C .相位滞后校正 D .相位滞后超前校正81.闭环控制系统必须通过【 】A.输入量前馈参与控制B.干扰量前馈参与控制C.输出量反馈到输入端参与控制D.输出量局部反馈参与控制82.不同属性的物理系统可以有形式相同的【 】A.传递函数B.反函数C.正弦函数D.余弦函数83.输出信号对控制作用有影响的系统为【 】A.开环系统B.闭环系统C.局部反馈系统D.稳定系统84.比例环节能立即地响应【 】A.输出量的变化B.输入量的变化C.误差量的变化D.反馈量的变化85.满足叠加原理的系统是【 】A.定常系统B.非定常系统C.线性系统D.非线性系统86.弹簧-质量-阻尼系统的阻尼力与两相对运动构件的【 】A.相对位移成正比B.相对速度成正比C.相对加速度成正比D.相对作用力成正比87.当系统极点落在复平面S 的虚轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比小于1大于0D.阻尼比小于088.控制系统的最大超调量【 】A.只与阻尼比有关B.只与固有频率有关C.与阻尼比和固有频率都有关D.与阻尼比和固有频率都无关89.过阻尼的二阶系统与临界阻尼的二阶系统比较,其响应速度【 】A.过阻尼的小于临界阻尼的B.过阻尼的大于临界阻尼的C.过阻尼的等于临界阻尼的D.过阻尼的反比于临界阻尼的90.二阶过阻尼系统的阶跃响应为【 】A.单调衰减曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线91.一阶系统在时间为T 时刻的单位阶跃响应为【 】A. 1B. 0.98C. 0.95D. 0.63292.线性系统的输出信号完全能复现输入信号时,其幅频特性【 】A.)(ωA ≥1B.)(ωA <1C. 0<)(ωA <1D.)(ωA ≤093.Ⅱ型系统是定义于包含有两个积分环节的【 】A.开环传递函数的系统B.闭环传递函数的系统C.偏差传递函数的系统D.扰动传递函数的系统94.系统的幅值穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 94-1.系统的幅值穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率95.系统的穿越频率越大,则其【 】A.响应越快B.响应越慢C.稳定性越好D.稳定性越差96. 最小相位系统传递函数的【 】A.零点和极点均在复平面的右侧B.零点在复平面的右侧而极点在左侧C.零点在复平面的左侧而极点在右侧D.零点和极点均在复平面的左侧97.Ⅰ型系统能够跟踪斜坡信号,但存在稳态误差,其稳态误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数98.把系统扰动作用后又重新平衡的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差99.0型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 100.PID 调节器的比例部分主要调节系统的【 】A.增益B.固有频率C.阻尼比D.相频特性101.随动系统要求系统的输出信号能跟随【 】A.反馈信号的变化B.干扰信号的变化C.输入信号的变化D.模拟信号的变化 102.传递函数的量纲是【 】A.取决于输入与反馈信号的量纲B.取决于输出与输入信号的量纲C.取决于干扰与给定输入信号的量纲D.取决于系统的零点和极点配置 103.对于抗干扰能力强系统有【 】A.开环系统B.闭环系统C.线性系统D.非线性系统104.积分调节器的输出量取决于【 】A.干扰量对时间的积累过程B.输入量对时间的积累过程C.反馈量对时间的积累过程D.误差量对时间的积累过程105.理想微分环节的传递函数为【 】 A.Ts+11 B.s 1 C.s D.1+Ts 105.一阶微分环节的传递函数为【 】 A.Ts +11 B.s 1 C.s D.1+Ts 106.实际系统传递函数的分母阶次【 】A.小于分子阶次B.等于分子阶次C.大于等于分子阶次D.大于或小于分子阶次107.当系统极点落在复平面S 的负实轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于或等于1D.阻尼比小于0 108.欠阻尼二阶系统的输出信号的衰减振荡角频率为【 】A.无阻尼固有频率B.有阻尼固有频率C.幅值穿越频率D.相位穿越频率 109.反映系统动态精度的指标是【 】A.超调量B.调整时间C.上升时间D.振荡次数110.典型二阶系统在欠阻尼时的阶跃响应为【 】A.等幅振荡曲线B.衰减振荡曲线C.发散振幅曲线D.单调上升曲线111.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.05时,其调整时间为【 】A.TB.2TC.3TD.4T112.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ 113.实际的物理系统)(s G 的极点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点114.系统的相位穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 114-1.系统的相位穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 115.比例微分环节(时间常数为T )使系统的相位【 】A.滞后1tan T ω-B.滞后1tan ω-C.超前1tan T ω-D.超前1tan ω-116.系统开环频率特性的相位裕量愈大,则系统的稳定性愈好,且【 】A.上升时间愈短B.振荡次数愈多C.最大超调量愈小D.最大超调量愈大 117.Ⅱ型系统跟踪阶跃信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数118.PID 调节器的积分部分消除系统的【 】A.瞬态误差B.干扰误差C.累计误差D.稳态误差119.Ⅰ型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 120.比例微分校正将使系统的【 】A.抗干扰能力下降B.抗干扰能力增加C.稳态精度增加D.稳态精度减小 120-1.比例微分校正将使系统的【 】A.稳定性变好B.稳态性变好C.抗干扰能力增强D.阻尼比减小 121.若反馈信号与原系统输入信号的方向相反则为【 】A.局部反馈B.主反馈C.正反馈D.负反馈122.实际物理系统微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【 】A.结构参数组成B.输入参数组成C.干扰参数组成D.输出参数组成 123.对于一般控制系统来说【 】A.开环不振荡B.闭环不振荡C.开环一定振荡D.闭环一定振荡 124.积分环节输出量随时间的增长而不断地增加,增长斜率为【 】A.TB.1/TC.1+1/TD.1/T2 125.传递函数只与系统【 】A.自身内部结构参数有关B.输入信号有关C.输出信号有关D.干扰信号有关 126.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比127.当系统极点落在复平面S 的Ⅱ或Ⅲ象限内时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于0而小于1D.阻尼比小于0128.欠阻尼二阶系统是【 】A .稳定系统 B. 不稳定系统 C.非最小相位系统 D.Ⅱ型系统129.二阶无阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线 130.二阶系统总是【 】A.开环系统B.闭环系统C.稳定系统D.非线性系统131.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.02时,其调整时间为【 】A.TB.2TC.3TD.4T132.积分环节Tss G 1)(=的幅值穿越频率为【 】 A.T 1 B.-T 1 C. 20T 1lg D. -20T1lg 132-1.微分环节()G s Ts =的幅值穿越频率为【 】 A.T 1 B.-T 1 C. 20T 1lg D. -20T1lg 132-2.积分环节21()G s Ts =的幅值穿越频率为【 】 A.T 1 B.-T 1133.实际的物理系统)(s G 的零点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点134.判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上【 】A.(-∞,0)的区间B.(-∞,0]的区间C.(-∞,-1)的区间D.(-∞,-1]的区间135.控制系统抗扰动的稳态精度是随其前向通道中【 】A.微分个数增加,开环增益增大而愈高B.微分个数减少,开环增益减小而愈高C.积分个数增加,开环增益增大而愈高D.积分个数减少,开环增益减小而愈高 136.若系统无开环右极点且其开环极座标曲线只穿越实轴上区间(-1,+∞),则该闭环系统一定【 】A.稳定B.临界稳定C. 不稳定D.不一定稳定137.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ 138.控制系统的跟随误差与前向通道【 】A.积分个数和开环增益有关B.微分个数和开环增益有关C.积分个数和阻尼比有关D.微分个数和阻尼比有关139.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D.)()(lim 0s H s G s → 140.Ⅱ型系统跟踪斜坡信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C. ∞D.时间常数141.实际物理系统的微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【 】A.特征参数组成B.输入参数组成C.干扰参数组成D.输出参数组成 142.输出量对系统的控制作用没有影响的控制系统是【 】A.开环控制系统B.闭环控制系统C.反馈控制系统D.非线性控制系统 143.传递函数代表了系统的固有特性,只与系统本身的【 】A. 实际输入量B.实际输出量C.期望输出量D.内部结构,参数144.惯性环节不能立即复现【 】A.反馈信号B.输入信号C.输出信号D.偏差信号145.系统开环传递函数为)(s G ,则单位反馈的闭环传递函数为【 】 A.)(1)(s G s G + B.)()(1)()(s H s G s H s G + C.)()(1)(s H s G s G + D.)()(1)(s H s G s H + 146.线性定常系统输出响应的等幅振荡频率为n ω,则系统存在的极点有【 】A.n j ω±1B.n j ω±C.n j ω±-1D.1-147.开环控制系统的传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比147-1.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比148.欠阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.等幅振荡曲线D.等幅衰减曲线149.一阶系统是【 】A.最小相位系统B.非最小相位系统C.Ⅱ型系统D.不稳定系统150.单位阶跃函数的拉普拉斯变换是【 】 A.1/s B.1 C.21s D.1+1/s151.一阶系统的响应曲线开始时刻的斜率为【 】A.TB.TC.T 1D.T1 152.惯性环节11)(+=Ts s G 的转折频率越大其【 】 A.输出响应越慢 B.输出响应越快C.输出响应精度越高D.输出响应精度越低153.对于零型系统的开环频率特性曲线在复平面上【 】A.始于虚轴上某点,终于坐标原点B.始于实轴上某点,终于实轴上另一点C.始于坐标原点,终于虚轴上某点D.始于虚轴上某点,终于虚轴上另一点 153-1.对于Ⅰ型系统的开环频率特性曲线在复平面上【 】A.始于(0)180G j =∞∠-的点,终于坐标原点B.始于(0)90G j =∞∠-的点,终于坐标原点C.始于(0)180G j =∞∠-的点,终于实轴上任意点D.始于(0)90G j =∞∠-的点,终于虚轴上任意点154.相位裕量是当系统的开环幅频特性等于1时,相应的相频特性离【 】A.负实轴的距离B.正实轴的距离C.负虚轴的距离D.正虚轴的距离 155.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳定性变好C.稳态误差增加D.稳定性变差 155-1.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳态误差减小C.稳态误差增加D.稳定性变好 156.惯性环节使系统的输出【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后156-1.惯性环节使系统的输出随输入信号频率增加而其【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后157.无差系统是指【 】A.干扰误差为零的系统B.稳态误差为零的系统C.动态误差为零的系统D.累计误差为零的系统158.Ⅱ型系统跟踪加速度信号的稳态误差为【 】A.0B.常数C.∞D.时间常数159.控制系统的稳态误差组成是【 】A.跟随误差和扰动误差B.跟随误差和瞬态误差C.输入误差和静态误差D.扰动误差和累计误差160.Ⅰ型系统的速度静差系数等于【 】A.0B.开环放大系数C.∞D.时间常数161.线性定常系统输入信号导数的时间响应等于该输入信号时间响应的【 】A. 傅氏变换B.拉氏变换C.积分D.导数162.线性定常系统输入信号积分的时间响应等于该输入信号时间响应的【 】A.傅氏变换B.拉氏变换C.积分D.导数第二部分 填空题1.积分环节的特点是它的输出量为输入量对 的积累。
一、填空题(部分可能模糊的已给出参考答案):1. 对时域函数进行拉氏变换:)(1t = 、t = 、at e -= 、sin tω= 。
2. 自动控制系统对输入信号的响应,一般都包含两个分量,即一个是瞬态响应分量,另一个是稳态 _响应分量。
3. 在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为_____反馈___。
4. 若前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则闭环传递函数为___ __5. 函数f(t)=的拉氏变换式是 。
6. Bode 图中对数相频特性图上的-180°线对应于奈奎斯特图中的__负实轴_________。
7. 闭环系统稳定的充要条件是所有的闭环极点均位于s 平面的 右半平面 半平面。
8. 已知传递函数为2()k G s s=,则其对数幅频特性L (ω)在零分贝点处的频率数值为ω=9. 在系统开环对数频率特性曲线上,低频段部分主要由 积分 环节和 比例 决定。
10. 惯性环节的传递函数11+Ts ,它的幅频特性的数学式是 ,它的相频特性的数学式是 ωT arctan - 。
11. 传递函数的定义是对于线性定常系统,在 初始条件为零 的条件下,系统输出量的拉氏变换与 输入量的拉氏变换 之比。
12. 瞬态响应是系统受到外加作用激励后,从 初始 状态到 最终或稳定 状态的响应过程。
13. 判别系统稳定性的出发点是系统特征方程的根必须为 负实根或负实部的复数根 ,即系统的特征根必须全部在 复平面的左半平面 是系统稳定的充要条件。
14. I 型系统G s K s s ()()=+2在单位阶跃输入下,稳态误差为 0 ,在单位加速度输入下,稳态误差为 ∞ 。
(参考教材P89)15. 频率响应是系统对 正弦输入 稳态响应,频率特性包括 幅频和相频 两种特性。
16. 如果系统受扰动后偏离了原工作状态,扰动消失后,系统能自动恢复到原来的工作状态,这样的系统是 (渐进)稳定的 系统。
第2章系统的数学模型(习题答案)2.1什么是系统的数学模型?常用的数学模型有哪些?解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
常用的数学模型有微分方程、传递函数、状态空间模型等。
2.2 什么是线性系统?其最重要的特性是什么?解:凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要的特性就是它满足叠加原理。
2.3 图( 题2.3) 中三图分别表示了三个机械系统。
求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。
题图2.3解:①图(a):由牛顿第二运动定律,在不计重力时,可得整理得将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得[]于是传递函数为②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。
引出点处取为辅助点B。
则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:消去中间变量x,可得系统微分方程对上式取拉氏变换,并记其初始条件为零,得系统传递函数为③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:移项整理得系统微分方程对上式进行拉氏变换,并注意到运动由静止开始,即则系统传递函数为2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。
+-+-u )tfC)+-+-f)(a )(b )(c )(d R题图2.4【解】:)(a方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组:⎪⎩⎪⎨⎧=+=⎰i R u u dt i C u cc r 1消去中间变量,整理得:dtdu RC u dt du RCrc c =+方法二:dtdu RC u dt du RCRCs RCs CsR R s U s U rc c r c =+⇒+=+=11)()( 由于无质量,各受力点任何时刻均满足∑=0F ,则有:cc r kx dt dxdt dx f =-)(dtdx k f x dt dx k f rc c =+⇒()r r c c r c u dtduC R u dt du C R R Cs R R Cs R Cs R R CsR s U s U +=++⇒+++=+++=221212212)(1111)()( 设阻尼器输入位移为a x ,根据牛顿运动定律,可写出该系统运动方程r rc c aa c a r c r x dtdx k f x dt dx f k k k k dt dx f x x k x x k x x k +=++⇒⎪⎩⎪⎨⎧=--=-22121221)()()( 结论:)(a 、)(b 互为相似系统,)(c 、)(d 互为相似系统。
控制工程基础练习题、单项选择题 1•图 示 系 ()A 1阶;B 2阶;C 3阶;D 4阶。
2.控制系统能够正常工作的首要条件是 ()3. 在图中,K i 、K 2满足什么条件,回路是负反馈?()A K i >0,K 2>0B K i <0,K 2<0C K i >0,K 2<0D K i <0,K 2=04. 通过直接观察,下列闭环传递函数所表示的系统稳定的一个是()A 0 °;B —90 ° ;C —i80° ;D —270 °。
6. 在控制系统下列性能指标中,表示快速性的一个是 ()A 振荡次数;B 延迟时间;C 超调量;D 相位裕量。
7. 某典型环节的输入输出关系曲线是一条经过坐标原点的直线,那么该典型环节是 () A 比例环节; B 振荡环节; C 微分环节; D 积分环节。
8. 控制系统的超调量与下列哪个因素有关?A 稳态误差;B 稳定性;C 系统阻尼;D 开环增益。
9. 如果二阶系统的无阻尼固有频率为 8Hz ,阻尼比为 对单位阶跃输入的响应具有的过渡过程时间为A 0.5s ;B is ;C 2.5s ;D 5s 。
10.从线性系统的频率特性来看,下列说法正确的是()A 相对于输入信号而言,输出信号的幅值和相位都没有变化;B 相对于输入信号而言,输出信号的幅值增大相位滞后;C 相对于输入信号而言,输出信号的幅值和相位都有变化,变化规律取决于系统的结 构和参数;D 相对于输入信号而言,输出信号的幅值改变但相位不变。
11. 在下列各项中,能描述系统动态特性的是() A 一阶; B 二阶; C 三阶; D 四阶。
13.有一种典型环节,其输出信号在相位上比输入信号超前 90?,这种典型环节是 ()A 精度;B 稳态误差;C 开环截止频率;D 稳定裕量。
A 稳定; 强。
B 精度高;C 响应快;D 抗干扰能力AB CD(S) (S) (S) (S)i0(S 5)3 S4s 2s;s 1(S1)(s 24) 10 (S 5)3S 4s 3 ;10(S 3)2(s 1)* — K iG(s)5.已知系统开环传递函数为s(s i)(S 2),其高频段的相位角为 () 0.5,允许误差为 () 2%,那么,该系统12.如图所示系统的阶次是阶 次 是题1图题12图A 微分环节;B 比例环节;C 积分环节;D 惯性环节。
《控制工程基础》习题集第一部分 单项选择题1.闭环控制系统的主反馈取自【 】A.给定输入端B.干扰输入端C.控制器输出端D.系统输出端2.不同属性的物理系统可以有形式相同的【 】A.数学模型B.被控对象C.被控参量D.结构参数3.闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的误差信号为【 】A.X i (s )-H (s)X 0(s )B.X i (s )-X 0(s )C.X or (s )-X 0(s )D.X or (s )-H (s )X 0(s ) 3-1闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的偏差信号为【 】A.X i (s )-H (s)X 0(s )B.X i (s )-X 0(s )C.X or (s )-X 0(s )D.X or (s )-H (s )X 0(s )4.微分环节使系统【 】A.输出提前B.输出滞后C.输出大于输入D.输出小于输入5.当输入量发生突变时,惯性环节的输出量不能突变,只能按【 】A.正弦曲线变化B.指数曲线变化C.斜坡曲线变化D.加速度曲线变化6.PID 调节器的微分部分可以【 】A.提高系统的快速响应性B.提高系统的稳态性C.降低系统的快速响应性D.降低系统的稳态性 6-1.PID 调节器的微分部分可以【 】A.提高系统的稳定性B.提高系统的稳态性C.降低系统的稳定性D.降低系统的稳态性7.闭环系统前向传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.输出信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与输出信号的拉氏变换之比8.一阶系统的时间常数为T ,其脉冲响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-1.一阶系统的时间常数为T ,其单位阶跃响应为【 】A.T t e --1B.T t Te T t -+-C.T t e T-1 D.T t Te T -+ 8-2.一阶系统的时间常数为T ,其单位斜坡响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T -1 D.T t Te T -+ 8-3.一阶系统的时间常数为T ,其单位阶跃响应的稳态误差为【 】A.0B.TC.1TD.T t Te T -+ 8-4.一阶系统的时间常数为T ,其单位斜坡响应的稳态误差为【 】A.0B.TC.1TD.T t Te T -+ 9.过阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线10.干扰作用下,偏离原来平衡状态的稳定系统在干扰作用消失后【 】A.将发散离开原来的平衡状态B.将衰减收敛回原来的平衡状态C.将在原平衡状态处等幅振荡D.将在偏离平衡状态处永远振荡11.单位脉冲函数的拉普拉斯变换是【 】 A.1/s B.1 C. 21s D.1+1/s12.线性控制系统的频率响应是系统对输入【 】A.阶跃信号的稳态响应B.脉冲信号的稳态响应C.斜坡信号的稳态响应D.正弦信号的稳态响应13.积分环节的输出比输入滞后【 】A.090-B.090C.0180-D.018014.奈魁斯特围线中所包围系统开环传递函数)(s G 的极点数为3个,系统闭环传递函数的极点数为2个,则映射到)(s G 复平面上的奈魁斯特曲线将【 】A.逆时针围绕点(0,j0)1圈B.顺时针围绕点(0,j0)1圈C.逆时针围绕点(-1,j0)1圈D.顺时针围绕点(-1,j0)1圈15.最小相位系统稳定的条件是【 】A.γ>0和g L <0B.γ<0和g K >1C.γ>0和)(g L ω<0D.γ<0和)(g L ω>016.若惯性环节的时间常数为T ,则将使系统的相位【 】A.滞后1tan ()T ω-B.滞后1tan ω--C.超前1tan ()T ω- D.超前1tan ω-- 17.控制系统的误差是【 】A.期望输出与实际输出之差B.给定输入与实际输出之差C.瞬态输出与稳态输出之差D.扰动输入与实际输出之差18.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的零点就是系统闭环零点B.)(s F 的零点就是系统开环极点C.)(s F 的极点就是系统开环极点D.)(s F 的极点就是系统闭环极点19.要使自动调速系统实现无静差,则在扰动量作用点的前向通路中应含有【 】A.微分环节B.积分环节C.惯性环节D.比例环节20.积分器的作用是直到输入信号消失为止,其输出量将【 】A.直线上升B.垂直上升C.指数线上升D.保持水平线不变21.自动控制系统的控制调节过程是以偏差消除【 】A.偏差的过程B.输入量的过程C.干扰量的过程D.稳态量的过程22.系统输入输出关系为i o o o x x x x cos =++,则该系统为【 】 A.线性系统 B.非线性系统 C.线性时变系统 D.线性定常系统23.线性定常二阶系统的输出量与输入量之间的关系是【 】A.振荡衰减关系B.比例线性关系C.指数上升关系D.等幅振荡关系24. 微分环节可改善系统的稳定性并能【 】A.增加其固有频率B.减小其固有频率C.增加其阻尼D.减小其阻尼25.用终值定理可求得)8)(5(4)(++=s s s s F 的原函数f (s )的稳态值为【 】 A.∞ B .4 C.0.1 D.026.可以用叠加原理的系统是【 】A.开环控制系统B.闭环控制系统C.离散控制系统D.线性控制系统27.惯性环节含有贮能元件数为【 】A.2B.1C.0D.不确定28.一阶系统的单位阶跃响应在t =0处的斜率越大,系统的【 】A.响应速度越快B.响应速度越慢C.响应速度不变D.响应速度趋于零29.临界阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线30.欠阻尼二阶系统的输出信号振幅的衰减速度取决于【 】A.n ξωB.ξωC.g ξωD.c ξω31.单位加速度信号的拉氏变换为【 】 A.1 B. s 1 C. 21s D. 31s32.线性系统的输入信号为t t x i ωsin )(=,则其输出信号响应频率为【 】A.ωB.n ωC.ωjD.n j ω33.微分环节的输出比输入超前【 】A.090-B.090C.0180-D.018034.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的极点就是系统开环零点B.)(s F 的零点就是系统开环极点C.)(s F 的零点就是系统闭环极点D.)(s F 的极点就是系统闭环极点35.系统开环传递函数为)11.0()14.0()(2++=s s s K s G 不用计算或作图,凭思考就能判断该闭环系统的稳定状况是【 】A.稳定B.不稳定C.稳定边界D.取决于K 的大小36.为了保证系统有足够的稳定裕量,在设计自动控制系统时应使穿越频率附近)(ωL 的斜率为【 】A.-40 dB/decB.-20 dB/decC.+40 dB/decD.+20 dB/dec37.线性定常系统的偏差信号就是误差信号的条件为【 】A.反馈传递函数H(s)=1B.反馈信号B(s)=1C.开环传递函数G(s) H(s)=1D.前向传递函数G(s)=138.降低系统的增益将使系统的【 】A.稳定性变差B.稳态精度变差C.超调量增大D.稳态精度变好39.含有扰动顺馈补偿的复合控制系统可以显著减小【 】A.超调量B.开环增益C.扰动误差D.累计误差40.PID 调节器的微分部分可以【 】A.改善系统的稳定性B.调节系统的增益C.消除系统的稳态误差D.减小系统的阻尼比41.一般情况下开环控制系统是【 】A.不稳定系统B.稳定系统C.时域系统D.频域系统42.求线性定常系统的传递函数条件是【 】A.稳定条件B.稳态条件C.零初始条件D.瞬态条件43.单位负反馈系统的开环传递函数为G(s),则其闭环系统的前向传递函数与【 】A.反馈传递函数相同B.闭环传递函数相同C.开环传递函数相同D.误差传递函数相同44.微分环节是高通滤波器,将使系统【 】A.增大干扰误差B.减小干扰误差C.增大阶跃输入误差D.减小阶跃输入误差45.控制框图的等效变换原则是变换前后的【 】A.输入量和反馈量保持不变B.输出量和反馈量保持不变C.输入量和干扰量保持不变D.输入量和输出量保持不变46.对于一个确定的系统,它的输入输出传递函数是【 】A.唯一的B.不唯一的C.决定于输入信号的形式D.决定于具体的分析方法47.衡量惯性环节惯性大小的参数是【 】A.固有频率B.阻尼比C.时间常数D.增益系数48.三个一阶系统的时间常数关系为T2<T1<T3,则【 】A.T2系统响应快于T3系统B.T1系统响应快于T2系统C.T2系统响应慢于T1系统D.三个系统响应速度相等49.闭环控制系统的时域性能指标是【 】A.相位裕量B.输入信号频率C.最大超调量D.系统带宽50.输入阶跃信号稳定的系统在输入脉冲信号时【 】A .将变成不稳定系统 B.其稳定性变好 C.其稳定性不变 D.其稳定性变差51.二阶欠阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线52.单位斜坡信号的拉氏变换为【 】 A.1 B.s 1 C.21s D.31s53.线性控制系统【 】A.一定是稳定系统B.是满足叠加原理的系统C.是稳态误差为零的系统D.是不满足叠加原理的系统54.延迟环节Ts e s G -=)(的幅频特性为【 】A.)(ωA =1B.)(ωA =0C.)(ωA <1D.)(ωA >155.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的【 】A.闭环极点数B.闭环零点数C.开环极点数D.开环零点数56.频率响应是系统对不同频率正弦输入信号的【 】A.脉冲响应B.阶跃响应C.瞬态响应D.稳态响应57.传递函数的零点和极点均在复平面的左侧的系统为【 】A.非最小相位系统B.最小相位系统C.无差系统D.有差系统58.零型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s→ 59.降低系统的增益将使系统的【 】A.稳定性变差B.快速性变差C.超调量增大D.稳态精度变好60.把系统从一个稳态过渡到新的稳态的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差61.闭环控制系统除具有开环控制系统所有的环节外,还必须有【 】A.给定环节B.比较环节C.放大环节D.执行环节62.同一系统由于研究目的的不同,可有不同的【 】A.稳定性B.传递函数C.谐波函数D.脉冲函数63.以同等精度元件组成的开环系统和闭环系统其精度比较为【 】A.开环高B.闭环高C.相差不多D.一样高64.积分环节的积分时间常数为T ,其脉冲响应为【 】A.1B.1/TC.TD.1+1/T65.串联环节的对数频率特性为各串联环节的对数频率特性的【 】A.叠加B.相乘C.相除D.相减66.非线性系统的最主要特性是【 】A.能应用叠加原理B.不能应用叠加原理C.能线性化D.不能线性化67.理想微分环节的输出量正比于【 】A.反馈量的微分B.输入量的微分C.反馈量D.输入量68.若二阶系统的阻尼比和固有频率分别为ξ和n ω,则其共轭复数极点的实部为【】 A.n ξω B.n ξω- C.d ξω- D.d ξω69.控制系统的时域稳态响应是时间【 】A.等于零的初值B.趋于零的终值C.变化的过程值D.趋于无穷大时的终值70.一阶系统的时间常数T 越小,系统跟踪斜坡信号的【 】A.稳定性越好B.稳定性越差C.稳态性越好D.稳态性越差71.二阶临界阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线72.线性系统的输入信号为t A t x i ωsin )(=,则其稳态输出响应相位【 】A.等于输入信号相位B.一般为输入信号频率ω的函数C.大于输入信号相位D.小于输入信号相位73.延迟环节Ts es G -=)(的相频特性为【 】 A.T ωωϕ1tan )(--= B.T ωωϕ1tan )(-=C. T ωωϕ=)(D. T ωωϕ-=)(74.Ⅱ型系统的开环传递函数在虚轴上从右侧环绕其极点的无穷小圆弧线所对应的开环极坐标曲线是半径为无穷大,且按顺时针方向旋转【 】A.π2的圆弧线B.πv 的圆弧线C.-π2的圆弧线D.π的圆弧线75.闭环系统稳定的充要条件是系统开环对数幅频特性过零时,对应的相频特性【 】A. 180)(-<c ωϕB. 180)(->c ωϕC. 180)(>c ωϕ180)(<c ωϕ76.对于二阶系统,加大增益将使系统的【 】A.稳态性变差B.稳定性变差C.瞬态性变差D.快速性变差77.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 78.控制系统含有的积分个数多,开环放大倍数大,则系统的【 】A.稳态性能愈好B.动态性能愈好C.稳定性愈好D.稳态性能愈差79.控制系统的稳态误差主要取决于系统中的【 】A.微分和比例环节B.惯性和比例环节C.比例和积分环节D.比例和延时环节80.比例积分微分(PID)校正对应【 】A.相位不变 B .相位超前校正 C .相位滞后校正 D .相位滞后超前校正81.闭环控制系统必须通过【 】A.输入量前馈参与控制B.干扰量前馈参与控制C.输出量反馈到输入端参与控制D.输出量局部反馈参与控制82.不同属性的物理系统可以有形式相同的【 】A.传递函数B.反函数C.正弦函数D.余弦函数83.输出信号对控制作用有影响的系统为【 】A.开环系统B.闭环系统C.局部反馈系统D.稳定系统84.比例环节能立即地响应【 】A.输出量的变化B.输入量的变化C.误差量的变化D.反馈量的变化85.满足叠加原理的系统是【 】A.定常系统B.非定常系统C.线性系统D.非线性系统86.弹簧-质量-阻尼系统的阻尼力与两相对运动构件的【 】A.相对位移成正比B.相对速度成正比C.相对加速度成正比D.相对作用力成正比87.当系统极点落在复平面S 的虚轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比小于1大于0D.阻尼比小于088.控制系统的最大超调量【 】A.只与阻尼比有关B.只与固有频率有关C.与阻尼比和固有频率都有关D.与阻尼比和固有频率都无关89.过阻尼的二阶系统与临界阻尼的二阶系统比较,其响应速度【 】A.过阻尼的小于临界阻尼的B.过阻尼的大于临界阻尼的C.过阻尼的等于临界阻尼的D.过阻尼的反比于临界阻尼的90.二阶过阻尼系统的阶跃响应为【 】A.单调衰减曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线91.一阶系统在时间为T 时刻的单位阶跃响应为【 】A. 1B. 0.98C. 0.95D. 0.63292.线性系统的输出信号完全能复现输入信号时,其幅频特性【 】A.)(ωA ≥1B.)(ωA <1C. 0<)(ωA <1D.)(ωA ≤093.Ⅱ型系统是定义于包含有两个积分环节的【 】A.开环传递函数的系统B.闭环传递函数的系统C.偏差传递函数的系统D.扰动传递函数的系统94.系统的幅值穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 94-1.系统的幅值穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率95.系统的穿越频率越大,则其【 】A.响应越快B.响应越慢C.稳定性越好D.稳定性越差96. 最小相位系统传递函数的【 】A.零点和极点均在复平面的右侧B.零点在复平面的右侧而极点在左侧C.零点在复平面的左侧而极点在右侧D.零点和极点均在复平面的左侧97.Ⅰ型系统能够跟踪斜坡信号,但存在稳态误差,其稳态误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数98.把系统扰动作用后又重新平衡的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差99.0型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 100.PID 调节器的比例部分主要调节系统的【 】A.增益B.固有频率C.阻尼比D.相频特性101.随动系统要求系统的输出信号能跟随【 】A.反馈信号的变化B.干扰信号的变化C.输入信号的变化D.模拟信号的变化 102.传递函数的量纲是【 】A.取决于输入与反馈信号的量纲B.取决于输出与输入信号的量纲C.取决于干扰与给定输入信号的量纲D.取决于系统的零点和极点配置 103.对于抗干扰能力强系统有【 】A.开环系统B.闭环系统C.线性系统D.非线性系统104.积分调节器的输出量取决于【 】A.干扰量对时间的积累过程B.输入量对时间的积累过程C.反馈量对时间的积累过程D.误差量对时间的积累过程105.理想微分环节的传递函数为【 】 A.Ts+11 B.s 1 C.s D.1+Ts 105.一阶微分环节的传递函数为【 】 A.Ts +11 B.s 1 C.s D.1+Ts 106.实际系统传递函数的分母阶次【 】A.小于分子阶次B.等于分子阶次C.大于等于分子阶次D.大于或小于分子阶次107.当系统极点落在复平面S 的负实轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于或等于1D.阻尼比小于0 108.欠阻尼二阶系统的输出信号的衰减振荡角频率为【 】A.无阻尼固有频率B.有阻尼固有频率C.幅值穿越频率D.相位穿越频率 109.反映系统动态精度的指标是【 】A.超调量B.调整时间C.上升时间D.振荡次数110.典型二阶系统在欠阻尼时的阶跃响应为【 】A.等幅振荡曲线B.衰减振荡曲线C.发散振幅曲线D.单调上升曲线111.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.05时,其调整时间为【 】A.TB.2TC.3TD.4T112.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ 113.实际的物理系统)(s G 的极点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点114.系统的相位穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 114-1.系统的相位穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 115.比例微分环节(时间常数为T )使系统的相位【 】A.滞后1tan T ω-B.滞后1tan ω-C.超前1tan T ω-D.超前1tan ω-116.系统开环频率特性的相位裕量愈大,则系统的稳定性愈好,且【 】A.上升时间愈短B.振荡次数愈多C.最大超调量愈小D.最大超调量愈大 117.Ⅱ型系统跟踪阶跃信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数118.PID 调节器的积分部分消除系统的【 】A.瞬态误差B.干扰误差C.累计误差D.稳态误差119.Ⅰ型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 120.比例微分校正将使系统的【 】A.抗干扰能力下降B.抗干扰能力增加C.稳态精度增加D.稳态精度减小 120-1.比例微分校正将使系统的【 】A.稳定性变好B.稳态性变好C.抗干扰能力增强D.阻尼比减小 121.若反馈信号与原系统输入信号的方向相反则为【 】A.局部反馈B.主反馈C.正反馈D.负反馈122.实际物理系统微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【 】A.结构参数组成B.输入参数组成C.干扰参数组成D.输出参数组成 123.对于一般控制系统来说【 】A.开环不振荡B.闭环不振荡C.开环一定振荡D.闭环一定振荡 124.积分环节输出量随时间的增长而不断地增加,增长斜率为【 】A.TB.1/TC.1+1/TD.1/T2 125.传递函数只与系统【 】A.自身内部结构参数有关B.输入信号有关C.输出信号有关D.干扰信号有关 126.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比127.当系统极点落在复平面S 的Ⅱ或Ⅲ象限内时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于0而小于1D.阻尼比小于0128.欠阻尼二阶系统是【 】A .稳定系统 B. 不稳定系统 C.非最小相位系统 D.Ⅱ型系统129.二阶无阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线 130.二阶系统总是【 】A.开环系统B.闭环系统C.稳定系统D.非线性系统131.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.02时,其调整时间为【 】A.TB.2TC.3TD.4T132.积分环节Tss G 1)(=的幅值穿越频率为【 】 A.T 1 B.-T 1 C. 20T 1lg D. -20T1lg 132-1.微分环节()G s Ts =的幅值穿越频率为【 】 A.T 1 B.-T 1 C. 20T 1lg D. -20T1lg 132-2.积分环节21()G s Ts =的幅值穿越频率为【 】 A.T 1 B.-T 1133.实际的物理系统)(s G 的零点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点134.判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上【 】A.(-∞,0)的区间B.(-∞,0]的区间C.(-∞,-1)的区间D.(-∞,-1]的区间135.控制系统抗扰动的稳态精度是随其前向通道中【 】A.微分个数增加,开环增益增大而愈高B.微分个数减少,开环增益减小而愈高C.积分个数增加,开环增益增大而愈高D.积分个数减少,开环增益减小而愈高 136.若系统无开环右极点且其开环极座标曲线只穿越实轴上区间(-1,+∞),则该闭环系统一定【 】A.稳定B.临界稳定C. 不稳定D.不一定稳定137.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ 138.控制系统的跟随误差与前向通道【 】A.积分个数和开环增益有关B.微分个数和开环增益有关C.积分个数和阻尼比有关D.微分个数和阻尼比有关139.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D.)()(lim 0s H s G s → 140.Ⅱ型系统跟踪斜坡信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C. ∞D.时间常数141.实际物理系统的微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【 】A.特征参数组成B.输入参数组成C.干扰参数组成D.输出参数组成 142.输出量对系统的控制作用没有影响的控制系统是【 】A.开环控制系统B.闭环控制系统C.反馈控制系统D.非线性控制系统 143.传递函数代表了系统的固有特性,只与系统本身的【 】A. 实际输入量B.实际输出量C.期望输出量D.内部结构,参数144.惯性环节不能立即复现【 】A.反馈信号B.输入信号C.输出信号D.偏差信号145.系统开环传递函数为)(s G ,则单位反馈的闭环传递函数为【 】 A.)(1)(s G s G + B.)()(1)()(s H s G s H s G + C.)()(1)(s H s G s G + D.)()(1)(s H s G s H + 146.线性定常系统输出响应的等幅振荡频率为n ω,则系统存在的极点有【 】A.n j ω±1B.n j ω±C.n j ω±-1D.1-147.开环控制系统的传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比147-1.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比148.欠阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.等幅振荡曲线D.等幅衰减曲线149.一阶系统是【 】A.最小相位系统B.非最小相位系统C.Ⅱ型系统D.不稳定系统150.单位阶跃函数的拉普拉斯变换是【 】 A.1/s B.1 C.21s D.1+1/s151.一阶系统的响应曲线开始时刻的斜率为【 】A.TB.TC.T 1D.T1 152.惯性环节11)(+=Ts s G 的转折频率越大其【 】 A.输出响应越慢 B.输出响应越快C.输出响应精度越高D.输出响应精度越低153.对于零型系统的开环频率特性曲线在复平面上【 】A.始于虚轴上某点,终于坐标原点B.始于实轴上某点,终于实轴上另一点C.始于坐标原点,终于虚轴上某点D.始于虚轴上某点,终于虚轴上另一点 153-1.对于Ⅰ型系统的开环频率特性曲线在复平面上【 】A.始于(0)180G j =∞∠-的点,终于坐标原点B.始于(0)90G j =∞∠-的点,终于坐标原点C.始于(0)180G j =∞∠-的点,终于实轴上任意点D.始于(0)90G j =∞∠-的点,终于虚轴上任意点154.相位裕量是当系统的开环幅频特性等于1时,相应的相频特性离【 】A.负实轴的距离B.正实轴的距离C.负虚轴的距离D.正虚轴的距离 155.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳定性变好C.稳态误差增加D.稳定性变差 155-1.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳态误差减小C.稳态误差增加D.稳定性变好 156.惯性环节使系统的输出【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后156-1.惯性环节使系统的输出随输入信号频率增加而其【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后157.无差系统是指【 】A.干扰误差为零的系统B.稳态误差为零的系统C.动态误差为零的系统D.累计误差为零的系统158.Ⅱ型系统跟踪加速度信号的稳态误差为【 】A.0B.常数C.∞D.时间常数159.控制系统的稳态误差组成是【 】A.跟随误差和扰动误差B.跟随误差和瞬态误差C.输入误差和静态误差D.扰动误差和累计误差160.Ⅰ型系统的速度静差系数等于【 】A.0B.开环放大系数C.∞D.时间常数161.线性定常系统输入信号导数的时间响应等于该输入信号时间响应的【 】A. 傅氏变换B.拉氏变换C.积分D.导数162.线性定常系统输入信号积分的时间响应等于该输入信号时间响应的【 】A.傅氏变换B.拉氏变换C.积分D.导数第二部分 填空题1.积分环节的特点是它的输出量为输入量对 的积累。
控制工程基础(西交大版)课后习题第一章引论1.1 控制工程简介控制工程是一门研究如何设计、分析和实现控制系统的学科。
它在工业自动化、飞行器、机器人等领域都有广泛的应用。
本章主要介绍控制工程的基本概念和发展历程。
1.什么是控制工程?控制工程的研究对象是什么?控制工程是研究如何使事物按我们的要求进行运动或变化的学科。
控制工程的研究对象是控制系统,即通过测量、计算和操作来影响物理或抽象系统状态的系统。
2.控制工程的研究内容包括哪些方面?控制工程的研究内容包括系统建模、系统分析和控制器设计。
系统建模是将实际系统抽象为数学模型,系统分析是对系统行为进行分析,控制器设计是根据系统模型和分析结果设计控制器以实现预期的控制目标。
3.控制工程与其他学科有哪些关系?控制工程与数学、物理学、电子工程等学科有密切的关系。
控制工程需要运用数学方法进行系统建模和分析,物理学提供了系统行为的基础知识,电子工程则提供了实现控制系统的技术手段。
1.2 控制系统的基本概念控制系统是由多个相互作用的组件组成的系统,用于对受控对象进行监测和控制。
本节主要介绍控制系统的基本概念和组成部分。
1.控制系统的基本组成部分有哪些?控制系统的基本组成部分包括输入、输出、反馈和控制器。
输入是控制系统的外部信号,输出是控制系统的响应信号,反馈是从输出信号中提取的信息,控制器根据反馈信息产生控制信号。
2.控制系统按照结构可以分为哪几类?按照结构,控制系统可以分为开环控制系统和闭环控制系统。
开环控制系统只根据输入信号进行控制,不考虑系统的输出;闭环控制系统通过反馈控制来调整系统的输出,使其接近于期望值。
3.控制系统的基本特性有哪些?控制系统的基本特性包括稳定性、精度、速度和鲁棒性。
稳定性指系统的输出在有限时间内是否会趋于稳定;精度指系统输出和期望值之间的误差大小;速度指系统达到稳态的时间;鲁棒性指系统对参数变化和外部扰动的抵抗能力。
1.3 控制系统的数学模型数学模型是控制系统的描述工具,它可以用数学方式表达出系统的结构和行为。
For personal use only in study and research; not forcommercial use控制工程基础习题答案第一章1-1 试比较开环控制系统和闭环控制系统的优缺点?(略)1-2 日常生活中有许多闭环和开环控制系统。
试举几个具体例子,并说明它们的工作原理,画出结构方框图。
(略)1-3 图1.14是液面自动控制系统的两种原理示意图。
在运行中,希望液面高度H 0维持不变。
1.试说明各系统的工作原理。
2.画出各系统的方框图,并说明被控对象、给定值、被控量和干扰信号是什么?图1.14 液位自动控制系统解:()a 工作原理:出水量2θ与进水量一致,系统处于平衡状态,液位高度保持在0H 。
当出水量大于进水量,液位降低,浮子下沉,通过连杆使阀门1L 开大,使得进水量增大,液位逐渐回升;当出水量小于进水量,液位升高,浮子上升,通过连杆使阀门1关小,液位逐渐降低。
其中被控对象是水槽,给定值是液面高度希望值0H 。
被控量是液面实际高度,干扰量是出水量2θ。
()b 工作原理:出水量与进水量一致系统处于平衡状态,电位器滑动头位于中间位置,液面为给定高度0H 。
当出水量大于(小于)进水量,浮子下沉(上浮)带动电位器滑动头向上(下)移动,电位器输出一正(负)电压,使电动机正(反)转,通过减速器开大(关小)阀门1L ,使进水量增大(减小),液面高度升高(降低),当液面高度为0H 时,电位器滑动头处于中间位置,输出电压为零,电动机不转,系统又处于平衡状态。
其中被控对象是水槽,给定值为液面高度希望值0H ,被控量是液面实际高度,干扰量是出水量2θ。
()a ,()b 系统结构图如下图1-4 若将图1.14(a )系统结构改为图1.15。
试说明其工作原理。
并与图1.14(a )比较有何不同?对系统工作有何影响?解:若将1-17()a 系统结构图改为1-18,系统变成了正反馈,当出水量与进水量一致,液面高度为给定值0H 。
2013级实验班《控制工程基础》课程习题册2013级《控制工程基础习题册》说明1.习题安排共16次作业;2.每次作业必做至少4~5道题,其中英文题至少1题;3.除上述必做题外,学生可以自己选择习题练习,上交后批改;4.鼓励同学之间互相讨论和交流,但不得相互抄袭;5.每位同学均必需交作业,每周四交,每周二发;6.做作业时均需要抄题目,有条件的同学可在计算机上做作业,交打印稿;7.由于某种原因不能按时交作业的同学可以延迟,但一定独立完成。
2015年9月作业分配第一次课作业(第0、1章控制系统的基本概念)第二次课作业(第0、1章控制系统的基本概念)第三次课作业(第2、3章控制系统的数学模型)第四次课作业(第2、3章控制系统的数学模型)第五次课作业(第4、5章控制系统的时域分析)第六次课作业(第4、5章控制系统的时域分析)第七次课作业(第6章控制系统的稳定性分析)第八次课作业(第4、5章控制系统的时域分析)第九次课作业(第7章控制系统的根轨迹分析)第十次课作业(第7章控制系统的根轨迹分析)第十一次课作业(第8、9章控制系统的频域分析)第十二次课作业(第8、9章控制系统的频域分析)第十三次课作业(第8、9章控制系统的频域分析)第十四次课作业(第10章控制系统的综合校正)第十五次课作业(第10章控制系统的综合校正)第十六次课作业(第10章控制系统的综合校正)第一次课作业(第0、1章控制系统的基本概念)必做题:1 在下列过程中,哪些是开环控制?哪些是闭环控制?哪些是人参与的控制系统?哪些是自动控制系统?简单说明原理并绘制原理框图。
(1)学校学生管理系统 (2)投掷铅球 (3)教室里控制电灯的开启和关闭 (4)网上检索资料2 请闭上眼睛,单脚平稳站立15秒,对保持你不会倒下的控制系统进行描述。
3 An automobile driver uses a control system to maintain the speed of the car at a prescribed level. Sketch a block diagram to illustrate this feedback system.4 根据图示的电动机速度控制系统工作原理图(1)将 a ,b 与c ,d 用线连接成负反馈系统。
(2)画出系统方框图。
题4图 电动机速度控制系统5 反馈系统不一定都是负反馈的,以物价持续上涨为标志的经济膨胀就是一个正反馈系统。
该正反馈系统如图所示,它将反馈信号与输入信号相加,并将合成的信号作为过程的输入。
这是一个以价格-工资描述通货的简单模型。
增加其他的反 题5图 正反馈系统馈回路,比如立法控制或税率控制,可以使该系统稳定。
如果工人工资有所增加,经过一段时间的延迟后,将导致物价有所上升。
请问在什么条件下,通过修改或延缓分配生活费用,可以使价格稳定?国家的工资与物价政策是怎样影响这个反馈系统的?选做题(至少选做1题):6 你从控制论的“三要素”的概念中得到什么启示?7 你是如何体会“控制无处不在,无时不有”的?8 你是如何体会负反馈控制系统中的“利用误差消除误差”这句话的?9 具有高智能的自动化高速公路是交通发展的趋势。
在两条高速公路汇合成一条高速公路的情况下,应有一个交通控制系统来确保车辆以规定的车距汇入高速公路。
请试着描述所需要的交通控制系统,绘出原理框图。
10 请查找有关给控制系统分类的资料,看看都有那些分类方法?并进行简单总结。
第二次课作业(第0、1章控制系统的基本概念)必做题:1题图为直流电动机双闭环调速系统的原理图。
试画出该系统的方框图,并分析哪些装置起测量、比较、执行和校正等作用。
题1图直流电动机双闭环调速系统2 What are the advantages and disadvantages of an open-loop system and a3如图所示,为了保持水箱具有希望的温度,由温控开关接通或断开电加热器的电源。
在使用热水时,水箱中流出热水并补充冷水。
试指出系统的被控对象、输出量、输入量、工作原理并画出系统原理框图。
题3图电加热系统4 洗衣机控制系统方块图如图所示。
试问该系统属于开环控制系统还是闭环控制系统?请设计一个闭环控制的洗衣机系统方块图。
题4图洗衣机控制系统方块图5 在繁忙的机场,随着飞机起落架次的增加,空中交通控制系统的作用日益增大。
工程师们正在运用全球定位系统(GPS )开发新的空中交通控制系统和防撞系统,GPS 可以让每架飞机知道自己在起降通道内的精确位置。
请用框图描述一空中交通控制系统是如何利用GPS 来避免飞机相互碰撞的。
选做题(至少选做1题):6 请收集3个工程实际中控制系统的典型案例,并试着分析系统的组成和控制方式,定性地比较他们的异同和优劣。
7 你能提出描述控制系统性能的其他方式吗?试着想想看。
8 哪些工程信号能够抽象为典型信号?试举例说明之。
请说说你对“抽象”的理解。
9 设)(x f 在区间[-π,π]上满足狄氏条件,即在此区间上:(1)连续或只有有限个第一类间断点,(2)只有有限个极值点,这时,函数)(x f 在区间],[ππ-上的连续点x 处有傅里叶级数展开式:∑++=)sin cos (2)(0nx b nx a a x f m m假设)()(21x f x f 、分别是工程系统中的实际信号,均满足上面傅里叶级数展开的条件,可以展开为傅里叶级数展开式。
体会并说明这样的数学处理为实际工程信号处理带来什么有意义的方法?10 试着用数学的语言描述控制系统的稳定性、稳态性和动态性。
11 试用自己的语言总结第0章和第1章的主要内容。
第三次课作业(第2、3章控制系统的数学模型)必做题:1 控制系统的放大电路如图所示(信号源内阻抗为零,外接负载阻抗为无穷大)。
(1) 试分析如图所示放大电路中输入r u 和输出0u 之间的关系,建立输入输出之间关系的数学表达式;(2) 如果50,10sin 10==R t u r 千欧,50=R 千欧和1=C 题1图 放大电路微法。
试计算输出电压0u 相对于输入电压r u 的幅值和相位。
2 将图所示力学系统施加的外力)(t f 作为输入,位移)(3t x 为输出,试求系统的方框图模型并简化之。
题2图力学系统3 如图所示系统中,加在A点的力f为输入,A'点的位移y为输出,试建立此时系统的传递函数模型。
题3图位移系统4 某装置的输出输入关系为)(4.0)()(3trt rtc+=,其中输入为)(tr,输出为)(tc,(1)当工作点为1=r和2=r时,分别计算系统输出的稳态值。
(2)确定系统在这两个工作点附近的线性化模型,并比较所得的结果。
5 What are the advantages of the Laplace-transform method of solving liner ordinary differential equations over the classical method?选做题(至少选做1题):6 如图所示倒立单摆的运动方程式在0=θ附近进行线性化,并求出传递函数。
题6图倒立单摆系统7 The following differential equations represent linear time-invariant systems, where )(tr denotes the input, and )(tc denotes the output. Find the transfer function )(/)(sRsC for each of the systems.)()(3)(6)(5)(2)()(2233t rdttdrtcdttdcdttcddttcda+=+++)(2)()(2)()(2)(10)()(2233t rdttdrdttctcdttdcdttcddttcdb t+=++++⎰)(5)(5)()(10)()(2244t r t c dt t dc dt t c d dt t c d c =+++ )1(2)()(5)()(5)(22-+=++t r t r t c dtt dc dt t c d d 8 尽可能多地举例说明你所知道的系统的模型形式。
9 图示是一个机械加速度计系统,输入量为加速度22()()d x t u t dt =,输出为)(t y ,其中)()(t y t x ,均是位移量,求传递函数()()()Y s G s U s =。
(图中B 是粘滞摩擦阻尼系数,K 为弹性系数。
)题9图 机械加速度计系统第四次课作业(第2、3章控制系统的数学模型)必做题:1 分析图中所示质点在外力作用下,在光滑无摩擦平面上运动的特性。
题1图 质点系统2 系统的结构图如题图所示,求)()(s R s C 和)()(s N s C 。
(a)(b)题2图 系统方框图3 A control engineer, N.Minorsky, designed an innovative ship steering system in the 1930s for the U.S. Navy. The system is represented by the block diagram shown in Fig.3, where )(s C is the ship ’s course, )(s R is the desired course, and )(s A is the rudder angle. Find the transfer function )(/)(s R s C by block diagram reduction.题3图 系统方框图4 系统微分方程组如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-==--==+-=)()()()()()()()()()()()()()()()()()(5453452310211t c t x t ct c t x t x t x t x T t x t n t x t x t x K t x t n K t ct r t x τ 试求系统的传递函数)()(s R s C 及)()(s N s C 。
其中)(t r 为输入信号,)(t n 为干扰信号,)(t c 为总输出信号,,0K τ,,1T K 均为常数。
5 一个需要精确定位的滑块系统如图所示。
当驱动杆的摩擦系数和弹性系数分别为1=d b 和3=d k ,滑块的质量和摩擦系数分别为32=c m 和1=s b 时,试计算系统的传递函数)()(s X s X in p 。
题5图 精密滑块系统选做题(至少选做1题):6 什么是系统辨识?系统辨识的三要素是什么?试举例说明系统辨识的应用。