函数与方程,不等式
- 格式:doc
- 大小:242.88 KB
- 文档页数:8
一次函数与方程(组)、不等式及二次函数与二元一次方程、二元一次不等式的关系1、一次函数与一元一次方程从“数”的角度看,解方程kx+b=0相当于一次函数y=kx+b 的函数值为0时,求自变量的取值;从“形”的角度看,解方程kx+b=0,相当于确定直线y=kx+b 与x 轴交点横坐标的值 一次函数与一元一次不等式从“数”的角度看,解不等于式kx+b 〉0(<0)相当于一次函数y=kx+b 的函数值>0(<0)时,求自变量x 的取值范围;从“形”的角度看,求不等于式kx+b>0(<0)的解集,相当于确定直线y=kx+b 在x 轴上(下)方部分所对应的自变量x 取值范围 从“数”的角度看,解不等于式11b x k +〉22b x k +相当于一次函数111b x k y +=与222b x k y +=函数值y 1>y 2时,求自变量的取值范围;从“形”的角度看,解不等于式11b x k +〉22b x k +,相当于确定直线111b x k y +=在直线222b x k y +=上(下)方部分所对应的自变量x 取值范围 一次函数与二元一次方程组从“数”的角度看,解二元一次方程组{y =k 1x +b 1y =k 2x +b 2相当于求自变量x 为何值时相应的两个函数y =k 1x +b 1与y =k 2x +b 2的函数值相等,从“形”的角度看,解二元一次方程组,相当于确定直线y =k 1x +b 1与y =k 2x +b 2交点的坐标类比可得出二次函数与二元一次方程、二元一次不等式的关系:1、从数的角度看,解方程02=c bx ax ++相当于二次函数c bx ax y ++=2的函数值y=0时自变量x 的值,从形的角度看,解方程02=++c bx ax 相当于确定二次函数c bx ax y ++=2与x 轴的交点模坐标的值2、从数的角度看,解方程)0(02<>++c bx ax 相当于二次函数c bx ax y ++=2的函数值y>0(<0)时自变量x 的取值范围,从形的角度看,解方程)0(02<>++c bx ax 相当于确定二次函数c bx ax y ++=2与在x 轴上(下)方部分所对应的自变量x 取值范围。
函数与方程不等式之间的关系
函数、方程和不等式是数学中的基本概念,它们之间存在密切的联系。
函数是描述两个变量之间关系的数学模型,通常表示为 y = f(x),其中 x 和
y 是变量,f 是函数关系。
函数有多种类型,其中一次函数是最简单的一种,表示为 y = ax + b,其中 a 和 b 是常数,a ≠ 0。
方程是含有未知数的等式,用来表示未知数和已知数之间的关系。
一元一次方程是最简单的一类方程,形如 ax + b = 0,其中 a 和 b 是已知数,a ≠ 0。
解这个方程可以得到未知数的值。
不等式是用不等号连结的两个解析式,表示两个量之间的大小关系。
一元一次不等式是最简单的一类不等式,形如 ax + b > 0 或 ax + b < 0,其中 a 和 b 是已知数,a ≠ 0。
解这个不等式可以得到满足不等式的值的范围。
函数、方程和不等式之间存在密切的联系。
一次函数和一元一次方程、一元一次不等式之间的关系特别重要。
对于一次函数 y = ax + b,当函数的值等于 0 时,自变量 x 的值就是一元一次方程 ax + b = 0 的解。
如果一次函数的值大于 0,则自变量 x 的值满足一元一次不等式 ax + b > 0;如果一次函数的值小于 0,则自变量 x 的值满足一元一次不等式 ax + b < 0。
因此,函数、方程和不等式是相互联系的,可以通过它们之间的关系来理解和解决数学问题。
中考数学复习:函数与方程、不等式的关系1.函数与方程的关系(1)关于x的一元二次方程ax2+bx+c=0(a≠0)的解⇔抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标的值;(2)关于x的一元二次方程ax2+bx+c=mx+n(am≠0)的解⇔抛物线y=ax2+bx+c (a≠0)与直线y=mx+n(m≠0)交点的横坐标的值.2.函数与不等式的关系(1)关于x的不等式ax2+bx+c>0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴上方的所有点的横坐标的值;(2)关于x的不等式ax2+bx+c<0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴下方的所有点的横坐标的值;(3)关于x的不等式ax2+bx+c>mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)上方的所有点的横坐标的值;(4)关于x的不等式ax2+bx+c<mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)下方的所有点的横坐标的值.例题讲解例1在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.若该抛物线在-2<x<-1这一段位于直线l:y=-2x+2的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的表达式.解:如图,因为抛物线的对称轴是x=1,且直线l与直线AB关于对称轴对称.所以抛物线在-1<x<0这一段位于直线l的下方.又因为抛物线在-2<x<-1这一段位于直线l的上方,所以抛物线与直线l的一个交点的横坐标为-1.当x=-1时,y=-2×(-1)+2=4,则抛物线过点(-1,4),将(-1,4)代入y=mx2-2mx-2,得m+2m-2=4,则m=2.所以抛物线的表达式为y=2x2-4x-2.例2已知y=ax²+bx+c(a≠0)的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,且抛物线经过点A(1,-1)和点B(-1,1).求a的取值范围.解:因为抛物线y=ax²+bx+c经过A(1,-1)和点B(-1,1),代入得a+b+c=-1,a-b+c=1,所以a+c=0,b=-1,则抛物线y=ax²-x-a,对称轴为x=12a.①当a<0时,抛物线开口向下,且x=12a<0,如图可知,当12a≤-1时符合题意,所以-12≤a<0.当-1<12a<0时,图像不符合-1≤y≤1的要求,舍去.②当a>0时,抛物线开口向上,且x=12a>0.如图可知,当12a≥1时符合题意,所以0<a≤12.当0<12a<1时,图像不符合-1≤y≤1的要求,舍去.综上所述,a的取值范围是-12≤a<0或0<a≤12.例3在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,'b)给出如下定义:1 '1b abb a ≥⎧=⎨-<⎩,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).(1)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点Q的纵坐标b′的取值范围是﹣5≤b′≤2,求k的取值范围;(2)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.解:(1)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点必在函数y=313-21x xx x-+≥⎧⎨-≤<⎩的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=﹣2时,﹣2=﹣x+3.∴x=5.当b′=﹣5时,﹣5=x﹣3或﹣5=﹣x+3.∴x=﹣2或x=8.∵﹣5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(2)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.1);点B;5≤k≤8;s≥2.进阶训练1.若关于x 的一元二次方程x 2+ax +b =0有两个不同的实数根m ,n (m <n ),方程x 2+ax+b =1有两个不同的实数根p ,q (p <q ),则m ,n ,p ,q 的大小关系为( )A .m <p <q <nB .p <m <n <qC .m <p <n <qD .p <m <q <nB【提示】 函数y =x 2+ax +b 和函数y =x 2+ax +b -1的图像如图所示,从而得到p <m <n<q解:函数y =x 2+ax +b 如图所示: xq n m p O2.在平面直角坐标系xOy 中,p (n ,0)是x 轴上一个动点,过点P 作垂直于x 轴的直线,交一次函数y =kx +b 的图像于点M ,交二次函数y =x ²-2x -3的图像于点N ,若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的表达式.y =-2x +1【提示】 依据题意并结合图像可知,一次函数的图像与二次函数的图像的交点的横坐标分别为-2和2,由此可得交点坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3)将交点坐标分别代入一次函数表达式即可3.在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图像与x轴有两个公共点,若m取满足条件的最小整数,当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值n的值为-2【提示】根据已知可得m=1.图像的对称轴为直线x=32.当n≤x≤1<32时,函数值y随自变量x的增大而减小,所以当x=1时,函数的值为-6,当x=n时,函数值为4-n.所以n2-3n-4=4-n,解得n=-2或n=4(不符合题意,舍去),则n的值为-2。
代数方程不等式函数代数方程、不等式和函数是高中数学中重要的概念和工具,它们在数学和其他科学领域中都有广泛的应用。
本文将依次介绍代数方程、不等式和函数的概念,并讨论它们之间的关系。
一、代数方程代数方程是含有未知数的数学等式,通常采用字母表示未知数。
代数方程的解即能够使方程成立的未知数的取值。
比如,对于一元一次方程ax + b = 0,其解为x = -b/a。
而对于二元一次方程ax + by = c,其解为x = (c - by) / a。
代数方程的解可以有一个或多个,也可能没有解。
二、不等式不等式是由不等号连接的两个代数式构成的数学表达式。
不等式描述了变量之间的大小关系,可以用来表示范围和条件。
比如,对于一元一次不等式ax + b > 0,其解为x > -b/a。
而对于二元一次不等式ax + by ≤ c,其解为x ≤ (c - by) / a。
不等式的解可以是一个区间、一个集合或一个条件。
三、函数函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数由定义域、值域和对应关系组成。
在代数中,函数通常用方程或不等式的形式表示。
函数的图像可以是一条曲线、一条直线或一组离散点。
函数在数学中有着广泛的应用,特别是在数学分析、微积分和概率统计中。
四、代数方程、不等式和函数的关系代数方程和不等式可以被看作是函数的特殊形式。
代数方程可以表示为y = f(x)的形式,其中y代表方程的解。
而不等式可以表示为y ≥ f(x)或y ≤ f(x)的形式,其中y代表不等式的解的范围或条件。
代数方程和不等式都是函数的具体实例,它们在数学分析和应用问题中经常被用到。
总结:代数方程、不等式和函数是高中数学中的重要概念。
代数方程表示了数学等式的解,不等式描述了变量之间的大小关系,函数则是一种特殊的关系,将一个集合中的元素映射到另一个集合中的元素。
代数方程、不等式和函数之间具有密切的关系,代数方程和不等式可以被看作是函数的特殊形式,在数学和其他科学领域中都有重要的应用。
函数、方程、不等式之间的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示:该函数与x 轴的交点坐标为3(,0)2,也就是在函数解析式23y x =-中,令0y =即可。
令0y =也就意味着将一元一次函数23y x =-变成了一元一次方程230x -=,其解和一次函数与x 轴的交点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示:很容易验证,该函数图象与x 轴的交点的横坐标正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间的关系,我们可不可以通过利用方程的根来绘制对应的函数图象呢函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。
函数与方程、不等式之间的关系【第1课时】【教学目标】【核心素养】1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点)2.会求函数的零点.(重点)3.掌握函数与方程、不等式之间的关系,并会用函数零点法求不等式的解集.(重点、难点)1.借助函数零点概念的理解,培养数学抽象的素养.2.通过函数与方程、不等式之间的关系的学习,提升逻辑推理的素养.3.利用零点法求不等式的解集,培养数学运算的素养.【教学过程】一、新知初探1.函数的零点(1)函数零点的概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称实数α为函数y=f(x)的零点.(2)三者之间的关系:函数f(x)的零点⇔函数f(x)的图像与x轴有交点⇔方程f(x)=0有实数根.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是使f(x)=ax2+bx+c 的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.二、初试身手1.函数y=1+1x的零点是()A.(-1,0)B.x=-1 C.x=1 D.x=0 答案:B解析:令1+1x=0解得x=-1,故选B.2.根据表格中的数据,可以断定方程e x-(x+2)=0(e≈2.72)的一个x -1012 3e x0.3712.727.4020.12x+21234 5A.(-1,0)B.(0,1)C.(1,2)D.(2,3)答案:C解析:令f(x)=e x-(x+2),则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4=3.40>0.由于f(1)·f(2)<0,∴方程e x-(x+2)=0的一个根在(1,2)内.3.若f(x)=-x2+mx-1的函数值有正值,则m的取值范围是()A.m<-2或m>2 B.-2<m<2C.m≠±2D.1<m<3答案:A解析:∵f(x)=-x2+mx-1有正值,∴Δ=m2-4>0,∴m>2或m<-2.4.不等式1+x1-x≥0的解集为________.答案:[-1,1)解析:原不等式等价于(x+1)(x-1)≤0,且x-1≠0,∴-1≤x<1.三、合作探究类型1:函数的零点及求法例1:求函数f(x)=x3-7x+6的零点.解:令f(x)=0,即x3-7x+6=0,∴(x3-x)-(6x-6)=0,∴x(x-1)(x+1)-6(x-1)=(x-1)·(x2+x-6)=(x-1)(x-2)(x+3)=0,解得x1=1,x2=2,x3=-3,∴函数f(x)=x3-7x+6的零点是1,2,-3.规律方法求函数y=f(x)的零点通常有两种方法:一是令y=0,根据解方程f(x)=0的根求得函数的零点;二是画出函数y=f(x)的图像,图像与x轴的交点的横坐标即为函数的零点.跟踪训练1.如图所示是一个二次函数y=f(x)的图像.(1)写出这个二次函数的零点;(2)试比较f(-4)·f(-1),f(0)·f(2)与0的大小关系.解:(1)由图像可知,函数f(x)的两个零点分别是-3,1.(2)根据图像可知,f(-4)·f(-1)<0,f(0)·f(2)<0.类型2:二次函数的零点及其与对应方程、不等式的关系例2:利用函数求下列不等式的解集:(1)x2-5x-6>0;(2)(2-x)(x+3)<0;(3)4(2x2-2x+1)>x(4-x).解:(1)方程x2-5x-6=0的两根为x1=-1,x2=6.结合二次函数y=x2-5x-6的图像知,原不等式的解集为(-∞,-1)∪(6,+∞).(2)原不等式可化为(x-2)(x+3)>0.方程(x-2)(x+3)=0的两根为x1=2,x2=-3.结合二次函数y=(x-2)(x+3)的图像知,原不等式的解集为(-∞,-3)∪(2,+∞).(3)由原不等式得8x 2-8x +4>4x -x 2,即9x 2-12x +4>0.解方程9x 2-12x +4=0,解得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎝ ⎛⎭⎪⎫-∞,23∪⎝ ⎛⎭⎪⎫23,+∞. 规律方法利用函数求不等式解集的基本步骤1.把一元二次不等式化成一般形式,并把a 的符号化为正;2.计算其对应一元二次方程的根的判别式Δ;3.求其对应一元二次方程的根;4.写出解集大于取两边,小于取中间. 跟踪训练2.利用函数求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0;(3)x 2-4x -5<0;(4)-4x 2+18x -814>0.解:(1)对于方程2x 2+7x +3=0,因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不相等的实数根,x 1=-3,x 2=-12.又因为二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为(-∞,-3)∪⎝ ⎛⎭⎪⎫-12,+∞. (2)对于方程-x 2+8x -3=0,因为Δ=82-4×(-1)×(-3)=52>0, 所以方程-x 2+8x -3=0有两个不相等的实数根,x 1=4-13,x 2=4+13. 又因为二次函数y =-x 2+8x -3的图像开口向下,所以原不等式的解集为(4-13,4+13).(3)原不等式可化为(x -5)(x +1)<0,所以原不等式的解集为(-1,5).(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922<0, 所以原不等式的解集为∅.类型3:用函数零点法求一元高次不等式的解集例3:求函数f(x)=(x-1)(x-2)(x+3)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-3,1,2.x (-∞,-3)(-3,1)(1,2)(2,+∞)f(x)-+-+由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为[-3,1]∪[2,+∞),f(x)<0的解集为(-∞,-3)∪(1,2).规律方法解题步骤:1.求出零点;2.拆分定义域;3.判断符号;4.写出解集.注意判断符号的方法,将最高项的系数化为正数,最右边的区间内为正,然后往左依次负正相间.跟踪训练3.求函数f(x)=(1-x)(x-2)(x+2)的零点,并作出函数图像的示意图,写出不等式f(x)≥0和f(x)<0的解集.解:函数的零点为-2,1,2.x (-∞,-2)(-2,1)(1,2)(2,+∞)f(x)+-+-由此可以画出此函数的示意图如图.由图可知,f(x)≥0的解集为(-∞,-2]∪[1,2],f(x)<0的解集为(-2,1)∪(2,+∞).四、课堂小结1.方程f(x)=g(x)的根是函数f(x)与g(x)的图像交点的横坐标,也是函数y=f(x)-g(x)的图像与x轴交点的横坐标.2.二次函数的零点及其与对应方程、不等式的关系(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合.3.图像法解一元二次不等式的步骤(1)解一元二次不等式对应的一元二次方程;(2)求出其对应的二次函数的零点;(3)画出二次函数的图像;(4)结合图像写出一元二次不等式的解集.五、当堂达标1.下列图像表示的函数中没有零点的是()答案:A解析:B,C,D的图像均与x轴有交点,故函数均有零点,A的图像与x 轴没有交点,故函数没有零点.2.方程5x2-7x-1=0的根所在的区间是()A.(-1,0)B.(1,2)C.一个根在(-1,0)上,另一个根在(1,2)上D.一个根在(0,1)上,另一个根在(-2,-1)上答案:C解析:∵f(-1)·f(0)<0,f(1)·f(2)<0,∴选C.3.函数f(x)=x-1x零点的个数是()A.0 B.1 C.2 D.3答案:C解析:令x-1x=0,即x2-1=0,∴x=±1.∴f(x)=x-1x的零点有两个.4.函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是________.答案:4解析:f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1)=(x+1)2(x-1)(x+2)2(x-3).可知零点为±1,-2,3,共4个.【第2课时】【教学目标】【核心素养】1.掌握函数零点的存在性定理,并会判断函数零点的个数.(重点)2.了解二分法是求方程近似解的常用方法,掌握二分法是求函数零点近似解的步骤.(难点)3.理解函数与方程之间的联系,并能用函数与方程思想分析问题、解决问题.(重点、难点)1.通过存在性定理的学习,培养逻辑推理的素养.2.通过二分法的学习,提升数据分析,数学建模的学科素养.3.理解函数与方程之间的联系,提升数学抽象的学科素养.【教学过程】一、新知初探1.函数零点的存在性定理如果函数y=f(x)在区间[a,b]上的图像是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间[a,b]中至少有一个零点,即∃x0∈[a,b],f(x0)=0.2.二分法的定义(1)二分法的条件:函数y=f(x)在区间[a,b]上连续不断且f(a)f(b)<0.(2)二分法的过程:通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法,称为二分法.由函数的零点与相应方程根的关系,也可以用二分法求方程的近似解.3.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数f (x )在[a ,b ]上的零点近似值的步骤是:第一步:检查|b -a |<2ε是否成立,如果成立,取x 1=a +b 2,计算结束;如果不成立,转到第二步.第二步:计算区间[a ,b ]的中点a +b 2对应的函数值,若f ⎝ ⎛⎭⎪⎫a +b 2=0,取x 1=a +b 2,计算结束;若f ⎝ ⎛⎭⎪⎫a +b 2≠0,转到第三步. 第三步 若f (a )f ⎝ ⎛⎭⎪⎫a +b 2<0,将a +b 2的值赋给b ⎝ ⎛⎭⎪⎫用a +b 2→b 表示,下同,回到第一步;若f ⎝ ⎛⎭⎪⎫a +b 2f (b )<0,将a +b 2的值赋给a ,回到第一步. 二、初试身手1.下列函数不宜用二分法求零点的是( )A .f (x )=x 3-1B .f (x )=ln x +3C .f (x )=x 2+22x +2D .f (x )=-x 2+4x -1 答案:C解析:因为f (x )=x 2+22x +2=(x +2)2≥0,不存在小于0的函数值,所以不能用二分法求零点.2.若函数f (x )在区间[a ,b ]上为单调函数,且图像是连续不断的曲线,则下列说法中正确的是( )A .函数f (x )在区间[a ,b ]上不可能有零点B .函数f (x )在区间[a ,b ]上一定有零点C .若函数f (x )在区间[a ,b ]上有零点,则必有f (a )·f (b )<0D .若函数f (x )在区间[a ,b ]上没有零点,则必有f (a )·f (b )>0 答案:D解析:函数f (x )在区间[a ,b ]上为单调函数,如果f (a )·f (b )<0,可知函数在(a ,b )上有一个零点,如果f (a )·f (b )>0,可知函数在[a ,b ]上没有零点,所以函数f (x )在区间[a ,b ]上可能没有零点,也可能有零点,所以A 不正确;函数f (x )在区间[a ,b ]上可能有零点,也可能没有零点;所以B 不正确; 若函数f (x )在区间[a ,b ]上有零点,则可能f (a )·f (b )<0,也可能f (a )·f (b )=0所以C 不正确;若函数f(x)在区间[a,b]上没有零点,则必有f(a)·f(b)>0,正确;故选D.]3.用“二分法”可求近似解,对于精确度ε说法正确的是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε无关答案:B解析:依“二分法”的具体步骤可知,ε越大,零点的精确度越低.4.若函数f(x)的图像是连续不断的,且f(0)>0,f(1)·f(2)·f(4)<0,则下列命题正确的是________.①函数f(x)在区间(0,1)内有零点;②函数f(x)在区间(1,2)内有零点;③函数f(x)在区间(0,2)内有零点;④函数f(x)在区间(0,4)内有零点.答案:④解析:∵f(0)>0,而由f(1)·f(2)·f(4)<0,知f(1),f(2),f(4)中至少有一个小于0.∴(0,4)上有零点.三、合作探究类型1:判断函数零点所在的区间例1:求证:方程x4-4x-2=0在区间[-1,2]内至少有两个实数解.证明:设f(x)=x4-4x-2,其图像是连续曲线.因为f(-1)=3>0,f(0)=-2<0,f(2)=6>0,所以方程在(-1,0),(0,2)内都有实数解.从而证明该方程在给定的区间内至少有两个实数解.规律方法一般而言,判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.跟踪训练1.若函数y=f(x)在区间[a,b]上的图像为连续不断的一条曲线,则下列说法正确的是()A.若f(a)f(b)>0,则不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,则存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,则有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b)使得f(c)=0 答案:C解析:对于A选项,可能存在,如y=x2;对于B选项,必存在但不一定唯一,选项D一定存在.类型2:对二分法概念的理解例2:下列图像与x轴均有交点,其中不能用二分法求函数零点的是()答案:B解析:利用二分法求函数的零点必须满足零点两侧函数值异号,在选项B 中,不满足零点两侧函数值异号,不能用二分法求零点.由于A、C、D中零点的两侧函数值异号,故可采用二分法求零点.规律方法二分法是求一般函数的零点的一种通法,使用二分法的前提条件是:函数零点的存在性.对“函数在区间[a,b]上连续”的理解如下:不管函数在整个定义域内是否连续,只要找得到包含零点的区间上函数图像是连续的即可.跟踪训练2.如图是函数f(x)的图像,它与x轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数f(x)的零点近似值的是()A.(-2.1,-1)B.(1.9,2.3)C.(4.1,5)D.(5,6.1)答案:B解析:只有B 中的区间所含零点是不变号零点. 类型3:用二分法求函数零点例3:求函数f (x )=x 2-5的负零点.(精确度为0.1) 解:由于f (-2)=-1<0,f (-3)=4>0, 故取区间(-3,-2)作为计算的初始区间, 区间 中点的值 中点函数近似值 (-3,-2) -2.5 1.25 (-2.5,-2) -2.25 0.0625 (-2.25,-2) -2.125 -0.4844 (-2.25,-2.125) -2.1875-0.2148 (-2.25,-2.1875)-2.21875-0.0771由于|-2.25-(-2.1875)|=0.0625<0.1, 所以函数的一个近似负零点可取-2.25. 规律方法利用二分法求函数零点应关注三点1.要选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.2.用列表法往往能比较清晰地表达函数零点所在的区间.3.根据给定的精确度,及时检验所得区间长度是否达到要求,以决定是停止计算还是继续计算.跟踪训练3.证明函数f (x )=2x +3x -6在区间[1,2]内有唯一零点,并求出这个零点(精确度为0.1).解:由于f (1)=-1<0,f (2)=4>0,又函数f (x )在[1,2]内是增函数,所以函数在区间[1,2]内有唯一零点,不妨设为x 0,则x 0∈[1,2].下面用二分(a ,b ) (a ,b )的中点f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (1,2)1.5f (1)<0f (2)>0f (1.5)>0(1,1.5) 1.25 f (1)<0 f (1.5)>0 f (1.25)>0 (1,1.25) 1.125f (1)<0 f (1.25)>0f (1.125)<0 (1.125,1.25)1.1875 f (1.125)<0f (1.25)>0f (1.1875)<0因为|1.1875-1.25|=0.0625<0.1,所以函数f (x )=2x +3x -6的精确度为0.1的近似零点可取为1.25.类型4:用二分法求方程的近似解例4:用二分法求方程2x 3+3x -3=0的一个正实数近似解(精确度为0.1). 解:令f (x )=2x 3+3x -3,经计算,f (0)=-3<0,f (1)=2>0,f (0)·f (1)<0, 所以函数f (x )在(0,1)内存在零点, 即方程2x 3+3x -3=0在(0,1)内有解.取(0,1)的中点0.5,经计算f (0.5)<0,又f (1)>0, 所以方程2x 3+3x -3=0在(0.5,1)内有解. (a ,b ) 中点c f (a ) f (b ) f ⎝⎛⎭⎪⎫a +b 2 (0,1) 0.5 f (0)<0 f (1)>0 f (0.5)<0 (0.5,1) 0.75 f (0.5)<0 f (1)>0 f (0.75)>0 (0.5,0.75) 0.625 f (0.5)<0 f (0.75)>0 f (0.625)<0 (0.625,0.75) 0.6875f (0.625)<0f (0.75)>0f (0.6875)<0(0.6875,0.75)|0.6875-0.75|=0.0625<0.1由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解.规律方法用二分法求方程的近似解应明确两点(1)根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f (x )=0的近似解,即按照用二分法求函数零点近似值的步骤求解.(2)对于求形如f (x )=g (x )的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,然后按照用二分法求函数零点近似值的步骤求解.跟踪训练4.求方程x2=2x+1的一个近似解.(精确度0.1)解:设f(x)=x2-2x-1.∵f(2)=-1<0,f(3)=2>0.∴在区间(2,3)内,方程x2-2x-1=0有一解,记为x0.取2与3的平均数2.5,∵f(2.5)=0.25>0,∴2<x0<2.5;再取2与2.5的平均数2.25,∵f(2.25)=-0.4375<0,∴2.25<x0<2.5;如此继续下去,有f(2.375)<0,f(2.5)>0⇒x0∈(2.375,2.5);f(2.375)<0,f(2.4375)>0⇒x0∈(2.375,2.4375).∵|2.375-2.4375|=0.0625<0.1,∴方程x2=2x+1的一个精确度为0.1的近似解可取为2.4375.四、课堂小结1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.2.并非所有函数都可以用二分法求其零点,只有满足:(1)在区间[a,b]上连续不断;(2)f(a)·f(b)<0,上述两条的函数方可采用二分法求得零点的近似值.五、当堂达标1.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点答案:B解析:令-x2+8x-16=0,得x=4,故函数y=-x2+8x-16在[3,5]上有一个零点.2.用二分法求函数f (x )=x 3+x 2-2x -2的一个正零点的近似值(精确到0.1)时,依次计算得到如下数据:f (1)=-2,f (1.5)=0.625,f (1.25)≈-0.984,f (1.375)≈-0.260,关于下一步的说法正确的是( )A .已经达到精确度的要求,可以取1.4作为近似值B .已经达到精确度的要求,可以取1.375作为近似C .没有达到精确度的要求,应该接着计算f (1.4375)D .没有达到精确度的要求,应该接着计算f (1.3125) 答案:C解析:由二分法知,方程x 3+x 2-2x -2=0的根在区间(1.375,1.5),没有达到精确度的要求,应该接着计算f (1.4375).故选C .3.函数图像与x 轴均有交点,但不宜用二分法求交点横坐标的是( )答案:B4.用二分法求函数零点,函数的零点总位于区间[a n ,b n ]上,当|a n -b n |<ε时,函数的近似零点a n +b n2与真正零点的误差不超过A .εB .12εC .2εD .14ε 答案:B解析:根据用“二分法”求函数近似零点的步骤知,当|a n -b n |<ε时,区间[a n ,b n ]的中点x n =12(a n +b n )就是函数的近似零点,这时计算终止,从而函数的近似零点与真正零点的误差不超过12ε.故选B .。
函数、方程与不等式的关系精讲精析点点突破热门考点01 求函数的零点1.函数的零点(1)定义:对于函数y =f (x ),我们把使f (x )=0成立的实数x 叫做函数y =f (x )的零点. (2)几何意义:函数y =f (x )的图象与x 轴的交点的横坐标就是函数y =f (x )的零点. (3)结论:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点 【典例1】判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x +3x ;(2)f (x )=x 2+2x +4; 【答案】(1)-3.(2)不存在零点.【解析】分析:分别令各个解析式等于0,根据方程是否有根来确定函数的零点. (1)令x +3x =0,解得x =-3,所以函数 f (x )=x +3x 的零点是-3. (2)令x 2+2x +4=0,由于Δ=22-4×4=-12<0, 所以方程x 2+2x +4=0无解, 所以函数f (x )=x 2+2x +4不存在零点. 【典例2】(2020·上海高三三模)函数2,1()(2),1x x f x x x ⎧=⎨->⎩,如果方程()f x b =有四个不同的实数解1x 、2x 、3x 、4x ,则1234x x x x +++= .【答案】4 【解析】作出函数2,1()(2),1x x f x x x ⎧=⎨->⎩的图象,方程()f x b =有四个不同的实数解, 等价为()y f x =和y b =的图象有4个交点, 不妨设它们交点的横坐标为1x 、2x 、3x 、4x , 且1234x x x x <<<,由1x 、2x 关于原点对称,3x 、4x 关于(2,0)对称, 可得120x x +=,344x x +=, 则12344x x x x +++=. 故答案为:4.【总结提升】1.正确理解函数的零点:(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.(2)根据函数零点定义可知,函数f (x )的零点就是f (x )=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实根,有几个实根.即函数y =f (x )的零点⇔方程f (x )=0的实根⇔函数y =f (x )的图象与x 轴交点的横坐标. 2.函数零点的求法:(1)代数法:求方程f (x )=0的实数根.(2)几何法:与函数y =f (x )的图象联系起来,图象与x 轴的交点的横坐标即为函数的零点., 【变式探究】(2019·贵州省凯里一中高一期中)方程2210x x --=的两个根分别为( ) A .2,1-B .1,12-C .2,1-D .1,12-【答案】B 【解析】2210x x --=等价于()()2110x x +-=,解得12x =-或1.故选:B.热门考点02 判断零点所在的区间1.函数零点的判定定理2.判断函数y =f (x )是否存在零点的方法: (1)方程法:判断方程f (x )=0是否有实数解.(2)图象法:判断函数y =f (x )的图象与x 轴是否有交点. (3)定理法:利用零点的判定定理来判断.【典例3】(2020·海丰县彭湃中学高一期末)函数31()102f x x x =--+的零点所在的大致区间为( ) A .(1,0)- B .(0,1) C .(1,2)D .(2,3)【答案】D 【解析】因为函数31()102f x x x =--+在R 上单调递减, (2)10f =>,(3)0f <,所以零点所在的大致区间为(2,3) 故选:D【典例4】(2020·郸城县实验高中高一月考)如图是函数f (x )的图象,它与x 轴有4个不同的公共点.给出的下列四个区间之中,存在不能用二分法求出的零点,该零点所在的区间是( )A .[-2.1,-1]B .[4.1,5]C .[1.9,2.3]D .[5,6.1]【答案】C 【解析】结合图象可得:ABD 选项每个区间的两个端点函数值异号,可以用二分法求出零点, C 选项区间两个端点函数值同号,不能用二分法求零点. 故选:C 【总结提升】判断函数零点所在区间的方法:一般而言判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断. 【变式探究】1.(2020·嘉兴市第五高级中学高二期中)函数()f x 按照下述方法定义:当2x ≤时,2()2f x x x =-+;当2x >时,1()(2)2f x f x =-,方程1()5f x =的所有实数根之和是( ) A .8 B .13 C .18 D .25 【答案】C. 【解析】如下图所示,画出()f x 的函数图象,根据对称性可知,方程1()5f x =共有6个实数根, 其和为261018++=,故选C.2.(2020·东北育才学校高三其他(理))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,为了纪念数学家高斯,人们把函数[]y x =,x ∈R 称为高斯函数,其中[]x 表示不超过x 的最大整数. 设{}[]x x x =-,则函数(){}21f x x x x =--的所有零点之和为________. 【答案】1- 【解析】()01f =-,令()0f x =,可得{}121x x=+,则函数()y f x =的零点,即为函数{}2y x =与函数11y x=+的图象交点的横坐标, 作出函数{}2y x =与函数11y x=+的图象如下图所示:由图象可知,两函数除以交点()1,0-之外,其余的交点关于点()0,1对称, 所以,函数()y f x =的所有零点之和为1-. 故答案为:1-.热门考点03 函数零点个数的判断函数y =ax 2+bx +c (a ≠0)的图象与x 轴的交点和相应方程ax 2+bx +c =0(a ≠0)的根的关系函数图象判别式符号 (设判别式 Δ=b 2-4ac ) Δ>0Δ=0Δ<0与x 轴交点个数 21方程的根的个数21【典例5】(2020·山东省高三二模)已知图象连续不断的函数()f x 的定义域为R ,()f x 是周期为2的奇函数,()y f x =在区间[]1,1-上恰有5个零点,则()f x 在区间[]0,2020上的零点个数为( ) A .5050 B .4041C .4040D .2020 【答案】B 【解析】由函数()f x 的定义域为R 上的奇函数,可得()00f =, 又由()y f x =在区间[]1,1-上恰有5个零点,可得函数()f x 在区间[1,0)-和(0,1]内各有2个零点,因为()f x 是周期为2,所以区间(1,2]内有两个零点,且(2)0f =, 即函数()f x 在区间(0,2]内有4个零点, 所以()f x 在区间[]0,2020上的零点个数为20204140412⨯+=个零点. 故选:B.【典例6】(2016·上海高一期末)已知函数()1mf x x x=+-,其中m R ∈; (1)当2m =时,判断()f x 在区间(,0)-∞上的单调性,并用定义证明;(2)讨论函数()f x零点的个数;【答案】(1)单调递减,证明见详解;(2)11 ,, 44m⎛⎫⎛⎫⋃⎪∈- ⎪⎝⎭⎝-+∞⎭∞,()f x有1个零点;11,0,44m⎧⎫⎨∈⎩-⎬⎭,()f x有2个零点;11,044(0),m⎛⎫⋃⎪⎝⎭∈-,()f x有3个零点.【解析】(1)当2m=时,(),0x∈-∞时,()21f x xx=-+-该函数为单调递减函数,证明如下:在区间(),0x∈-∞上任取12,x x,且12x x<<则()()12121222f x f x x xx x-=-++-()()2112122x x x xx x-+=因为120x x<<,故21x x->,且12x x>,则()()2112122x x x xx x-+>故当120x x<<时,()()12f x f x->则函数()f x在(),0x∈-∞时,单调递减.即证.(2)()1mf x xx=+-0=,等价于1mxx=-+即等价于()()1,(0)1,(0)x x xm x x xx x x⎧->⎪=-=⎨+<⎪⎩令()()()1,(0)1,(0)x x xg x x xx x x⎧->⎪=-=⎨+<⎪⎩,则其函数图像如下所示:由图可知:当14m =或14m =-或0m =时,直线y m =与()g x 有两个交点; 当14m >或14m <时,直线y m =与()g x 只有一个交点;当104m -<<或104m <<时,直线y m =与()g x 有三个交点.故:①11,,44m ⎛⎫⎛⎫⋃ ⎪∈- ⎪⎝⎭⎝-+∞⎭∞,()f x 有1个零点; ②11,0,44m ⎧⎫⎨∈⎩-⎬⎭,()f x 有2个零点; ③11,044(0),m ⎛⎫⋃ ⎪⎝⎭∈-,()f x 有3个零点.【总结提升】判断函数零点个数的主要方法:(1)利用方程根,转化为解方程,有几个根就有几个零点.(2)画出函数y =f (x )的图象,判定它与x 轴的交点个数,从而判定零点的个数. (3)结合单调性,利用f (a )·f (b )<0,可判定y =f (x )在(a ,b )上零点的个数. (4)转化成两个函数图象的交点问题. 【变式探究】1.(2020·江苏省高三其他)设[]t 表示不超过实数t 的最大整数(如[ 1.3]2-=-,[2.6]2=),则函数[]()21f x x x =--的零点个数为_______.【答案】2 【解析】函数[]()21f x x x =--的零点即方程[]21x x -=的根,∴函数()f x 的零点个数,即方程[]21x x -=的根的个数.[]210,0,0x x x -≥∴≥∴≥.当01x ≤<时,[]10,210,2x x x =∴-=∴=. 当1x =时,[]1,211,211x x x =∴-=∴-=或211,1x x -=-∴=或0x =(舍).当1x >时,[]2121x x x x -=->≥,∴方程[]21x x -=无解. 综上,方程[]21x x -=的根为12,1. 所以方程[]21x x -=有2个根,即函数[]()21f x x x =--有2个零点. 故答案为:2.2.求函数f (x )=x 2-5x +6在[1,4]上的零点个数.【错解】错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在[1,4]上没有零点,即零点个数是0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在(1,2.5)内有一个零点; 又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在(2.5,4)内有一个零点, ∴函数在[1,4]上有两个零点.【错因分析】对于错解一,是错误地类比零点存在定理,f (a )·f (b )>0时,(a ,b )中的零点情况是不确定的,而错解二出现了逻辑错误,当f (a )·f (b )<0时,(a ,b )中存在零点,但个数不确定. 【解析】解1:由题意,得x 2-5x +6=0, ∴x =2,x =3, ∴函数的零点是2,3∴函数在[1,4]上的零点的个数是2.解2:∵f (1)=2>0,f (2.5)=-0.25<0,f (4)=2>0, ∴f (x )在(1,2.5)和(2.5,4)内都有零点.又易知f (x )在(-∞,2.5)和(2.5,+∞)上都是单调函数. ∴f (x )在(1,2.5)和(2.5,4)内都只有一个零点. ∴f (x )在[1,4]上有两个零点.【特别警示】当函数y =f (x )的图象在闭区间[a ,b ]上是一条连续不断的曲线,(1)不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.(2)满足f (a )·f (b )<0时,f (x )在(a ,b )内必有零点,但不一定只有一个零点.热门考点04 根据零点情况求参数范围【典例7】(2020·绥德中学高三其他(理))若函数有两个零点,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】,要保证函数有两个零点,则实数的取值范围是【典例8】(2019·贵州省高二学业考试)已知函数2()23f x x x m =---有四个不同的零点,则实数m 的取值范围是( ) A .[0,4] B .(0,4] C .[0,4) D .(0,4)【答案】D 【解析】由题意,函数2()23f x x x m =---有四个不同的零点, 等价于函数223y x x =--和y m =的图象有四个不同的交点,作出函数22223,(,1)(3,)2323,[1,3]x x x y x x x x x ⎧--∈-∞-⋃+∞=--=⎨-++∈-⎩的图象,如图所示,要使得函数223y x x =--和y m =的图象有四个不同的交点,则04m <<,即实数m 的取值范围是(0,4). 故选:D.【变式探究】1.(2020·洮南市第一中学高二月考(文))对于定义在实数集R 上的函数()f x ,如果存在实数0x ,使()00f x x =,那么0x 叫做函数()f x 的一个好点,已知函数2()21f x x ax =++不存在好点,那么a 的取值范围是( ) A .13,22⎛⎫-⎪⎝⎭ B .31,22⎛⎫-⎪⎝⎭ C .(1,1)- D .(,1)(1,)-∞-+∞【答案】A 【解析】由题意,2()21f x x ax x =++=无实根,即方程2(21)10x a x +-+=无实根, 所以2(21)40a ∆=--<,解得1322a -<<. 故选:A2.(2020·鸡泽县第一中学高二开学考试)已知函数()232,3,x x x mf x x x m ⎧-+≤=⎨-+>⎩,若()f x 恰好有2个零点,则m 的取值范围是( ) A .(]2,3 B .[)2,3C .[)[)1,23,+∞D .(][)1,23,+∞【答案】C 【解析】令21232,3y x x y x =-+=-+,因为方程2320x x -+=的两根为121,2x x ==, 所以在同一直角坐标系下作出函数21232,3y x x y x =-+=-+的图象如图所示:由图可知,当12m ≤<时,函数()f x 恰有两个零点,图象如图所示:当3m ≥时,函数()f x 恰 有两个零点,图象如图所示:综上可知,所求实数m 的取值范围为[)[)1,23,+∞.故选:C热门考点05 一元二次方程根的分布问题设二次函数y =ax 2+bx +c (a >0)对应的方程的根为x 1、x 2.根的分布(m <n <p )图象满足条件一个 区间 只有 一个 根x 1<m <x 2 f (m )<0m <x 1<n<x 2<p⎩⎪⎨⎪⎧f (m )>0,f (n )<0,f (p )>0一个 区间 有两个根m <x 1<x 2<n⎩⎪⎨⎪⎧Δ>0,m <-b 2a <n ,f (m )>0,f (n )>0m <x 1<x 2⎩⎪⎨⎪⎧Δ>0,-b2a >m ,f (m )>0在(m ,n )内有且只有一个根或f (m )·f (n )<0或Δ=0 且-b2a ∈(m ,n )或⎩⎪⎨⎪⎧f (m )=0,m <-b 2a <m +n 2 或⎩⎪⎨⎪⎧f (n )=0,m +n2<-b 2a <n 另外,x 1,x 2∈(0,+∞),即两正根,也可通过满足条件⎩⎪⎨⎪⎧b 2-4ac ≥0,-ba>0,c a >0来解决;x 1,x 2∈(-∞,0),即两负根,也可通过满足条件⎩⎪⎨⎪⎧b 2-4ac ≥0,-ba<0,c a >0来解决;x 1,x 2一正一负也可通过满足⎩⎪⎨⎪⎧b 2-4ac >0,c a<0来解决.【典例9】(2019·贵州省凯里一中高一期中)若函数()221f x ax x =-+在区间()0,1和区间()1,2上均存在零点,则实数a 的取值范围是( ) A .()3,1--B .3,14⎛⎫⎪⎝⎭C .30,4⎛⎫ ⎪⎝⎭D .31,2⎛⎫ ⎪⎝⎭【答案】B 【解析】当0a =时,()21f x x =-+,不满足题设;当0a <时,函数()221f x ax x =-+的图象与x 轴正半轴只存在一个交点,不满足题设;当0a >时,因为()f x 在区间()0,1和区间()1,2上均存在零点(如图所示),则()00f >,()10f <,()20f >,即2220020101211022210a a a a >⎧⎪⨯-⨯+>⎪⎨⨯-⨯+<⎪⎪⨯-⨯+>⎩,解得314a <<. 故选:B.【典例10】(2019·安徽省六安一中高一月考)已知函数()()221421f x m x mx m =+++-.(1)如果函数()f x 的一个零点为0,求m 的值;(2)当函数()f x 有两个零点,且其中一个大于1,一个小于1时,求实数m 的取值范围.【答案】(1)12;(2)118m m ⎧⎫-<<-⎨⎬⎩⎭. 【解析】(1)因为函数()f x 的一个零点为0,所以()0210f m =-=,即12m =. (2)因为函数()f x 有两个零点,且其中一个大于1,一个小于1, 所以当10m +>时,(1)810f m =+<,即118m -<<-;当10+<m 时,(1)810f m =+>,此时无解; 故实数m 的取值范围为118m m ⎧⎫-<<-⎨⎬⎩⎭.【总结提升】二次函数零点的分布一般为下面两个方面的问题: (1)一个区间内只有一个根;(2)一个区间内有两个根.由于我们在初中学过方程根的情况,有时可以根据判别式及根与系数的关系判断,但在多数情况下,还要结合图象,从对称轴、判别式、区间端点的函数值的正负等方面去探究. 【变式探究】(2018·平遥县综合职业技术学校高一期中)已知函数()2234f x x mx m =+++.(1)m 为何值时,()0f x =有两个根且均比1-大; (2)求()f x 在[]0,2上的最大值()g m .【答案】(1)(5,1]--(2)()34,178,1m m g m m m +≤-⎧=⎨+>-⎩【解析】(1)若()f x 有两个大于1-的零点,则()0110m f ⎧∆≥⎪->-⎨⎪->⎩,即2340112340m m m m m ⎧--≥⎪<⎨⎪-++>⎩,解得51m -<≤-,∴m 的取值范围是(5,1]--.(2)()f x 的图象开口向上,对称轴为x m =-, 当1m -≥,即1m ≤-时,()()034g m f m ==+, 当1m -<,即1m >-时,()()278g m f m ==+,∴()34,178,1m m g m m m +≤-⎧=⎨+>-⎩.巩固提升1. (2020·江西省崇义中学高一开学考试(文))方程()2250x m x m +-+-=的一根在区间()2,3内,另一根在区间()3,4内,则m 的取值范围是( ) A .()5,4-- B .13,23⎛⎫-- ⎪⎝⎭C .13,43⎛⎫-- ⎪⎝⎭D .()5,2--【答案】C 【解析】令()()225f x x m x m =+-+-,由二次函数根的分布性质,若一根在区间()2,3内,另一根在区间(3,4)内,只需()()()203040f f f ⎧>⎪<⎨⎪>⎩,即()()()4225093250164250m m m m m m ⎧+-+->⎪+-+-<⎨⎪+-+->⎩,解不等式组可得1343m -<<-, 即m 的取值范围为13,43⎛⎫-- ⎪⎝⎭,故选:C.2.(2020·天津高一期末)已知函数()()22,21,2x x f x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有三个不同的实根,则数k 的取值范围是( ) A .()0,1 B .()1,2C .()0,2D .()1,3【答案】A 【解析】作出函数()f x 的图像和直线y k =,如图所示,当1()0,k ∈,函数()f x 的图像和直线y k =有三个交点,所以1()0,k ∈. 故选:A3.(2020·河南省高三其他(文))已知函数()2425,0,33,0.x x f x x x x x ⎧+->⎪=⎨⎪---≤⎩若函数()f x x m =-+恰有两个不同的零点,则实数m 的取值范围是( ) A .0,B .(),435-∞-C .()(),2435,-∞--+∞D .[)()3,2435,--+∞【答案】D 【解析】令()()g x f x x =+,由题意()2435,023,0x x g x xx x x ⎧+->⎪=⎨⎪---≤⎩,画出()g x 的图象如图,函数()f x x m =-+恰有两个不同的零点,即函数()g x 的图象与直线y m =有两个不同的交点, ∵当0x >时,435435x x+-≥,当0x <时,()2223122x x x ---=-+-≤-,∴435m >-,或32m -≤<-, 故选:D .4.(2019·浙江省镇海中学高一期中)若函数()2f x x x a a =--有三个不同的零点,则实数a 的取值范围为( ) A .()(),11,-∞-+∞B .()1,1-C .()()1,00,1-D .()(),10,1-∞-⋃【答案】A 【解析】当2x a ≥时,()22f x x ax a =--;当2x a <时,()22f x x ax a =-+-,当0a =时,()22,0,0x x f x x x ⎧≥=⎨-<⎩,显然不合题意;若0a >,则()f x 图象如下图所示:由图象可知:若()f x 有三个不同的零点,则20a a a -<<-,解得:1a >; 若0a <,则()f x 图象如下图所示:由图象可知:若()f x 有三个不同的零点,则20a a a --<<-,解得:1a <-; 综上所述:实数a 的取值范围为()(),11,-∞-+∞.故选:A .5.(2020·天津高三一模)已知函数()1xf x x=+,x ∈R ,分别给出下面几个结论: ①等式()+()0f x f x -=在x ∈R 时恒成立; ②函数()f x 的值域为(11)-,; ③若12x x ≠,则一定有12()()f x f x ≠; ④函数()()-g x f x x =在R 上有三个零点. 其中正确结论的序号是______________. 【答案】①②③. 【解析】()()11x xf x f x x x--==-=-+-+,()f x 是奇函数,∴()()0f x f x +-=,①正确;在0x ≥时,1()111x f x x x ==-++是增函数,∴()f x 在0x ≤时也是增函数,从而()f x 是R 上的增函数,③正确;在0x ≥时,1()1111x f x x x==-<++,0x <时,()1f x >-,值域为(1,1)-,②正确; 由()01xf x x x x-=-=+得0x =,方程()0f x x -=只有1根,④错误. 故答案为:①②③.6.(2020·北京北师大实验中学高二期中)如果直线()0y t t =>与函数1()f x x x=+的图象有两个不同的交点,其横坐标分别为1x ,2x ,则以下结论: ①2t >;②12ln ln 0x x +>; ③122x x +>;④12x x -的取值范围是(0,)+∞,其中正确的是__________.(填入所有正确结论的序号) 【答案】①③④ 【解析】作出函数1()f x x x=+的图象如图所示:函数1()f x x x=+在(,1),(1,)-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,且()12,(1)2f f -=-=,所以()f x 的值域为(),2(2,)-∞-⋃+∞,①若()0y t t =>与()f x 的图象有两个交点,则2t >,①正确;②取121,22x x ==,有()15222f f ⎛⎫== ⎪⎝⎭,满足条件,但1ln ln 202+=,故②错误; ③由题意知21111110x t x tx x +=⇒-+=,同理22210x tx -+=,即1x 、2x 是方程210x tx -+=的两根,所以122x x t +=>,③正确; ④由③知12=1x x ⋅,()2212121244x x x x x x t -=+-=-因为2t >,240t ->,即120x x ->,④正确.故答案为:①③④7.(2020·海南省海南中学高二期中)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(),a b 的个数为________ 【答案】13 【解析】当0a =时,方程为20x b +=,此时一定有解;此时1b =-,0,1,2;即(0,1)-,(0,0),(0,1),(0,2)四种;当0a ≠时,方程为一元二次方程,∴△440ab =-,则1ab .当1a =-,1,2时,此时a ,b 的对数为(1,0)-,(1,2)-,(1,1)--,(1,1)-,(1,1)-,(1,0),(1,1),(2,1)-,(2,0),共9种,关于x 的方程220ax x b ++=有实数解的有序数对的个数为13种,故答案为13.8.(2020·大名中学高二月考)若函数f (x )=21ax bx c++ (a ,b ,c ∈R)的部分图象如图所示,则b =________.【答案】-4【解析】由题意得1,3 为20ax bx c ++=两根,且142a b c -=++ 因为4,3,b c a a -== 所以 4.b9.(2020·天津高三一模)已知函数11,[2,0]()2(2),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,则(3)log 2563f =__;若方程()f x x a =+在区间[2-,4]有三个不等实根,则实数1a 的取值范围为__. 【答案】81 {}11,2⎛⎫⋃-∞-⎪⎝⎭【解析】 (1)由[]()11,2,0()2(2),0,x x f x f x x ⎧-+∈-⎪=⎨-∈+∞⎪⎩, 则()()()()()()3232212212414104f f f f f =-==⨯-=-=⨯-=,4log 25643381== 答案:81(2)作出函数()f x 在区间[]2,4-上的图象,如图所示,设y x a =+,由图象可知要使方程()f x x a =+在区间[]2,4-有3个不等实根, 则直线y x a =+应位于1l 与2l 之间或直线3l 的位置,所以实数a 的取值范围为20a -<<或1a =. 所以,112a <-或11a= 故答案为:{}11,2⎛⎫⋃-∞-⎪⎝⎭ 10.(2020·嘉兴市第五高级中学高二期中)设()2f x x x a x =-+ (a ∈R)(1) 若2a =,求()f x 在区间[]0,3上的最大值;(2) 若2a >,写出()f x 的单调区间;(3) 若存在[]2,4a ∈-,使得方程()()f x tf a =有三个不相等的实数解,求t 的取值范围.【答案】(1)()max 9f x =;(2)()f x 的单调增区间为2,2a +⎛⎫-∞ ⎪⎝⎭和(),a +∞,单调减区间2,2a a +⎛⎫ ⎪⎝⎭(3)918t << 【解析】(1)当2a =时, ()22f x x x x =-+=224,2{,2x x x x x -+<≥, ∴ ()f x 在R 上为增函数,∴ ()f x 在[]0,3上为增函数,则()()max 39f x f == .(2)()()()222,{2,x a x x af x x a x x a -++<=+-≥,2a >,022a a a ∴<-<<+,当x a ≥时, 22a a ->, ∴ ()f x 在(),a +∞为增函数 ,当x a <时, 22022a aa +--=<,即22a a +<,∴ ()f x 在2,2a +⎛⎫-∞ ⎪⎝⎭为增函数,在2,2a a +⎛⎫ ⎪⎝⎭为减函数 ,则()f x 的单调增区间为2,2a +⎛⎫-∞ ⎪⎝⎭和(),a +∞,单调减区间2,2a a +⎛⎫ ⎪⎝⎭ .(3)由(2)可知,当22a -≤≤时, ()f x 为增函数, 方程不可能有三个不相等实数根,当24a <≤时,由(2)得 ()()22a f a tf a f +⎛⎫<< ⎪⎝⎭,()22224a a at +<<,即()2218a t a +<<在(]2,4有解,由()22118822a a a a +=++在(]2,4上为增函数,∴当4a =时, ()228a a +的最大值为98 , 则918t << .。
函数与方程、不等式一.坐标知识介绍1、各象限内点的坐标的特征),(y x p的正负性y x , 第一象限 0,0>>y x 即),(++ 第二象限 0,0><y x 即)(+-, 第三象限 0,0<<y x 即)(--, 第四象限0,0<>y x 即)(-+, 2、特殊线上的点的特征 P 点所在直线 'P 的坐标x 轴上 )0,(x y 轴上),0(y 既在x 轴上,又在y 轴上 )0,0(第一、三象限夹角平分线上 x 与y 相等 第二、四象限夹角平分线上 x 与y 互为相反数平行于x 轴的直线上 各点的纵坐标相同,即><为常数a a x ),( 平行于y 轴的直线上各点的横坐标相同,即><为常数a y a ),(3、关于x 轴、y 轴或远点对称的点的坐标的特征),(b a p'P 坐标关于x 轴对称 )(b a -, 关于y 轴对称 )(b a ,-关于原点对称)(b a --,4、点到坐标轴及原点的距离 类型距离 点),(P b a 到x 轴的距离 d=b 点),(P b a 到y 轴的距离 d=a 点),(P b a 到原点的距离d=22b a + 点),(P b a 到直线0=++C By Ax 的距离22d B A Cb B a A ++⋅+⋅=点A 坐标为(x 1,y 1)点B 坐标为(x 2,y 2)则AB 间的距离, 即线段AB 的长度为()()221221y y x x -+-二.一次函数与方程,不等式 (一)1.一次函数)0(≠+=k b kx yk 的符号 b 的符号函数图像图像特征k>0b>0y0 x图像经过一、二、三象限,y 随x 的增大而增大。
b<0y0 x图像经过一、三、四象限,y 随x 的增大而增大。
k<0b>0y0 x图像经过一、二、四象限,y 随x 的增大而减小b<0y0 x图像经过二、三、四象限,y 随x 的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
2.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
即:c b c a b a ±=±=则若,(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
即:⎪⎩⎪⎨⎧≠===),(,则若0c cb c a bcac b a3.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
即:。
,则若c b c a b a ±>±>(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
⎪⎩⎪⎨⎧>>>>cb c a bc acc b a ,则且即:若0(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
⎪⎩⎪⎨⎧<<<>cb c a bc acc b a ,则且即:若04.一元一次方程:0=+b ax解一元一次方程的一般步骤: (1)去分母 (2)去括号 (3)移项(4)合并同类项(5)将x 项的系数化为15.二元一次方程组(及三元一次方程组) (1)代入消元法(2)加减消元法6.一元一次不等式:0≥+b ax解一元一次不等式的一般步骤: (1)去分母 (2)去括号 (3)移项(4)合并同类项(5)将x 项的系数化为17.一元一次不等式组:一元一次不等式组的解法口诀:①同大取大,②同小取小,③大于大的,小于小的无解④大于小的,小于大的夹中间(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
(二)反比例函数反比例函数的性质反比例函数)0(≠=kxkyk的符号k>0 k<0图像yO xyO x性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y随x 的增大而减小。
①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限。
在每个象限内,y随x 的增大而增大。
分式方程:分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
分式不等式:分式不等式的一般方法(1)找公分母,通分(2)合并,化简成几个一次式的乘除(3)从右往左穿根,轴以上的为大于零的范围,轴以下的为小于零的范围,轴上的为等于零的解。
(三)一元二次函数二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,(3)当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
二次函数)0(2≠++=a cbx ax y 的作图步骤)0(y 24.4x 0x 0x 04.3)442(2.200.1222c aacb b x ac b ab ac a b a b x a a a ,轴交点,与若有交点,轴无交点,与轴有一个交点,与轴有两个不同的交点,与,,顶点对称轴,开口向下,开口向上-±-=⎪⎩⎪⎨⎧<=>-=∆---=⎩⎨⎧<>=1、二次函数的性质函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像a>0a<0y0 xy0 x性质 (1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(a b 2-,ab ac 442-); (3)在对称轴的左侧,即当x<a b 2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab 2-时,y 随x 的增大而增大,简记左减右增;(4)抛物线有最低点,当x=ab 2-时,y 有最小值,ab ac y 442-=最小值(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=a b 2-,顶点坐标是(ab 2-,ab ac 442-); (3)在对称轴的左侧,即当x<ab 2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>a b 2-时,y随x 的增大而减小,简记左增右减; (4)抛物线有最高点,当x=ab 2-时,y 有最大值,ab ac y 442-=最大值⎪⎩⎪⎨⎧--=<-<<<⎩⎨⎧==<<≤-⎩⎨⎧==-≤<<)y ,max(24y 22.3y y y y 2.2y y y y 2.12122121221121221121y a b ac a b x x a b x x x x x x x x x x x a bx x x x a b x x x 最大值为取最小值时,,取最大值时,取最小值时,,取最小值时,取最大值时,,⎪⎩⎪⎨⎧--=<-<<<⎩⎨⎧==<<≤-⎩⎨⎧==-≤<<)y ,(in 24y 22.3y y y y 2.2y y y y 2.12122121221121221121y m a b ac a b x x a b x x x x x x x x x x x a bx x x x a b x x x 最小值为取最大值时,,取最小值时,取最大值时,,取最大值时,取最小值时,,一元二次方程的解法整理因式求解,或用十字相乘法分解若有解,,方程无解,方程有一个解,方程有两个不同的解计算.324.20004.122aacb b x ac b -±-=⎪⎩⎪⎨⎧<=>-=∆一元二次不等式的解法。
解,轴上的等于零的解轴以下部分为小于零的部分为大于零的解,从右往左穿根,轴以上的解令不等式为零,求方程移项,合并同类项.3.2.1。