21.5.1 反比例函数 第1课时 教案
- 格式:doc
- 大小:60.00 KB
- 文档页数:4
沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。
本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。
通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。
但是,对于反比例函数这一抽象的概念,学生可能难以理解。
因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。
2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。
六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。
2.教学素材:准备一些实际问题,让学生运用反比例函数解决。
3.教学设备:投影仪、计算机、黑板等。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。
21.5 反比例函数(第1课时)教材分析`反比例函数是函数的一种重要形式。
本节课生活中的实例,让学生明白,现实生活中存在除一次函数、二次函数以外的其它函数,明白引入反比例函数的必要性。
在对学生学习时给学生制定恰当的学习策略并适时指导,形成对反比例函数的理解,从而突破难点。
在展示和检查环节,不断加深对反比例函数的理解,做到重点突出。
教学目标1.经历抽象反比例函数的概念的过程,理解并掌握反比例函数的概念.2.会判断一个函数是否是反比例函数.3.能从实际问题中抽象出反比例函数,能根据已知条件确定反比例函数的表达式.4.体会数学从实践中来又到实际中去的研究、应用过程。
培养学生的观察能力,数学思维能力,数学语言表达能力和解决问题的能力。
教学重点、难点及准备重点:理解并掌握反比例函数的概念,会判断一个函数是否是反比例函数. 能根据已知条件确定反比例函数的表达式.难点:能从实际问题中抽象出反比例函数,能根据已知条件确定反比例函数的表达式.准备:多媒体课件.教学过程一、创设情境,引入新知1、在小学的时候,我们学习过反比例的知识2、我们学习过哪些函数?二、形成共识,把握新知1、问题的提出与交流【多媒体展示】问题○1. 某村有耕地200 hm²,人口数量x逐年发生变化,该村人均耕地面积y hm²与人口数量x之间有怎样的函数关系?问题○2. 某市距省城248 km,汽车行驶全程所需的时间t h与平均速度v km/h之间有怎样的函数关系?问题○3. 在一个电路中,当电压U一定时,通过电路的电流I的大小与该电路的电阻R 的大小之间有怎样的函数关系?2、知识的归纳与整理归纳总结得到反比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做反比例函数强调在理解概念时要注意:①常数k≠0;②自变量x不能为零〔因为分母为0时,该式没意义〕;③当kyx=可写为1y kx-=时注意x的指数为-1.④由定义不难看出,k可以两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
反比例函数(第一教时)教案教材分析:函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为后继学习二次函数等产生积极的影响。
本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念。
通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义。
学情分析:1.本班学生的基础普遍较差,因此在教学过程中要多和学生交流沟通,多多了解学生在学习过程中哪个知识遇到了困难,从而帮助学生解决困难。
2.对以前学过的函数、一次函数、正比例函数有关知识的初步理解。
教学目标:(一)知识与技能1.结合具体情境体会反比例函数的意义。
2.能根据已知条件确定反比例函数表达式。
(二)过程与方法1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(三)情感态度与价值观1、针对学生的学习态度不认真,没有形成良好的学习习惯打作文章;多和学生交流沟通,当学生在课堂上有一些正确或有闪光点时老师要大力表扬;2、结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念.教学难点:领会反比例函数的意义,理解反比例函数的概念.教学方法:教师引导学生,小组合作、探究式进行归纳.1、通过关注日常生活中所涉及的两个变量之间的相依关系,加深对函数关系的理解。
2、通过具体问题,讨论总结反比例函数的概念。
21.5 反比例函数第1课时反比例函数的概念【知识与技能】理解反比例函数的概念,根据实际问题能列出反比例函数关系式.【过程与方法】经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.【情感态度】培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.【教学重点】理解反比例函数的概念,能根据已知条件写出函数解析式.【教学难点】能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.一、情景导入,初步认知1.复习小学已学过的反比例关系,例如:(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积S一定时,长a和宽b成反比例,即ab=S(S是常数)2.电流I、电阻R、电压U之间满足关系式U=IR.当U=220V时,你能用含R的代数式表示I吗?【教学说明】对相关知识的复习,为本节课的学习打下基础.二、思考探究,获取新知问题1:某村有耕地200km2,人口数量x逐年发生变化,该村人均耕地面积y与人口数量x之间有怎样的函数关系?问题2:某市距省城248千米,汽车行驶全程所需的时间th与平均速度vkm/h之间有怎样的函数关系?问题3:在一个电路中,当电压U 一定时,通过电路的电流I 的大小与该电路的电阻R 的大小之间有怎样的函数关系?思考:观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?上面的函数关系式,都具有xk y =的形式,其中k 是常数. 【归纳结论】一般地,表达式形如x k y =(k 为常数且k ≠0)的函数叫作反比例函数. 【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.例:在压力不变的情况下,某物体承受的压强p/Pa 是它的受力面积Sm2的反比例函数,如图.(1)求p 与S 之间的函数表达式;(2)当S=0.5时,求物体承受的压强p 的值.解:(1)根据题意设Sk p =, 函数图象经过点(0.1,1000)代入上式,得k=100.所以p 与S 之间的函数表达式为S p 100=,(p >0,S >0) (2)当S=0.5时,5.0100=p ,解得,p=200. 三、运用新知,深化理解1.下列问题中,变量间的对应关系可用怎样的函数式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm 3,立方体的高h 随底面积S 的变化而变化; (3)一个物体重100牛顿,物体对地面的压力p 随物体与地面的接触面积S 的变化而变化.2.下列哪个等式中的y 是x 的反比例函数?解:只有xy=123是反比例函数.xk y =,当x =1时,y =-3,那么这个函数的解析式是( B )4.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( A )B.-4C.311-=m x y (m 是常数)是反比例函数,则m =2,解析式为xy 1=. 6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为,是函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为,是函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S.当a =10时,S 与h 的关系式为,是函数;当S =18时,a 与h 的关系式为,是函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为,是函数.7.已知y 是x 的反比例函数,当x=2时,y=6.(1)写出y 与x 的函数关系式;(2)求当x=4时,y 的值.【分析】因为y 是x 的反比例函数,所以xk y =,再把x=2和y=6代入上式就可求出常数k 的值. 解:(1)设x k y =,因为x=2时,y=6,所以有6=2k ,解得k=12,因此xy 12= (2)把x=4代入x y 12=,得y=412=3 【教学说明】学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题”中第1、2、3题.反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识.。
沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,主要介绍了反比例函数的定义、性质及其在实际问题中的应用。
本节内容是在学生已经掌握了函数概念、正比例函数的基础上进行的,是初中数学中的重要内容,也是中考的热点。
反比例函数是实际生活中广泛应用的一种函数,对于培养学生解决实际问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数有一定的了解,但反比例函数的概念和性质较为抽象,对于部分学生来说,理解起来有一定的困难。
因此,在教学过程中,要注重引导学生通过观察、思考、探究,从而理解和掌握反比例函数的知识。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质,能够运用反比例函数解决实际问题。
2.过程与方法:通过观察、分析、推理等方法,培养学生的数学思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决实际问题的能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解和掌握反比例函数的知识。
2.问题驱动法:通过设置问题,激发学生的思考,引导学生探究反比例函数的性质。
3.合作学习法:鼓励学生之间相互讨论、交流,共同解决问题。
六. 教学准备1.准备相关的实例,用于引导学生理解和掌握反比例函数的知识。
2.准备一些练习题,用于巩固学生的知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如商店促销活动中,商品的价格与数量之间的关系,引导学生思考反比例函数的概念。
2.呈现(10分钟)讲解反比例函数的定义,通过示例,让学生观察和分析反比例函数的图像,引导学生理解反比例函数的性质。
3.操练(10分钟)让学生通过解决实际问题,运用反比例函数的知识。
教师可以提供一些练习题,让学生独立完成,然后进行讲解和分析。
5.1反比例函数教案(第一课时)林春熙三维目标:(一)、知识与技能:1、从具体情境和已有知识经验出发,讨论两个变量之间的相互关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领悟反比例函数的意义,理解反比例函数的概念。
(二)、过程与方法:1、通过辨析反比例函数与正比例函数等的区别以及求反比例函数关系式等,培养学生基本数学素养(创新思维、建模能力;类比、分类思想;待定系数法等)2、在经历反比例函数的建模过程中,培养学生抽象思维能力。
(三)、态度、情感和价值观:1、利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,让学生感受数学有用,从而培养学生学数学兴趣。
2、通过本课学习培养学生既独立思考又合作交流的良好学习习惯。
教学重点:经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念.教学难点:领会反比例函数的意义,理解反比例函数的概念.教学方法:教师引导学生进行归纳.教具准备:多媒体课件学情分析:九年级学生的思维品质(完备性、深刻性、实践性、批判性等)尚待提高,学生抽象概括能力也有限,对函数的意义理解、数量变化规律的把握还是有一定难度,特别是对抽象的表达式中的变量与常量的取值理解不深。
因此在反比例函数概念的形成过程中,应注重充分利用学生已有的生活经验与背景知识,创设丰富的现实情境,同时充分让学生自主学习与合作交流相结合,通过举例、说理、讨论、交流等形式,内化、升华、巩固其知识,让学生揭示规律,形成能力。
教学过程:一、复习巩固,引入新知变量与常量在某一变化过程中,不断变化的数量叫变量,保持不变的量叫常量.变量之间的关系:在某一变化过程中,如果一个变量(y)随着另一个变量(x)的变化而不断变化,那么x叫自变量,y叫因变量.函数一般地.在某个变化中,有两个变量x和y,如果给定一个x的值,相应地就确定了y的一个值,那么我们称y是x的函数,其中x叫自变量,y叫因变量.函数的表示方法解析法:用一个式子表示函数关系;列表法:用列表的方法表示函数关系;图象法:用图象的方法表示函数关系.一次函数和正比例函数若两个变量x,y 的关系可以表示成y=kx+b(k,b 是常数,k≠0)的形式,则称y 是做x 的一次函数 (x 为自变量,y 为因变量).特别地,当常数b =0时,一次函数y=kx+b(k≠0)就成为:y=kx(k 是常数,k≠0),称y 是x 的正比例函数.一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数但是在现实生活中,并不是只有这两种类型的表达式,同学们,你用母指按图钉时,所用的力与钉尖受到的压强将如何变化?过沼泽地时,人们常常用木板来垫脚.当人和木板对地面的压力一定时,随着木板面积的变化,人和木板对地面的压强将如何变化?函数是刻画变量之间的数学模型.形如:的函数表示的变量关系是怎样的?你知道它有哪些特性吗?二、创设问题情境,探索新知 1.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式. (1) (课件展示)我们知道,电流I 、电阻R 、电压U 之间满足关系式U=IR , 当U=220V 时:①你能用含有R 的代数式表示I 吗?②利用写出的关系式完成下表(2)(课件展示)京沪高速公路全长约为1262km ,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t (h )与行驶的平均速度V (km/h )之间有怎样的关系?变量t 是V 的函数吗?为什么?从上面的两个例题得出关系式I=R 220和t=v 1262. 一般地,如果两个变量x 、y 之间的关系可以表示成y =xk (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.也可以表示成xy=k 或者y=kx -1(k 为常数,k ≠0).从y =xk 中可知x 作为分母,所以x 不能为零.例1.在下列函数表达式中,x 均为自变量,哪些是反比例函数?每一个反比例函数相应的k 值是多少?2.做一做(1).一个矩形的面积为20 cm 2,相邻的两条边长分别为x cm 和y cm ,那么变量y 是变量x 的函数吗?是反比例函数吗?为什么?(2).某村有耕地346.2公顷,人口数量n 逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n 的函数吗?是反比例函数吗?为什么?(2)根据函数表达式完成上表.在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式,在y=kx 中.要确定关系式的关键是求得非零常数k 的值,因此需要一个条件即可;在一次函数y =kx+b 中,要确定关系式实际上是要求得b 和k 的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k 的值.因此只需要—个条件即可,也就是要有一组x 与y 的值确定k 的值.所以要从表格中进行观察.由x =-1,y =2确定k 的值,然后再根据求出的表达式分别计算.x 或y 的值.例2、写出下列函数关系式,并指出它们是什么函数?①当路程S 一定时,时间 t 与速度 v 的函数关系;②当矩形面积 S 一定时,长 a 与宽 b 的函数关系;③当三角形面积 S 一定时,三角形的底边 y 与高 x 的函数关系;1、提高练习若 是关于 x 的反比例函数,确定m 的值,并求其函数关系式三、课堂练习(一)、让学生完成(P 145)(二)、拓展应用,升华新知1、(课件展示)若y+1与x 成反比例,当y=1时,x=4,求y 的函数解析式。
《反比例函数》 教学设计第 1 课时《反比例函数》人教版数学九年级下册第二十六章第一节内容,反比例函数从形式上看虽然简洁,但它在日常生活中和其它学科的学习中都有着十分重要的作用.本节教材主要研究反比例函数的概念及其解析式.在学习本节课之前,学生已经研究了正比例函数、一次函数和二次函数等函数模型,从本节课开始进一步研究反比例函数,并通过反比例函数图象得出它的性质,最后通过实际问题的研究来体会反比例函数的实用价值.教材从生活现实和数学中具有反比例关系的问题出发,抽象出描述反比例变化规律的数学模——反比例函数,让学生体会反比例函数的意义.为了巩固反比例函数的概念,教材通过例1,由反比例函数的自变量和函数值,确定常数k 的值,从而得到反比例函数的解析式,根据反比例函数的解析式,就可以得到与任意自变量对应的函数值.1. 认识反比例函数是描述具有反比例变化规律的数学模型;结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式.2. 让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯.3.让学生经历在实际问题中探索数量关系的过程,体会数学在解决实际问题中的作用.【教学重点】理解反比例函数的概念.【教学难点】抽象得出反比例变化规律的数学模型.多媒体课件、教具等.一、提出问题,思考引入问题1 ⑴在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时,y,则称x为,y叫x的.⑵一次函数的解析式一般形式是,当时,称为正比例函数,二次函数的解析式的一般形式是.⑶一条直线经过点(2,3)、(4,7),求该直线的解析式,以上这种求函数解析式的方法叫.问题2 下列问题中,变量间的对应关系可用怎样的函数关系式表示?⑴京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v (单位:km/h)的变化而变化;⑵某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪的长为y随宽x的变化;⑶已知北京市的总面积为41.6810平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.设计意图:问题1通过复习函数的概念、一次函数、二次函数的解析式及待定系数法求函数解析式等知识,为本节课探究反比例函数的概念及确定其解析式作好知识储备.问题2用实际问题引出现实中的反比例关系,为后续反比例函数的意义教学做好铺垫.二、合作交流,探究新知问题3 ⑴上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 三个问题的关系式是1463v t =,1000y x=,41.6810S n ⨯=. ⑵这些关系式有什么共同点?⑶它们是正比例函数吗?是一次函数吗?是二次函数吗?这类函数称之为什么函数? 归纳整理出反比例函数的意义:一般地,形如k y x=(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.追问1:反比例函数xk y =中自变量x 在分式的什么位置?自变量的取值范围是什么? 追问2:你能再举出两个反比例函数关系的实例吗?写出函数表达式,与同伴交流.三、运用新知.例1 下列哪些式子表示y 是关于x 的反比例函数?每一个反比例函数中相应的k 值是多少? ⑴x y 4=;⑵x y 5-=;⑶16+=x y ;⑷3=x y ;⑸123=xy ;⑹xy 32-=;⑺x y -=. 解:⑵⑸⑹是反比例函数,它们的系数分别为5-,13,32-. 例2 已知y 是x 的反比函数,并且当x =2时,y =6.⑴写出y 关于x 的函数解析式.⑵当x =4时,求y 的值.分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式.解:⑴设x k y =.因为当x =2,y =6,所以有26k =,解得k =12.因此xy 12=. ⑵把x =4时代入x y 12=,得3412==y . 例3:已知y 与2x 成反比例,并且当x =3时y =4,⑴写出y 和x 的函数解析式;⑵求当x =1.5时y 的值.解:⑴设2x k y =.因为当x =3,y =4,所以有234k =,解得k =36.因此236xy =. ⑵把x =1.5代入236x y =,得165.1362==y . 四、巩固新知练习1 用函数解析式表示下列问题中变量间的对应关系: ⑴苹果每千克x 元,花10元钱可买y 千克的苹果;⑵矩形的面积为4,一条边的长为x ,另一条边的长为y .练习2 已知y 是x 的反比例函数,并且当x =3时,y =-8. ⑴写出y 与x 之间的函数关系式.⑵求y =2时x 的值.练习3 y 是x 的反比例函数,下表给出了x 与y 的一些值:x -2 -1 21-21 1 3⑴写出这个反比例函数的表达式;⑵根据函数表达式完成上表.练习4 已知函数21y y y+=,1y 与x +1成正比例,2y 与x 成反比例,且当x =1时,y =0;当x =4时,y =9.求当x =-1时y 的值.五、归纳小结回顾本课所学主要内容,并请学生回答以下问题:1. 我们今天学习了反比例函数的哪些知识?2. 反比例函数中的两个变量的关系是什么?3. 反比例函数对自变量取值有何要求?4. 如何根据已知条件求反比例函数的解析式? 略.。
21.5《反比例函数》第一课时教学设计课题名称:21.5《反比例函数》第一课时执教班级:九年级(2)班执教人:何斌教学目标:知识与技能:1.理解并掌握反比例函数的概念,根据实际问题能列出反比例函数关系式;。
2.能判断一个给定的函数是否为反比例函数。
过程与方法:通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。
情感、态度与价值观:经历反比例函数的形成过程、使学生体验函数是描述变量间对应关系的重要数学模型,培养学生观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。
教学重点、难点设计:对于反比例函数的概念的形成过程是这节课的重点,也是难点,教学中要重点联系实际,让概念在实际的背景下形成,使学生体会到反比例函数能够反映实际事物的变化规律,同时通过与一次函数、正比例函数的类比更好地认识和理解反比例函数,教学中进行类比、变化与对应等数学思想的渗透。
教学准备与方法设计:通过多媒体教学的应用,让概念和规律方法的获得主要以学生自主探究为主,通过实际问题的分析讨论得到反比例函数的概念,通过与一次函数、正比例函数的类比获得反比例函数解析式的求法,通过练习、巩固学生的知识,检验规律的正确性。
学生知识状况分析由于本节课比较抽象,学生理解起来比较困难,因此,在学习反比例函数概念的过程中,充分利用学生已有的生活经验和背景知识,创设丰富的现实情境,引导学生关注问题中变量的相依关系及变化规律,并逐步加深理解.教学中要提供直观背景展现反比例函数的经验来源,在获得反比例函数概念之后,经验背景将成为概念的某种直观解释或实际意义,在活动中,教师应注意提供思考或研究问题的方向.教学过程一:创设问题情境,引入新课活动过程我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y =kx+b 其中k ,b 为常数且k ≠0,正比例函数的表达式为y =kx ,其中k 为不为零的常数,但是在现实生活中,并不是只有这两种类型的表达式,如为vt =1200,则t =v1200中,t 和v 之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.二:新课讲解活动目的 在探索具体问题中数量关系和变化规律的基础上抽象出数学概念,结合具体情境领会反比例函数作为一种数学模型。
沪科版数学九年级上册21.5.1反比例函数教学设计
上述几个函数都具有 的形式,一般地,形
如y=k/x(k 是常数,k ≠0)的函数叫反比例函数。
1、反比例函数y=k/x,自变量x 的取值范围是不等于
0的一切实数,函数y 的值也不等于0。
k 叫做比例系数,k ≠0。
2、有时反比例函数也可写成xy=k(k ≠0)或 y=k/x(k ≠0). 练习
1.下列函数中,哪些是反比例函数(x 是自变量)?并说出反比例函数的比例系数。
2. 如果反比例函数y=k/x 的图像过点P(-2,3),那么k 的值是( )
用待定系数法求反比例函数解析式的一般步骤: ①设出含有待定系数的反比例函数解析式, ②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;
③解方程,求出待定系数; ④写出反比例函数解析式.
例1.在压力不变的情况下,某物体承受的压强 p Pa 是它的受力面积S m 2的反比例函数,如图(1)求p 与S 之间的函数表达式;
(2)当S=0.5时,求p 的值.
变式:已知y =(m 2+2m)x m2
+m -1
是y 关于x 的
反比例函数,求m 的值及函数关系式
变式1、已知函数
熟记反比例函数的定义,理解
概念
梳理知识点,理解概念。
注意反比例函数图像的步骤
k y x
=(2)(1)k k y x
-+=
是反比例函数,则k 必须满足___。
变式3、已知函数y=2y1-y2,y1与x+1成正比例,y2与x成反比例,当x=1时,y=4,当x=2时,y=3,求y与x的函数关系式。
中考链接
若函数
是反比例函数,求k的值,并写出该反比例函数的解析式. 学生要独立完
成练习,然后进
行展示,其他学
生相互补充。
通过例题
的学习,由易到
难,加深对知识
点的理解和掌
握.
作业必做题: 随堂练习P44
选做题: 习题21.5第1、2、3题独立完成学生独立完成
例题变式,养成
独立完成作业
的习惯
课堂小结反比例函数:定义/三种表达方式
用待定系数法求反比例函数解析式学生独自总结回顾课堂知识,
强化基础。