八年级下册数学第十六章-二次根式练习题
- 格式:doc
- 大小:232.00 KB
- 文档页数:8
一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
2022年春人教版初中八年级数学下册第十六章二次根式班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( )A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是()A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( ) A.4 B.2 C. 2 D.04.下列各式中不正确的是( )A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是()A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( )A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( ) A.2 B.4 C.3 D.128. 2,5,m 是某三角形三边的长,则(m -3)2+(m -7)2等于( )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__ _.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __ __.15.(河北模拟)32+8=a b ,则ab =__ __.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)计算:(1)⎝⎛⎭⎪⎪⎫27-43÷3;(2)20.75+12-|3-2|;(3)-12÷2-13×12+1224;(4)(5+3)(5-3)-(3-1)2.18.(本题满分10分)计算: (1)239a +a4-a 1a;(2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a .19.(本题满分10分 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程: (1)________的解法是错误的;(2)求代数式a +2a 2-6a +9的值,其中a =-2 022.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.21.(本题满分10分)如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.22.(本题满分10分)先化简,再求值.⎝⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3.23.(本题满分12分)已知x =3+2,y =3-2,求: (1)x 2-y 2的值; (2)x y +yx 的值.24.(本题满分12分)据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)求从40 m高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x 2+2的有理化因式是1+x 2+2. (2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如: 11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2.【知识理解】(1)填空:2x 的有理化因式是________; (2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________.【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n .参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.下列各式一定是二次根式的是( B)A.xB. 2C.-4D.352.下列二次根式中,是最简二次根式的是( B)A.0.1B. 3C.12D.x33.当x=0时,二次根式4+2x的值等于( B) A.4 B.2 C. 2 D.04.下列各式中不正确的是( A)A.(x-2)2=-2 B.(2)2=2C.-(-2)2=-2 D.±(-2)2=±2 5.计算18×12的结果是(D)A.6 B.6 2 C.6 3 D.6 66.代数式x+1x在实数范围内有意义时,x的取值范围为( C)A.x>-1 B.x≥-1 C.x≥-1且x≠0 D.x≠07.如果12·x是一个正整数,那么x可取的最小正整数值为( C) A.2 B.4 C.3 D.128. 2,5,m是某三角形三边的长,则(m-3)2+(m-7)2等于( D )A .2m -10B .10-2mC .10D .49. 设x ,y 为实数,且y =4+5-x +x -5,则|y -x|的值是( A ) A .1 B .9 C .4 D .510. 化简二次根式1x -x 3的正确结果是( D )A.-xB.x C .-x D .--x11. 如图,从一个大正方形中裁去面积为16 cm 2和24 cm 2的两个小正方形,则余下的面积为( A )A .16 6 cm 2B .40 cm 2C .8 6 cm 2D .(26+4)cm 212. 设a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,…,a n =1+1n 2+1(n +1)2,其中n 为正整数,则a 1+a 2+a 3+…+a 2 021的值是( D )A .2 0202 0192 020B .2 0202 0202 021C .2 0212 0202 021D .2 0212 0212 022【解析】先求出a 1,a 2,a 3,…,a n 的值,代入原式利用公式1n (n +1)=1n -1n +1进行化简与计算,即可求解. 二、填空题:每小题4分,共16分.13. 若最简二次根式3a -1与2a +3可以合并,则a 的值为__4__.14.实数a 在数轴上的位置如图所示,则化简|a -2|+(a -4)2的结果是 __2__.15. 32+8=a b ,则ab =__10__.16.对于任意不相等且和大于0的两个实数a ,b ,定义运算※为a ※b =a +b a -b ,如3※2=3+23-2=5,那么8※12=__-52__. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)计算:(1)⎝ ⎛⎭⎪⎪⎫27-43÷3; 解:原式=⎝⎛⎭⎪⎫33-233÷3=73. (2)20.75+12-|3-2|; 解:原式=3+23-(2-3)=43-2.(3)-12÷2-13×12+1224; 解:原式=-6-2+6=-2.(4)(5+3)(5-3)-(3-1)2.解:原式=5-9-(3-23+1)=-8+2 3.18.(本题满分10分)计算: (1)239a +a 4-a 1a ; 解:原式=2a +12a - a =32a. (2)48a 2÷2a 2·⎝ ⎛⎭⎪⎪⎫-232a . 解:原式=⎝⎛⎭⎪⎫-4× 12× 23·8a 2·2a ·2a =-1623. 19.(本题满分10分) 求代数式a +1-2a +a 2的值,其中a =1 007,如图是小亮和小芳的解答过程:(1)________的解法是错误的;(2)求代数式a +2a 2-6a +9a =-2 022.解:(1)小亮. (2)∵a =-2 022,∴a +2a 2-6a +9=a +2(a -3)2=a +2|a -3| =a +2(3-a)=-a +6,=2 022+6=2 028.20.(本题满分10分)已知11-1的整数部分是a,小数部分是b,试求(11+a)(b+1)的值.解:∵9<11<16,∴3<11<4,∴2<11-1<3,∴a=2,∴b=11-1-2=11-3,∴(11+2)(11-3+1)=(11+2)(11-2)=11-4=7.21.(本题满分10分) 如图,有一张边长为6 3 cm的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 3 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积;(2)长方体盒子的体积.解:(1)制作长方体盒子的纸板的面积为(63)2-4×(3)2=108-12=96(cm2).(2)长方体盒子的体积为(63-23)(63-23)×3=43×43×3=483(cm3).22.(本题满分10分)先化简,再求值.⎝ ⎛⎭⎪⎪⎫6x y x +3y xy 3-⎝ ⎛⎭⎪⎪⎫4y x y +36xy ,其中x =32,y =3. 解:原式=6xy +3xy -4xy -6xy=-xy , 当x =32,y =3时,原式=-32×3=-322. 23.(本题满分12分) 已知x =3+2,y =3-2,求:(1)x 2-y 2的值;(2)x y +y x的值.解:(1)∵x =3+2,y =3-2,∴x +y =(3+2)+(3-2)=23,x -y =(3+2)-(3-2)=22, ∴x 2-y 2=(x +y)(x -y)=23×22=4 6. (2)xy =(3+2)(3-2)=1, 则x y +y x =x 2+y 2xy =(x +y )2-2xy xy =(23)2-2×11=10.24.(本题满分12分) 据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t =h 5(不考虑风速的影响). (1)求从40 m 高空抛物到落地时间;(2)小明说从80 m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由;(3)已知高空坠落物体动能=10×物体质量×高度(单位:J),质量为0.05 kg的鸡蛋经过6 s后落在地上,这个鸡蛋产生的动能是多少?解:(1)由题意知h=40 m,t=h5=405=8=22(s).(2)不正确,理由:当h2=80 m时,t2=805=16=4(s),∵4≠2×22,∴不正确.(3)当t=6 s时,6=h5,h=180 m,鸡蛋产生的动能=10×0.05×180=90(J).25.(本题满分12分)(1)有理化因式:两个含有根号的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:2的有理化因式是2;1-x2+2的有理化因式是1+x2+2.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:11+2=1×(2-1)(2+1)(2-1)=2-1,13+2=1×(3-2)(3+2)(3-2)=3- 2. 【知识理解】(1)填空:2x 的有理化因式是________;(2)直接写出下列各式分母有理化的结果:①17+6=________;②132+17=________. 【启发运用】(3)计算:11+2+13+2+12+3+…+1n +1+n. 解:(1)∵2x ×x =2x ,∴2x 的有理化因式是x.故答案为x.(2)①原式=7-6(7+6)(7-6)=7- 6. ②原式=32-17(32+17)(32-17)=32-17. 故答案为①7-6;②32-17.(3)原式=2-1(1+2)(2-1)+3-2(3+2)(3-2)+2-3(2+3)(2-3)+…+n +1-n (n +1+n )(n +1-n ), =2-1+3-2+2-3+…+n +1-n ,=n +1-1.。
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念基础题知识点1 二次根式的定义1.(2019·黔东南期末)下列式子中一定是二次根式的是( A )A . 2B .32C .-2D .x2.下列各式中,不一定是二次根式的为( A )A .a +1B .b 2+1C .0D .(a -b )23.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?错(填“对”或“错”).知识点2 二次根式有意义的条件 4.(2019·黔南期中联考)二次根式x +3有意义的条件是( C )A .x >3B .x >-3C .x ≥-3D .x ≥35.当x 为何值时,下列各式有意义?(1)-x ;解:由-x ≥0,得x ≤0. ∴当x ≤0时,-x 有意义.(2)5-2x ;解:由5-2x ≥0,得x ≤52. ∴当x ≤52时,5-2x 有意义.(3)x 2+1;解:由x 2+1≥0,得x 为任意实数.∴当x 为任意实数时,x 2+1都有意义.(4)14-3x. 解:由4-3x>0,得x<43. ∴当x<43时,14-3x有意义.知识点3 二次根式的实际应用6.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为( B )A .1 dm B. 2 dm C. 6 dm D .3 dm易错点 考虑不全造成答案不完整7.若式子a +1a -2有意义,则实数a 的取值范围是( C ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >202 中档题8.(2019·毕节织金县期末)如果y =1-x +x -1+2,那么(-x)y 的值为( A )A .1B .-1C .±1D .0 9.(2020·遵义汇川区模拟)若x -1+2x -3在实数范围内有意义,则实数x 的取值范围是x ≥1且x ≠3. 10.要使二次根式2-3x 有意义,则x 的最大值是23. 11.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.(只需填一个)12.x 为何值时,下列各式在实数范围内有意义? (1)32x -1; 解:x>12.(2)21-x; 解:x ≥0且x ≠1.(3)1-|x|;解:-1≤x ≤1.(4)x -3+4-x.解:3≤x ≤4.03 综合题13.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足b =4+3a -6+32-a ,求此三角形的周长. 解:∵3a -6≥0,2-a ≥0,∴a =2,b =4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.综上,此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 (a)2=a(a ≥0) 1.计算:(3)2=3;(49)2=49. 2.把下列非负数写成一个非负数的平方的形式:(1)5=(5)2; (2)3.4=( 3.4)2; (3)16=(16)2; (4)x =(x)2(x ≥0). 3.在实数范围内分解因式:x 2-5=(x +5)(x -5).知识点2 a 2=a(a ≥0)4.(2019·黔东南期末)计算:(-1)2=1.5.若(a -2)2=2-a ,则a 的取值范围是a ≤2.6.计算:(1)49;解:原式=72=7.(2)(-5)2;解:原式=52=5.(3)-(-13)2; 解:原式=-(13)2=-13.(4)4×10-4. 解:原式=(2×10-2)2=2×10-2.知识点3 代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.7.下列式子中属于代数式的有( A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个8.若一个正方体的表面积为S ,则用含S 的代数式表示正方体的棱长a =S 6;当S =18时,a =3.知识点4 二次根式的非负性二次根式a的两个非负性:(1)被开方数a必须是非负数;(2)a的结果一定是非负数.9.已知x,y为实数,且x-1+3(y-2)2=0,则x-y的值为( D )A.3 B.-3 C.1 D.-110.当x=2_020时,式子2 021-x-2 020有最大值,且最大值为2_021.易错点运用a2=a(a≥0)时,忽略a≥011.计算:(1-2)2=2-1.02中档题12.下列等式正确的是( A )A.(3)2=3 B.(-3)2=-3 C.33=3 D.(-3)2=-3 13.化简二次根式(3.14-π)2,结果为( C )A.0 B.3.14-πC.π-3.14 D.0.114.(2020·呼伦贝尔)已知实数a在数轴上的对应点位置如图所示,则化简|a-1|-(a-2)2的结果是( D )A.3-2a B.-1 C.1 D.2a-315.若等式(x-2)2=(x-2)2成立,则字母x的取值范围是x≥2.16.计算下列各式:(1)13+23=3;(2)13+23+33=6;(3)13+23+33+43=10;(4)13+23+33+43+53=15;(5)13+23+33+…+203=210;(6)猜想13+23+33+…+n3=n(n+1)2.(用含n的代数式表示)17.比较211与35的大小.解:∵(211)2=22×(11)2=44,(35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.18.已知实数m满足(2-m)2+m-4=m2,求m的值.解:由题意,得m-4≥0,解得m≥4.∴原等式化为m-2+m-4=m.整理,得m-4=2,解得m=8.03综合题19.甲、乙两人同时解答题目:“化简并求值:a+1-6a+9a2,其中a=5.”甲、乙两人的解答不同,甲的解答是:a+1-6a+9a2=a+(1-3a)2=a+1-3a=1-2a=-9;乙的解答是:a+1-6a+9a2=a+(1-3a)2=a+3a-1=4a-1=19.(1)甲的解答是错误的;(2)(用公式表示)(3)模仿上题解答:化简并求值:|1-a|+1-8a+16a2,其中a=2.解:|1-a| +1-8a+16a2=|1-a|+(1-4a)2.∵a=2,∴1-a<0,1-4a<0.∴原式=a-1+4a-1=5a-2=8.16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 二次根式的乘法二次根式的乘法法则:a·b =ab(a ≥0,b ≥0).1.计算并化简8×2的结果为( C )A .16B . 4C .4D .162.下列各等式成立的是( D )A .45×25=8 5B .53×42=20 5C .43×32=7 5D .53×42=20 63.等式x +1·x -1=x 2-1成立的条件是( A )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≥-1 4.计算:(1)12×8=2;(2)221×(-37)=-6.5.计算:(1)2×11;解:原式=22.(2)125×15; 解:原式=125×15=25 =5.(3)32×27;解:原式=3×2×2×7=614.(4)3xy·1y .解:原式=3xy·1y=3x.知识点2 积的算术平方根积的算术平方根的性质:ab=a·b(a≥0,b≥0).6.化简40的结果是( B )A.10 B.210 C.4 5 D.20 7.化简:(1)(-3)2×6=36;(2)2y3=y2y.8.化简:(1)144×169;解:原式=144×169=12×13=156.(2)9x2y5z.解:原式=9·x2·y5·z=3x y4·y·z=3xy2yz.9.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.易错点忽视被开方数不能小于零10.化简:(-4)×(-9).解:原式=-4×-9=(-2)×(-3)=6. 以上解答过程正确吗?若不正确,请改正.解:不正确.原式=36=6.02中档题11.已知m =(-33)×(-221),则有( A ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-512.(教材P 16“阅读与思考”变式)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶(约1202-约1261)曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-(a 2+b 2-c 22)2.若一个三角形的三边长分别为2,3,4,则其面积是( B ) A .3158 B .3154 C .3152 D .15213.(教材P5习题T9(2)变式)(2020·益阳)若计算12×m 的结果为正整数,则无理数m 写出一个符合条件的即可). 14.(2019·铜仁期末)计算:133x 3y 2·1212xy 2=x 2y 2. 15.化简:(1)75×20×12; 解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);解:原式=14×112 =2×72×42=2×72×42=28 2.(3)-32×45×2;解:原式=-3×16×22=-96 2.(4)200a 5b 4c 3(a >0,c >0).解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.16.将下列二次根式中根号外的因数或因式移至根号内:(1)35;解:原式=32×5=45.(2)-23;解:原式=-22×3=-12.(3)x-x.解:原式=-(-x)-x=-(-x)2·(-x)=--x3.17.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦因数,在某次交通事故调查中,测得d=20米,f=1.2,肇事汽车的车速大约是多少?(6≈2.449 5,结果精确到0.01千米/时)解:当d=20米,f=1.2时,v=16df=16×20×1.2=1624=326≈78.38(千米/时).答:肇事汽车的车速大约是78.38千米/时.03综合题18.观察分析下列数据:0,-3,6,-3,23,-15,32,…,根据数据排列的规律得到第16个数据应是(结果需化简)第2课时 二次根式的除法01 基础题知识点1 二次根式的除法二次根式的除法法则:a b =a b(a ≥0,b>0). 1.计算:10÷2=( A )A . 5B .5C .52D .1022.下列运算正确的是( D ) A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 3.计算:(1)40÷5; 解:原式=40÷5 =8=2 2.(2)322;解:原式=322=16=4.(3)45÷215; 解:原式=45÷215 =45×152= 6.(4)2a 3bab (a>0).解:原式=2a.知识点2 商的算术平方根商的算术平方根的性质:a b =a b (a ≥0,b>0). 4.下列各式成立的是( A )A .-3-5=35=35 B .-7-6=-7-6 C .2-9=2-9D .9+14=9+14=312 5.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式最简二次根式应有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.6.(2020·遵义汇川区模拟)下列各式中,是最简二次根式的是( C )A .12B .8C . 6D .0.37.把下列各个二次根式化为最简二次根式:(1)85; 解:原式=8×55×5 =22×1052 =22×1052(2)2 3;解:原式=2×3 3×3=6 3.(3)8a2b3(a>0).解:原式=8·a2·b3=22·a·b b=2ab2b.易错点忽视二次根式的被开方数为非负数8.小东在学习了ab=ab后,认为ab=ab也成立,因此他认为一个化简过程-27-3=-27-3=-3×9-3=9=3是正确的.你认为他的化简正确吗?若不正确,请指出错误,并给出正确的解答过程.解:不正确.-27-3≠-27-3.正确解答过程:-27-3=273=9=3.02中档题9.下列等式不成立的是( B )A.62×3=6 6 B.8÷2=4C.13=33D.8×2=410.计算212×34÷32的结果是( A )A.22B.33C.23D.3211.已知长方形的宽是32,它的面积是186,则它的长是12.不等式22x-6>0的解集是x>213.计算:(1)215;解:原式=115=115=11×55×5=555.(2)(2019·黔南期中)23÷223×25; 解:原式=23×38×25=1010.(3)0.9×121100×0.36. 解:原式=12140=11222×10=112110=112×1010=111020.14.先化简,再求值:x -1x 2-1÷x 2x 2+x,其中x = 3. 解:原式=x -1(x +1)(x -1)÷x 2x (x +1)=1x +1·x +1x=1x. 当x =3时,原式=13=33.15.如图,在Rt △ABC 中,∠ACB =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD , ∴AC =2S △ABC BC =2183=26(cm ), CD =2S △ABC AB =21833=236(cm ).03 综合题16.已知x -69-x =x -69-x,且x 为奇数,求(1+x)·x 2-2x +1x 2-1的值. 解:∵x -69-x =x -69-x , ∴⎩⎪⎨⎪⎧x -6≥0,9-x >0.∴6≤x <9. 又∵x 是奇数,∴x =7.∴原式=(1+x)·(x -1)2(x +1)(x -1) =(1+x)·x -1x +1=(x +1)(x -1)=(7+1)(7-1)=8×6=4 3.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.下列二次根式中,能与3合并的是( C ) A .8 B . 6 C .12 D .122.若最简二次根式2x +1和4x -3能合并,则x 的值为( C )A .-12B .34C .2D .5 3.若m 与18可以合并,则m 的最小正整数值是( D )A .18B .8C .4D .2知识点2 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.4.下列计算18-2的结果是( C )A .4B .3C .2 2D . 25.下列计算正确的是( C )A .2+3=2 3B .52-2=5C .52a +2a =62aD .y +2x =3xy6.(2019·遵义)计算35-20的结果是5.7.(2020·遵义红花岗区模拟)计算:27-313=23. 8.三角形的三边长分别为20 cm ,40 cm ,45 cm ,这个三角形的周长是(55+210)cm .9.计算:(1)(2020·遵义汇川区期末)27-12+32;解:原式=33-23+4 3=5 3.(2)6-32-23; 解:原式=6-62-63(3)(2019·黔南期中)8+23-(27-2);解:原式=22+23-33+ 2=32- 3.(4)45+45-8+4 2.解:原式=45+35-22+4 2=75+2 2.易错点错用运算法则致错10.计算:18+98+27.解:原式=32+72+33①=102+33②=(10+3)2+3③=13 5.④(1)以上解答过程中,从③开始出现错误;(2)请写出本题的正确解答过程.解:原式=32+72+3 3=102+3 3.02中档题11.若x与2可以合并,则x可以是( A )A.0.5 B.0.4 C.0.2 D.0.112.计算|2-5|+|4-5|的值是( B )A.-2 B.2 C.25-6 D.6-2 513.如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为27,宽为12,下列是四位同学对该大长方形的判断,其中不正确的是( C )A.大长方形的长为6 3B.大长方形的宽为5 314.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.15.当y =23时,8y +4-5-4y 316.已知一个等腰三角形的周长为125,其中一边的长为25,则这个等腰三角形的腰长为17.计算: (1)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(2)8-612+12-|2-3|; 解:原式=22-32+23+2- 3= 3.(3)18-22-82+(5-1)0; 解:原式=32-2-2+1=2+1.(4)254x +16x -9x ; 解:原式=52x +4x -3x =72x.(5)(30.5-513)-(20.125-20). 解:原式=(312-513)-(218-20) =322-533-22+2 5 =2-533+2 5.面积为800 cm2,另一张面积为450 cm2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2 m长的金色细彩带,请你帮忙算一算,他的金色细彩带够用吗?如果不够用,还需买多长的金色细彩带?(2≈1.414,结果保留整数)解:镶壁画所用的金色细彩带的长:4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小刚的金色细彩带不够用.197.96-120=77.96≈78(cm),即还需买78 cm的金色细彩带.03综合题19.若a,b都是正整数,且a<b,a与b可以合并,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b可以合并,a+b=75=53,且a,b都是正整数,a<b,∴a=3,b=43或a=23,b=33,即a=3,b=48或a=12,b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算二次根式的混合运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的.1.下列计算错误的是( D )A .14×7=7 2B .60÷30= 2C .9a +25a =8 aD .32-2=32.(2020·朝阳)计算12-12×14的结果是( B )A .0B . 3C .3 3D .12 3.计算(515-245)÷(-5)的结果为( A )A .5B .-5C .7D .-7 4.计算:(1)(2019·南京)计算147-28的结果是0;(2)(2019·青岛)计算:24+82-(3)2=23-1.5.计算:(1)3(5-2);解:原式=3×5-3× 2=15- 6.(2)(2019·黔南期中)348-427÷23;解:原式=123-123÷2 3 =123-6.(3)(2+3)(2+2).解:原式=(2)2+32+22+6=2+52+6=8+5 2.乘法公式:(a +b)2=a 2+2ab +b 2;(a -b)2=a 2-2ab +b 2;(a +b)(a -b)=a 2-b 2.6.(2019·遵义桐梓县模拟)计算(5+4)(5-4)的结果是1.7.计算(25-2)2的结果是22-4108.计算:(1)(2019·黔东南期末)(7+43)(7-43); 解:原式=49-48=1.(2)(3-3)2.解:原式=(3)2-2×3×3+32=3-63+9=12-6 3.易错点 错用运算法则进行运算9.嘉淇计算12÷(34+233)时,想起分配律,于是她按分配律完成了下列计算: 解:原式=12÷34+12÷233=12×43+12×323 =11.她的解法正确吗?若不正确,请给出正确的解答过程.解:不正确,正确解答过程为: 原式=12÷(3312+8312) =12÷11312=23×12113 =2411.02 中档题10.计算(2+1)2 021(2-1)2 020的结果是( C )A .1B .-1C .2+1D .2-1A .14B .16C .8+5 2D .14+ 2 12.(2019·滨州)计算:(-12)-2-|3-2|+32÷118=2+43. 13.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为3. 14.计算: (1)48÷3-12×12+24; 解:原式=48÷3-12×12+2 6 =4-6+2 6 =4+ 6.(2)(2019·黔东南期末)18-412+24÷3; 解:原式=32-22+24÷3 =2+2 2 =3 2.(3)(32+23)×(32-23)-(3-2)2.解:原式=(32)2-(23)2-[(3)2-2×3×2+(2)2] =18-12-(3-26+2) =6-5+2 6 =1+2 6.15.已知x =3+2,y =3-2,求x 3y -xy 3的值. 解:原式=xy(x 2-y 2)=xy(x +y)(x -y). 当x =3+2,y =3-2时, xy =1,x +y =23,x -y =2 2. ∴原式=1×23×22=4 6.16.先化简,再求值:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2,其中a =2-1.解:原式=[a -2a (a +2)-a -1(a +2)2]·a +2a -4=a 2-4-a 2+a a (a +2)2·a +2a -4 =a -4a (a +2)2·a +2a -4=1a (a +2).当a =2-1时,原式=1(2-1)(2-1+2)=1.03 综合题17.(2019·遵义期末改编)观察下列运算: ①由(2+1)(2-1)=1,得12+1=2-1; ②由(3+2)(3-2)=1,得13+2=3-2; ③由(4+3)(4-3)=1,得14+3=4-3; …(1)通过观察你得出什么规律?用含n 的式子表示出来; (2)利用(1)中发现的规律计算:(12+1+13+2+14+3+…+12 020+ 2 019+12 021+ 2 020)×( 2 021+1). 解:(1)1n +1+n=n +1-n(n ≥0).(2)原式=(2-1+3-2+4-3+…+ 2 021- 2 020)×( 2 021+1) =(-1+ 2 021)×( 2 021+1) =( 2 021)2-1 =2 020.小专题(一) 二次根式的性质及运算类型1 二次根式的非负性1.已知a -b +|b -1|=0,则a +1=2.2.已知x ,y 为实数,且y =x -9+9-x +4,则x -y 的值为5. 3.当x =15时,5x -1+4的值最小,最小值是4.类型2 二次根式的运算 4.计算: (1)62×136;解:原式=(6×13)2×6=212 =4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355)=-45÷3 5 =-43.(3)72-322+218; 解:原式=62-322+6 2 =2122. (4)(25+3)×(25-3). 解:原式=(25)2-(3)2 =20-3 =17.5.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53=-6920 =-69×520×5=-95 5.(2)(6+10×15)×3; 解:原式=32+56× 3 =32+15 2 =18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115=-348÷765=-3748×56=-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2. 解:原式=(32-6)2-(32+6)2 =18+6-123-(18+6+123) =-24 3.6.计算:(1)(2019·南充)(1-π)0+|2-3|-12+(12)-1; 解:原式=1+3-2-23+ 2 =1- 3.(2)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32=25-1.类型3 与二次根式有关的化简求值7.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值.解:由题意,得2★3= 3.∴7★(2★3)=7★3=7-3=2.8.已知x =3+1,求x 2-2x -3的值. 解:x 2-2x -3=x 2-2x +1-4 =(x -1)2-4. 当x =3+1时, 原式=(3+1-1)2-4 =3-4 =-1.9.已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值. 解:∵x =1-2,y =1+2,∴x -y =-22,xy =(1-2)(1+2)=-1. ∴原式=(x -y)2-2(x -y)+xy =(-22)2-2×(-22)+(-1) =7+4 2.10.(2020·烟台)先化简,再求值:(y x -y -y 2x 2-y 2)÷xxy +y 2,其中x =3+1,y =3-1.解:原式=[y (x +y )(x +y )(x -y )-y 2(x +y )(x -y )]÷xy (x +y )=xy(x +y )(x -y )·y (x +y )x=y 2x -y. 当x =3+1,y =3-1时, 原式=(3-1)22=2- 3.11.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a ,b ,m ,n 均为正整数),则有a +b 2=m 2+2n 2+22mn , ∴a =m 2+2n 2,b =2mn.这样小明就找到了一种把a +b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一) (3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn.∵2mn =4,且m ,n 为正整数, ∴m =2,n =1或m =1,n =2. ∴a =7或13.章末复习(一)二次根式01分点突破知识点1二次根式的相关概念二次根式有意义的条件:(1)1A有意义⇒A>0;(2)A+1B有意义⇒⎩⎪⎨⎪⎧A≥0,B≠0.1.(2019·黔东南期末)在二次根式a-2中,a能取到的最小值为( C ) A.0 B.1 C.2 D.2.52.(2019·毕节模拟)使代数式2x-13-x有意义的x的取值范围是x≥12且x≠3.知识点2二次根式的性质3.若a-1+(b-2)2=0,则ab的值等于( D )A.-2 B.0 C.1 D.2 4.若xy<0,则x2y化简后的结果是( D )A.x y B.x-y C.-x-y D.-x y 5.(2019·黔东南期末)若m=n-2+2-n+5,则m n=25.6.如图,数轴上点A表示的数为a,化简:a+a2-4a+4=2.知识点3二次根式的运算在二次根式的运算中,最后结果一般要求分母中不含二次根式,具体化简方法如下:(1)ab=a·bb·b=abb(a≥0,b>0);(2)abb=a(b)2b=a b(b>0).7.与-5可以合并的二次根式的是( C )A.10B.15C.20D.25 8.下列计算正确的是( D )A.3+5=8B.2÷5=2 5C.23×33=6 3 D.7-27=-79.计算: (1)68-32; 解:原式=122-4 2 =8 2. (2)27-13+12; 解:原式=33-33+2 3 =1433.(3)212×34÷2; 解:原式=2×14×12×3×12=322. (4)(48+20)-(12-5). 解:原式=43+25-23+ 5 =23+3 5.02 易错题集训10.下列计算正确的是( D )A .2+5=7B .2+2=2 2C .32-2=3D .2-12=2211.计算:23÷5×15. 解:原式=23×15×15=235.12.小明在学习中发现了一个“有趣”的现象:∵23=22×3=22×3=12,①-23=(-2)2×3=(-2)2×3=12,② ∴23=-2 3.③ ∴2=-2.④(1)上面的推导过程中,从第②步开始出现错误(填序号); (2)写出该步的正确结果.解:-23=-22×3=-22×3=-12.03 常考题型演练13.(2019·遵义期中)下列式子是最简二次根式的是( D ) A .8 B .3m 2 C .12D . 6 14.(2020·遵义汇川区模拟)下列运算正确的是( C )A .x -2x =xB .(xy)2=xy 2C .2×3= 6D .(-2)2=4 15.(2019·遵义期中)下列各式计算错误的是( C ) A .(3-2)(3+2)=1 B .2×3= 6 C .55-25=3 D .18÷2=316.(2019·黔东南期末)已知x =5+1,y =5-1,则x 2+2xy +y 2的值为( A ) A .20 B .16 C .2 5 D .4 517.已知实数a ,b 在数轴上的位置如图所示,化简:(a +1)2+(b -1)2-|a -b|=-2.18.观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n(n ≥1)的代数式表达出来n +1n +2=(n +1)1n +2(n ≥1). 19.计算: (1)(24-12)-(18+6); 解:原式=26-22-24- 6 =6-324.(2)6×13-16×18;解:原式=2-4×3 2=2-12 2=-11 2.(3)(5+3)2-(5+3)(5-3);解:原式=5+3+215-(5-3)=6+215.(4)48÷3-12×12+24;解:原式=43÷3-22×23+2 6=4-6+2 6 =4+ 6.(5)18-22-(5-1)0-82.解:原式=32-2-1- 2=2-1.20.(2019·遵义期中)先化简,再求值:a+1-2a+a2,其中a=1 010.如图是小亮和小芳的解答过程.(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:a2=-a(a<0);(2)先化简,再求值:x+2x2-4x+4,其中x=-2 019.解:x+2x2-4x+4=x+2(x-2)2.∵x=-2 019,∴x-2<0.∴原式=x+2(-x+2)=x-2x+4=-x+4=2 019+4=2 023.。
八年级数学下册第十六章二次根式必考考点训练单选题1、化简2√5−√5×(2−√5)的结果是()A.5B.−5C.√5D.−√5答案:A分析:先进行二次根式乘法,再合并同类二次根式即可.解: 2√5−√5×(2−√5),=2√5−2√5+5,=5.故选择A.小提示:本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键.2、下列计算中,正确的是()A.√2+√3=√5B.2+√2=2√2C.√2×√3=√6D.2√3−2=√3答案:C分析:根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与﹣2不是同类二次根式,不能合并,此选项错误;故选:C.小提示:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.3、若代数式√a−5+|b﹣1|+c2+a在实数范围内有意义,则此代数式的最小值为()A.0B.5C.4D.﹣5答案:B分析:利用二次根式、平方和绝对值的非负性,可知代数式的最小值为a,因为二次根式有意义,因此a=5,即可求解.代数式,√a −5+|b ﹣1|+c 2+a 在实数范围内有意义,则 a ﹣5≥0,|b ﹣1|≥0,c 2≥0,所以代数式,√a −5+|b ﹣1|+c 2+a 的最小值是a ,a =5,故选:B .小提示:二次根式、绝对值、偶次方(平方考查最多)都具有非负性,二次根式有意义的条件是被开方数≥0.4、下列式子是最简二次根式的是( )A .√8B .√3C .√9D .√13答案:B分析:根据最简二次根式的定义判断即可.解:A 、√8=2√2,故不符合题意;B 、√3是最简二次根式,故符合题意;C 、√9=3,故不符合题意;D 、√13=√33,故不符合题意; 故选:B .小提示:本题考查了最简二次根式,解题的关键是熟练掌握最简二次根式的定义.5、√5−m √m+1=√5−m m+1成立的条件是( ) A .m ≥﹣1B .m ≤﹣5C .﹣1<m ≤5D .﹣1≤m ≤5答案:C分析:根据二次根式的意义和分式有意义的条件求解即可.解:根据题意,得:5﹣m ≥0,m +1>0,∴﹣1<m ≤5,故选:C .小提示:本题考查二次根式的意义和分式有意义的条件,熟练掌握"二次根式的意义的条件:被开方数为非负数,分式有意义的条件:分母不为零"是解题的关键.6、估计√2×(√14−√2)的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间答案:B分析:先根据二次根式的乘法进行计算,进而根据无理数大小估计求解即可解:∵√2×(√14−√2)=2√7−2又2√7=√28∴5<2√7<6∴3<2√7−2<4故选B小提示:本题考查了二次根式的乘法,无理数大小估计,掌握二次根式的乘法运算是解题的关键.7、下列各式计算正确的是()A.√2+√3=√5B.4√3−3√3=1C.√2×√3=√6D.√12÷2=√6答案:C分析:由合并同类二次根式判断A,B,由二次根式的乘除法判断C,D.解:A、√2+√3≠√5原计算错误,该选项不符合题意;B、4√3−3√3=√3原计算错误,该选项不符合题意;C、√2×√3=√6正确,该选项符合题意;D、√12÷2=2√3÷2=√3原计算错误,该选项不符合题意;故选:C.小提示:本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.8、若√a−1有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣1答案:A分析:直接利用二次根式有意义的条件分析得出答案.解:若√a−1有意义,则a−1⩾0,解得:a⩾1.故选:A.小提示:此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.9、与2+√15最接近的整数是()A.4B.5C.6D.7答案:C分析:估算无理数的大小即可得出答案.解:∵12.25<15<16,∴3.5<√15<4,∴5.5<2+√15<6,∴最接近的整数是6,故选:C.小提示:本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.10、下列等式正确的是()A.(√3)2=3B.√(−3)2=﹣3C.√33=3D.(﹣√3)2=﹣3答案:A分析:根据二次根式的性质把各个二次根式化简,判断即可.解:(√3)2=3,A正确,符合题意;√(−3)2=3,B错误,不符合题意;√33=√27=3√3,C错误,不符合题意;(-√3)2=3,D错误,不符合题意;故选A.小提示:本题考查的是二次根式的化简,掌握二次根式的性质:√a2=|a|是解题的关键.填空题11、计算√23×(√8+√2)的结果是________.答案:2分析:利用二次根式的乘除法则运算.解:原式=√23×√8+√23×√2=√2×83+√2×23=4 3+23=2.故答案是:2.小提示:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.12、已知x=4+√5,y=4−√5.(1)x+y=______.(2)求x2+xy+y2的值为______.答案: 8 53分析:(1)直接计算x+y即可;(2)先计算出xy,再把x2+xy+y2变形为(x+y)2−xy,最后整体代入求值即可.解:(1)∵x=4+√5,y=4−√5∴x+y=4+√5+4−√5=8帮答案为:8;(2)∵x=4+√5,y=4−√5∴xy=(4+√5)(4−√5)=16−5=11又x+y=8∴x2+xy+y2=(x+y)2−xy=82−11=64−11=53所以答案是:53小提示:本题主要考查了二次根式的代简求值,正确将x2+xy+y2变形为(x+y)2−xy是解答本题的关键.13、若1x−1+√3−2x意义,则x的取值范围是______________.答案:x≤32且x≠1分析:根据分式的分母不为0和二次根式的被开方数非负可得关于x的不等式组,解不等式组即得结果.解:若1x−1+√3−2x有意义,则{3−2x≥0x–1≠0,解得:{x≤32x≠1,即x≤32且x≠1.所以答案是:x≤32且x≠1.小提示:本题考查了分式有意义的条件和二次根式有意义的条件以及一元一次不等式组的解法,属于应知应会题型,熟练掌握基本知识是解题的关键.14、化简二次根式:√8x2y3=______(x≥0).答案:2x√2yy2分析:根据二次根式有意义的条件判断得出y>0,然后利用二次根式的性质化简即可得出答案.解:∵8x2y3≥0,x≥0,∴y>0,∴原式=√8x2yy3·y =2x√2yy2;所以答案是:2x√2yy2.小提示:本题考查二次根式的性质以及化简,理解二次根式有意义的条件和二次根式的性质是解题关键.15、若二次根式√1x−1有意义,则x的取值范围是__________.答案:x>1分析:概念二次根式被开方数大于或等于0,分母不为0求解即可.解:二次根式√1x−1有意义,则1x−1≥0且x−1≠0,解得,x>1,所以答案是:x>1.小提示:本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义 的条件,列出不等式.解答题16、计算:(1)(√6+√8)×√3;(2)(3√2+2√3)2−(3√2−2√3)2答案:(1)3√2 +2√6;(2)24√6分析:(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可.解:(1)(√6+√8)×√3=√6×√3+√8×√3= √18+√24=3√2 +2√6(2)(3√2+2√3)2−(3√2−2√3)2=(18+12√6+12)−(18−12√6+12)=24√6小提示:本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算.17、(1)初步感知,在④的横线上直接写出计算结果:①√13=1;②√13+23=3;③√13+23+33=6;④√13+23+33+43=__________;…(2)深入探究,观察下列等式:①1+2=(1+2)×22;②1+2+3=(1+3)×32;③1+2+3+4=(1+4)×42;…根据以上等式的规律,在下列横线上填写适当内容:1+2+3+⋯+n +(n +1)=__________.(3)拓展应用,通过以上初步感知与深入探究,计算:①√13+23+33+⋯+993+1003;②113+123+133+⋯+193+203.答案:(1)10;(2)(n+2)(n+1)2;(3)①5050;②41075分析:(1)观察可得,每个式子的结果都等于被开放数中所有加数的底数之和;(2)所有自然数相加的和等于首项+尾项的和再乘以自然数的个数,最后除以2即可;(3)利用(1)(2)中的规律综合运用即可求解.解:(1)10;(2)(n+2)(n+1)2;(3)①原式=1+2+3+4+5+⋯+99+100=(1+100)×1002=5050;②原式=13+23+33+⋯+183+193+203−(13+23+33+⋯+103)=202×2124−102×1124=400×4414−100×1214=44100−3025=41075.小提示:主要考查了二次根式的基本性质与化简、探寻数列规律、整式的加减,掌握这三个知识点的应用,其中探求规律是解题关键18、已知1<x<4,化简:√(1−x)2−|x−5|.答案:2x﹣6分析:根据1<x<4,二次根式的性质以及绝对值的性质化简即可求解.解:∵1<x<4,∴√(1−x)2−|x−5|=|1﹣x|﹣(5﹣x)=x﹣1﹣5+x=2x﹣6.小提示:本题考查了二次根式的性质以及绝对值的性质,整式的加减,掌握二次根式的性质以及绝对值的性质是解题的关键.。
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
八年级第十六章《二次根式》测试题班别: 姓名:__________一、选择题(每小题3分,共30分)1. 若A ==( ) A. 24a + B. 22a + C. ()222a + D. ()224a +2. 若1a ≤化简后为( )A. (1a -B. (1a -C. (1a -D. (1a -3. ) A. 0 B. 42a - C. 24a - D. 24a -或42a -4. 下列二次根式中,最简二次根式是( )A .23aB .31 C .5.2 D .22b a -5. 若12x -<< )A. 21x -B. 21x -+C. 3D. -36. 10=,则x 的值等于( ) A. 4 B. 4± C. 2 D. 2±7. x ,小数部分为y y -的值是( )A. 38. 下列运算正确的是( )=a b =-C. (a b =-22=9=成立的x 的取值范围是( ) A .2x ≠ B .2x > C .2x ≥ D . 0x ≥10n 的最小值是( )A.7B.6C.5D. 4二、填空题(每小题3分,共24分).11. 当__________x .12. 已知x =,则21________x +=.13. 把的根号外的因式移到根号内等于 .14. _____,______m n ==.15. 是同类二次根式的是 .16. ,则它的周长是 cm.17. 已知x y ==33_________x y xy +=.18. 在实数范围内分解因式:429__________,6__________x x -=-+=.三、解答题(共52分)19. (6分)当a 1取值最小,并求出这个最小值.20. (6分)已知,a b (10b -=,求20152016ab -的值.21. 计算:(每题4分,共16分)()1(2(231⎛+ ⎝(3((((22221111(4)22. (6分)已知:11a a -=+21()a a +的值.23. (6分)已知:,x y 为实数,且3y <,化简:3y -24. (6分)03x =+,的值.答案:一、选择题1A 2B 3D 4D 5C 6C 7C 8C 9B 10B二、填空题11. 12≤; 12. 2-; 13.14. 1、2;15. ; 16. (; 17. 10; 18.()((23;(x x x x x +-- 三、解答题19. 12a =-,最小值为1; 20. -221. ()1.6,;()()()232,4.4;22. 解:22222111()24(14a a a a a a ⎛⎫+=++=-+=+= ⎪⎝⎭15+23.解:由已知有:1010x x -≥⎧⎨-≥⎩由此得1x = ,所以33y =所以33(4)y y y -=---=-1;24.解:290x -=且3x ≠- ,由此得3,1x y ==,2==。
第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
一、选择题(每题2分,共20分) 1. 下列各式中一定是二次根式的是( )A.B.C. 12+xD.2.则x 应满足的条件是()A.52x =B.52x <C. x ≥52D. x ≤523. 当x=3时,在实数范围内没有意义的是( )A.B.C. D.4.得()A.- B. C. 18 D. 65.=成立的条件是( ) A.1a ≥-B. 1a ≤C. 1<1a -≤D.11a -≤≤6. 下列各式计算正确的是( ) A.= B. =C.= D.=7. 若A = ) A.23a +B. 22(3)a +C.22(9)a +D.29a +8. )A.152B. ±C.52D.9. = )A. 0x ≥B. <1xC. 0<1x ≤D.x ≥且1x ≠10. 当3a <- )A. 32a +B. 32a --C. 4a -D. 4a -二、填空题(每题3分,共24分)11. 如果是二次根式,则x的取值范围是 。
12. 若<0n = 。
13. 化简= ,= ,= 。
= 。
14. 计算15. 已知126=,则a=。
416. 若m= 。
17. 2a=-成立的条件是。
18. 若<n m= 。
三、解答题(共56分)19. 分别指出x取哪些实数时,式子有意义。
(每小题3分,共6分)(1)(220. 计算(每小题4分,共16分)(1);(2)(3)(4(3- (4)>)m n21. 已知5x y +=,3x y •=,计算(5分)22. 已知实数,,a b c 满足2|1|440b c c ++-+=,求1001003a b c ++的值。
(5分)23. 若1a b -=,ab =,求代数式(1)(1)a b +-的值。
(6分)24. 已知A B ==求1111A B +--的值。
(6分)25. 已知11a a+=-221a a +的值。
(6分)。
初中数学《八下》第十六章二次根式-二次根式考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、求代数式a +的值,其中a=1007 ,如图是小亮和小芳的解答过程.(1 )的解法是错误的;(2 )错误的原因在于未能正确的运用二次根式的性质:;(3 )求代数式a +2的值,其中a=﹣2022 .知识点:二次根式【答案】(1 )小亮;(2 );(3 )【分析】(1 )由知,据此可得,从而做出判断;(2 )根据二次根式的性质可得答案;(3 )利用二次根式的性质化简、代入求值即可得.【详解】解:(1 )∵,∴,则,所以小亮的解法是错误的.故答案为小亮;(2 )错误的原因在于未能正确的运用二次根式的性质.故答案为.(3 )∵∴∴∴ 原式【点睛】本题考查了二次根式的化简求值,解题的关键是掌握二次根式的性质.2、若.则的立方根是___ .知识点:二次根式【答案】【分析】根据二次根式有意义的条件列出不等式,解不等式求出,代入原式求出,根据立方根的概念解答即可.【详解】解:由题意得,,,解得,,,解得,,,的立方根是,故答案为:.【点睛】本题考查的是二次根式有意义的条件、立方根的概念,掌握二次根式的被开方数是非负数是解题的关键.3、为使有意义,则x 的取值范围是 _________ .知识点:二次根式【答案】x≥1【详解】试题分析:根据二次根式的被开方数为非负数,可知x-1≥0 ,解得x≥1 .考点:二次根式4、计算的结果是_____ .知识点:二次根式【答案】4【分析】直接利用二次根式的性质化简得出答案.【详解】解:原式.故答案为【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.5、若有意义,则a 的取值范围是()A .a≥1B .a≤1C .a≥0D .a≤ ﹣ 1知识点:二次根式【答案】A【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:若有意义,则,解得:.故选:.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6、二次根式中,x的取值范围是___ .知识点:二次根式【答案】x ≥-3【分析】根据被开方数是非负数,建立不等式求解即可.【详解】∵是二次根式,∴x +3≥0,即x ≥-3 ,故答案为:x ≥-3 .【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是被开方数是非负数建立不等式是解题的关键.7、若a < 1 ,化简=___ .知识点:二次根式【答案】﹣a【分析】根据a 的范围, a ﹣ 1 < 0 ,化简二次根式即可.【详解】解:∵a < 1 ,∴a ﹣ 1 < 0 ,=|a ﹣ 1| ﹣ 1=﹣(a ﹣ 1 )﹣ 1=﹣a + 1 ﹣ 1=﹣a .故答案为:﹣a .【点评】本题考查了二次根式的性质与化简,对于的化简,应先将其转化为绝对值形式,再去绝对值符号,即.8、下列计算正确的是( )A .B .C .D .知识点:二次根式【答案】A【分析】根据平方根,算术平方根的性质判断即可.【详解】解:A .,正确,故选项符合题意;B .,故选项符合题意;C .,故选项不符合题意;D .,故选项不符合题意.故选:A .本题考查了平方根和算术平方根,掌握平方根和算术平方根的性质是解题的关键.9、二次根式中字母x的取值范围是________ .知识点:二次根式【答案】x2【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵有意义,∴,解得:.故答案为:.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10、如果有意义,那么的取值范围是______ .知识点:二次根式【答案】x ≤2【分析】直接利用二次根式的定义得出x 的取值范围.【详解】解:∵有意义,∴2−x ≥0 ,解得:x ≤2 .故答案为:x ≤2 .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.11、计算:知识点:二次根式【答案】40【分析】根据积的算术平方根的性质解答即可.【详解】原式==5×8=40.故答案为40.【点睛】本题考查了二次根式的性质,熟练掌握积的算术平方根的性质是解答本题的关键. 积的算术平方根等于各因式算术平方根的积,即(a ≥0 ,b ≥0 ) .12、计算:=______知识点:二次根式【答案】﹣1【分析】利用二次根式的性质化简即可.【详解】.故答案为:.【点睛】本题考查了二次根式的化简,属于基础题,注意.13、计算:.知识点:二次根式【答案】【分析】根据二次根式的性质及二次根式的乘法逆运算进行化简计算,然后合并同类二次根式即可解答.【详解】解:===.【点睛】本题考查了二次根式的化简与计算,熟记二次根式的运算法则和要求是解答的关键.14、化去根号内的分母:=___ .知识点:二次根式【答案】【分析】根据二次根式的性质化简,即可解答.【详解】解:,故答案为:.【点睛】本题考查了二次根式的性质与化简,熟知二次根式的基本性质是解答此题的关键.15、如图,四边形ABCD为矩形,AB=,AD=,点P为边AB上一点.以DP为折痕将△DAP翻折,点A的对应点为点A ‘ .连结AA ‘ ,AA ‘ 交PD于点M,点Q为线段BC上一点,连结AQ,MQ,则AQ+MQ的最小值是________知识点:二次根式【答案】【分析】如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,RM.想办法求出RM,RT,求出MT的最小值,再根据QA+QM=QM+QT ≥MT,可得结论.【详解】解:如图,作点A关于BC的对称点T,取AD的中点R,连接BT,QT,RT,RM.∵ 四边形ABCD是矩形,∴∠RAT=90° ,∵AR=DR=,AT=2AB=4,∴RT=,∵A,A′关于DP对称,∴AA′ ⊥DP,∴∠AMD=90° ,∵AR=RD,∴RM=AD=,∵MT ≥RT −RM,∴MT ≥4,∴MT的最小值为4,∵QA+QM=QT+QM ≥MT,∴QA+QM ≥4,∴QA + QM 的最小值为 4.故答案为:4.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出MT的最小值,属于中考常考题型.16、计算:-1 = _____ .知识点:二次根式【答案】2【分析】利用二次根式的性质化简,进而通过计算即可得出答案.【详解】-1 = 3-1 = 2故答案为:2 .【点睛】此题主要考查了二次根式、实数的运算;正确化简二次根式是解题的关键.17、下列各式中,运算正确的是()A .=﹣2B .+=C .×=4D . 2 ﹣知识点:二次根式【答案】C【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法法则对 B 、 D 进行判断;根据二次根式的乘法法则对 C 进行判断.【详解】解:A、=2 ,故原题计算错误;B、+=+2=3,故原题计算错误;C、==4 ,故原题计算正确;D、2 和不能合并,故原题计算错误;故选:C.【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式的性质及加减法运算法则是解题关键.18、若式子在实数范围内有意义,则x 的取值范围是()A . x > 1B . x >﹣ 1C .x≥1D .x≥ ﹣ 1知识点:二次根式【答案】A【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵ 式子在实数范围内有意义,∴x﹣1 > 0 ,解得:x>1 .故选A .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19、要使二次根式有意义,则的取值范围是()A .B .C .D .知识点:二次根式【答案】C【分析】根据二次根式有意义的条件可得x+1≥0 ,再解即可.【详解】解:由题意得:x+1≥0 ,解得:x ≥−1 ,故选:C.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.20、若能使二次根式有意义,则这个二次根式是()A .B .C .D .知识点:二次根式【答案】C【分析】根据二次根式有意义的条件逐项分析即可【详解】A. 要使有意义,则,解得,该项不符合题意;B. 要使有意义,则,解得,该项不符合题意;C. 要使有意义,则,解得,能使二次根式有意义,该项符合题意;D. 要使有意义,则,解得,该项不符合题意;故选C【点睛】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键.。
八年级下册数学第十六章二次根式练习题(附解析)学校:___________姓名:___________班级:___________考号:___________ 题号一二三四五总分
得分
注意事项:
1. 答题前填写好自己的姓名、班级、考号等信息
2. 请将答案正确填写在答题卡上
分卷I
分卷I 注释
评卷人得分一、单选题(注释)
1、计算的结果是
A.﹣3 B.3 C.﹣9 D.9
2、下列运算正确的是
A.a+a=a2B.a6÷a3=a2C.(π﹣3.14)0=0 D.
3、下列等式成立的是
A.a2•a5=a10B.C.(﹣a 3)6=a18D.
4、化简的结果是()
A.B .2 C .D.1
5、的平方根是()
A.2 B.±2 C.D.±
6、下列命题中正确的是()
A.两个无理数的和一定是无理数B.正数的平方根一定是正数
C.开立方等于它本身的实数只有1 D.负数的立方根是负数
7、下列运算正确的是()
A.B.C.D.
8、在这四个实数中,最大的是()A.B.C.D.0
9、下列各数中,是无理数的是()
A.﹣2 B.0 C.D.
10、如图,长方形内有两个相邻的正方形,面积分别为4和9,那么图中阴影部分的面积为()
A.1 B.2 C.3 D.4
11、若式子在实数范围内有意义,则x的取值范围是
A.x≥3B.x≤3C.x>3 D.x<3
12、下列计算中,正确的是
A.B.
C.D.
13、函数中自变量x的取值范围是
A.x>1 B.x ≥1C.x≤1D.x≠1
14、函数中,自变量x的取值范围是
A.x>1 B.x≥1C.x>-2 D.x≥―2
15、的平方根是()
A.4 B.±4 C.2 D.±2
16、计算的结果为
A.﹣1 B.1 C.D.7
17、函数中自变量x的取值范围是
A.x≥﹣3 B.x≥3
C.x≥0且x≠1D.x≥﹣3且x≠1
18、下列计算正确的是( )
A.B.
C.D.
19、下列各式中最简二次根式为( )
A.B.C.D.
20、以下不能构成三角形三边长的数组是()
A.(1,,2)B.(,,)C.(3,4,5)D.(32,42,52)
分卷II
分卷II 注释
评卷人得分
二、填空题(注释)
21、若在实数范围内有意义,则x的取值范围是.
22、若x3=8,则x=.
23、若在实数范围内有意义,则x的取值范围是.
24、请将这三个数用“>”连结起来.
25、4的算术平方根是.
26、若整数x满足|x|≤3,则使为整数的x的值是(只需填一个).
27、实数中的无理数是.
28、的立方根是.
29、计算=.
30、已知一个正数的平方根是x+7和3x﹣3,则这个正数是.
评卷人得分
三、计算题(注释)
31、
32、;
33、计算:.
34、计算
35、先化简,再求值:其中x=
36、计算:|-2|-(3-π)0+2.
37、计算(每题5分,共10分)
(1)(2)
38、计算:(1);(2).
39、(1)(2)
(3)(4)
40、+|-2|++(-1)2011
评卷人得分
四、解答题(注释)
41、已知实数x,y满足y= + —28, 求
42、(1)计算:
(2)化简分式,并从中选一个你认为适合的整数代人求值.
43、计算:.
44、(1)计算:;
(2)解方程组:
45、先化简,再求值:÷(2x —)其中,x=+1.
46、(1)计算:()-2-+;
(2)先化简,再求值:-÷,其中a是方程x2+3x+1=0的根.
47、计算:+()-1+(2-π)0-()2.
48、(1)计算:;
(2)解不等式:,并把解集在数轴上表示出
来.
49、计算:.
50、计算:.
试卷答案
1.B
2.D
3.C
4.C
5.D
6.D
7.C
8.A
9.C
10.B
11.A
12.B
13.B
14.A
15.D
16.B
17.D
18.B
19.A(或B)
20.D
21.
22.2
23.
24.
25.2
26.﹣2(答案不唯一)
27.
28.
29.
30.36
31.1
32.0
33.
34.
35.
36.1+
37.(1)(2)1
38.;-2
39.(1)10.7, (2)-4, (3),(4)0
40.7
41.x=1;y= —28;= —3
42.(1)(2)0
43.
44.(1)1;(2)
45.
46.(1)1+;(2)-.
47.0
48.(1)1;(2)
49.
50.6。