因式分解+分式运算
- 格式:docx
- 大小:185.87 KB
- 文档页数:2
整式的因式分解和分式的简化在初中数学学习中,我们经常会遇到整式的因式分解和分式的简化的问题。
本文将介绍整式的因式分解和分式的简化的基本概念和方法。
一、整式的因式分解首先,我们来了解什么是整式。
整式是由常数、变量及其系数以及加、减、乘运算符号构成的算式。
例如,2x² + 3x - 6就是一个整式。
整式的因式分解是将一个整式写成若干个因子相乘的形式。
这样做的好处是使得整式更简洁、易于计算和理解。
下面,我们来看一个例子。
假设我们有一个整式:12x² + 8xy。
我们可以通过观察和分解公因式的方法进行因式分解。
首先,我们可以找到这个整式的公因式,即4x。
通过提取公因式,我们可以得到:4x(3x + 2y)。
这样,我们就将整式成功地因式分解了。
需要注意的是,有些整式可能无法进行因式分解,这时我们就需要通过其他方法进行处理。
二、分式的简化接下来,我们来了解分式的简化。
分式是由分子和分母组成的,其中分子和分母都是整式。
分式的简化是将一个分式约去它的最简形式,即分子和分母没有公因式。
这样做的好处是使得分式更易于计算和理解。
比如,我们有一个分式:(4x² + 2x) / (2x)。
我们可以通过分子和分母的公因式进行约分。
可以发现,分子和分母都可以被2x整除。
因此,我们可以约去2x,得到简化后的分式:2x + 1。
同样地,有些分式可能无法进行简化,这时我们就需要对分子和分母进行其他的处理。
三、整式的因式分解和分式的简化的联系整式的因式分解和分式的简化在一定程度上是密切相关的。
在进行因式分解时,我们常常需要对整式进行简化,以便于提取公因式。
而在进行分式的简化时,有时也需要将分式转化为整式,然后对整式进行因式分解,再转化为分式的最简形式。
总结起来,整式的因式分解和分式的简化都是数学中的基本操作,可以帮助我们更好地理解和计算问题。
在实际应用中,我们经常需要利用这些技巧来简化复杂的式子,使问题更易于解决。
1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn n m a a =(n m ,都是正整数).积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的3.因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=;()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()c b a c b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++.1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4. 分式一般的,用B A ,表示两个整式,B A ÷就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--= 分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小. (1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是: n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x . 分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x ()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到.5.二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x 1就不是最简二次根式.化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a ba b a 二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式; (3)再把同类二次根式分别合并.二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变,即:b a ba=(0,0>≥b a ).此法则可以推广到多个二次根式的情况. 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--.分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()2131********+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+= 321+= 23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a . ()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=. 二次根式的化简技巧一、 巧用公式法例1计算b a ba b a ba b a +-+-+-2 分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2b =()b a +()b a -,可以帮助我们将b ab a +-2和b a -变形,所以我们应掌握好公式可以使一些问题从复杂到简单。
第二部分 代数式与恒等变形部分★五、多项式的因式分解:1、把一个多项式化成几个整式的积的形式,叫做因式分解。
《因式分解和整式乘法是互逆变形.如,22))((n m n m n m -=-+是整式乘法,=-22n m ))((n m n m -+是因式分解》2、因式分解的方法、步骤和要求:(1)若多项式的各项有公因式,则先提公因式.如=+--cm bm am ⋅-m ( )。
(2)若各项没有公因式或对于提取公因式后剩下的多项式,可以尝试运用公式法. 如229b a -= ,=++-=---)2(22222b ab a n n b abn n a 。
(3)如果用上述方法不能分解,那么可以尝试用其他方法.*十字相乘法:))(()(2b x a x ab x b a x ++=+++.如)1)(3(322-+=-+x x x x 。
*分组分解法(适用于超过三项的多项式,有分组后再提公因式和分组后再用公式两种情况).如=++-1222x y x =-++2212y x x 22)1(y x -+=)1)(1(y x y x -+++。
(4)因式分解必须分解到每一个因式不能再分解为止。
《因式分解要在指定的范围内进行.如,在有理数范围内分解)2)(2(4224-+=-x x x ,若在实数范围,还可继续分解至)2)(2)(2(2-++x x x .*在高中时还可进一步分解》【拓展型问题】:1.根据“因式分解和整式乘法是互逆变形”,你能对下列整式乘法的结果进行因式分解吗?①)1)(32(-+x x ;②))((z y x z y x --+-;③()()n m b a ++.2.试整理:能进行因式分解的二项式和三项式一般可用哪些方法?【中考真题】:1.代数式3322328714b a b a b a -+的公因式是( )A.327b aB.227b aC.b a 27D.3328b a2.若7,6=-=-mn n m ,则n m mn 22-的值是( )A.-13B.13C.42D.-423.分解因式:①31255x x -;②3228y y x -;③()()()x y x y y x -+----4423;④81721624+-x x .⑤122--x x ;⑥2)()(2-+-+y x y x ;⑦20)2)(1(---x x . 4.下列分解因式正确的是( ) A.1)12(24422+-=+-x x xB.)(2n m m m mn m +=++C.)2)(4(822+-=--a a a aD.22)21(21-=+-x x x 5.若A n m n m mn n m ⋅+=+-+)()()(3,则A 是( )A.22n m +B.22n mn m +-C.223n mn m +-D.22n mn m ++6.若16)4(292+-+x m x 是一个完全平方式,则m 的值为 。
公式及方法大全待定系数法(因式分解)待走系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式缠中的应用・在因式分解时” 一些多项式经过分析”可以断走它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待走的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待走字母系数的值,这种因式分解的方法叫作待走系数法・常用的因式缠公式:@ 士疔=a2±2ab+i2(。
士b)%±3舄+ 3必2 土护宀宀@一%+3)/士护=(a±b)(a2干必+胪)—护=⑺-耐(严+护門+汁留卄十护一2 *护)(乃为正整数)/ - &1血》心於-…+必心-旷1)(耳为偶数)a尢4•护=0 +血)(严_ d f 4•卅昭--------- 必心十b#】)@为奇数)(&+D+ E)2=a1 +3? 4-e2 + 2ab + 2be + 2caa^ -ib2 +c3-3abc = (a +b +c)((a2 4-^2 4-c?2一ab-bc-ca)例1 分解因式:x2+3xy+2y2+4x+5y+3 .分析由于(x2+3xy+2y2)=(x+2y) (x+y),若原式可以分解因式,那么它的两个一次项一走是x+2y+m和x+y+n的形式应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m + n)x+(m+2 n)y+m n ,比较两边对应项的系数,则有解之得m = 3 z n = l •所以原式=(x+2y+3)(x+y+l).说明本题也可用双十字相乘法,请同学们自己解一下・例2 分解因式:x4-2x3-27x2-44x+7 ・分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1 , ±7(7的约数)” 经检验,它们都不是原式的根,所以”在有理数集内”原式没有一次因式■如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的开彳式・原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad + bc)x+bd , 所以有由bd=7,先考虑b=「d=7有所以说明由于因式分解的唯一性,所以对b=-l z d二・7等可以不加以考虑•本题如果b=l,d=7代入方程组后,无法确走a , c的值,就必原式=(X2・7X+1)(X2+5X+7)・须将bd=7的其他解代入方程组,直到求出待定系数为止・本题没有一次因式,因而无法运用求根法分解因式•但利用待定系数法,使我们找到了二次因式•由此可见,待走系数法在因式分解中也有用武之地・求根法(因式分解)我们把开彳如anxn+an-lxn-l+...+alx+aO(n为非负整数)的代数式称为关于x的一元多项式,并用f(x) , g(x),... 等记号表示,如f(x)=x2-3x+2 z g(x)=x5+x2+6 z..., 当x二a时,多项式f(x)的值用f⑻表示・如对上面的多项式f(x) f(l) = 12-3x我们把开彳如a n x n+a n-ix n-1+...+aix+ao(n为非负整数)的代数式称为关于x的一元多项式,并用f(x) , g(x) z…等记号表示,如f(x)=x2-3x+2 , g(x)=x5+x2+6 ,...,例2分解因式:x3-4x2+6x-4・当x=a 时,多项式f(x)的值用f(a)表示・如对上面的多 项式f(x) f(l) = l 2-3xl+2=0 ;f(-2)=(-2)2-3x(-2)+2=12 ・若f(a)=O ,则称a 为多项式f(x)的一个根.定理1(因式定理)若a 是一元多项式f(x)的根,即 f(a)=O 成立,则多项式f(x)有一个因式x ・a ・根据因式走理,找出一元多项式f(x)的一次因式的关键 是求多项式f(x)的根・对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时, 根.定理2的根,则必有p 是ao 的约数,q 是an 的约数・特别地, 当ao=l 时,整系数多项式f(x)的整数根均为a n 的约数・我们根据上述走理,用求多项式的根来确走多项式的_ 次因式,从而对多项式进行因式分解・分析这是一个整系数一元多项式,原式若有整数根, 必是・4的约数,逐个检验・4的约数:±1, ±2, ±4,只有即整系数多项式时,经常用下f(2)=23-4x22+6x2-4=0 ,即x=2是原式的一个根,所以根据走理1.原式必有因式x・2・解法1用分组分解法,使每组都有因式(x・2)・原式=(x3-2x2)-(2x2-4x)+(2x・4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2)・解法2用多项式除法,将原式除以(x・2),所以原式=(x-2)(x2・2x+2)・说明在上述解法中,特别要注意的是多项式的有理根一定是・4的反之不成立,即・4的约数不一走是多项式的根・因此,必须对约数z・4的约数逐个代入多项式进行验证・例3 分解因式:9x4-3x3+7x2-3x-2 .分析因为9的约数有±1 , ±3 , ±9 ;・2的约数有±1 ,所以,原式有因式9X2・3X・2・解9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+l)=(3x+l)(3x-2)(x2+l)说明若整系数多项式有倉数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2・3x・2 ,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x) 低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了・双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2 + bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式•例如,分解因式2x2-7xy-22y2-5x+35y-3・我们将上式按x降幕排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式・例如,分解因式2x2-7xy-22y2-5x+35y-3 •我们将上式按x 降幕排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式・对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-lly+l).再利用十字相乘法对关于X的二次三项式分解所以原式二[x+(2y・3)] [2x+(-lly+l)] =(x+2y-3)(2x-lly+l).上述因式分解的过程,实施了两次十字相乘法・如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表不的是下面三个关系式:(x+2y)(2x-lly)=2x2-7xy-22y2 ;(x-3)(2x+l)=2x2-5x-3 ;(2y-3)(-lly+l)=-22y2+35y-3 .这就是所谓的双十字相乘法・用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:⑴用十字相乘法分解ax2+bxy+cy2 z得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上妾求第二、第三列构成的十字交叉之积的和等于原式中的ey ,第一、第三列构成的十字交叉之积的和等于原式中的dx・例1分解因式:(1) x2-3xy-10y2+x+9y-2 ;(2) x2-y2+5x+3y+4 ;(3) xy+y2+x-y-2 ;⑷6x2-7xy-3y2-xz+7yz-2z2・解(1)原式=(x-5y+2)(x+2y-l)・(2)原式=(x+y+l)(x・y+4)・G)原式中缺x2项,可把这一项的系数看成0来分解・原式=(y+l)(x+y-2)・(4)原式=(2x・3y+z)(3x+y・2z)・说明(4)中有三个字母,解法仍与前面的类似・笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3Z16.48Z41.第二步,找出第一段数字的初商”使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3 ,初商为1 ,因为12 = 1<3 , jfo(l+l)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字, 组成第一余数,在本例中第一余数为216.第四步,找出试商”使(20x初商+试商)x试商不超过第一余数,而【20x初商+(试商+1)】x(试商+1)则大于第—余数. 第五步,把第一余数减去(20x初商+试商)x试商,并移下第三段数字组成第二余数本例中试商为7第二余数为2748. 依此法继续做下去,直到移完所有的段数,若最后余数为零, 则开方运算告结束•若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐•本例的算式如下:17.79^3,16 .48,411 ...................... -I220 X 1=20 2 16 ................. •第一余毅十7271 89 ................. (27X7)20x17 =340 27 48 .................. ■-第二余+7347 24 29 .............. (347X7)20X177 = 3540 3 19 41 …-第三余数十93549 3 19 41 3549X9【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n次方根记为需(n为大于1的自然数)•作为代数式,籀称为根式・n称为根指数,a称为根底数•在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根, 其绝对值相同”符号相反. 【算术根】正数的正方根称为算术根•零的算术根规定为零.【基本性质】由方根的走义,有换式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积; 反过来,同次方根的乘积等于乘积的同次方根”即lfab = ^fa>^/b(ci >Q z b>0)根式的彳【分式的方根】分式的方根等于分子、分母同次方根相除, 即恥临 >0,b>0)【根式的乘方】阳仁归牡0)【根式化简]祈=你(心0)(a > 0)、虑 + 4- 4-4- + y/b) _ ^Jb (气心_+ ^fb) a _b\/c 4- ^fd G 亦 + — J^) (dF 4- — \厉)气広 + y/h (气心 + ^b )(、後 _ ^/b) ct — b【同类根式及其加减运算】根指数和根底数都相同的根式 称为同类根式,只有同类根式才可用加减运算加以合并.亶进位制的基与数字任一醴可表为通常意义下的有限小数或无限小数,各数字 的值与数字所在的位置有关’任何位置的数字当小数点向右 移一位时其值扩大10倍,当小数点向左移一位时其值缩小 10倍•例如173.246 = 1X 102 +7X 10+3 + 2X 10-1+4X 10-2 +6X 10-3T 殳地,任一正数a 可表为a = a%i ・・・aA>d ・・・=a n xlO a +。
因式分解的十二种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
初中数学知识归纳分式的化简和运算在初中数学中,分式的化简和运算是一个重要的知识点。
我们将在本文中对这一内容进行归纳和总结。
一、分式的化简要化简一个分式,我们需要将其化简为最简形式。
在化简分式时,我们可以使用以下方法:1.因式分解法如果分子和分母都是多项式,我们可以尝试使用因式分解法来化简分式。
首先,我们需要对分子和分母进行因式分解,然后消去分子和分母的公因式,并将得到的结果写成最简形式。
例如,化简分式$\frac{6x^2}{12x}$,我们可以将分子和分母都因式分解为$2 \cdot 3 \cdot x \cdot x$和$2 \cdot 2 \cdot 3 \cdot x$,然后消去公因式$2 \cdot 3 \cdot x$,得到最简形式$\frac{x}{2}$。
2.约分法如果分式的分子和分母存在公因式,我们可以使用约分法来化简。
具体做法是将分子和分母的公因式约去,保留最简形式。
例如,化简分式$\frac{8y}{12}$,我们可以发现分子和分母都可以被2整除,即存在公因式2。
约去公因式2后,得到最简形式$\frac{4y}{6}$。
再次约分,得到$\frac{2y}{3}$。
二、分式的运算在进行分式运算时,我们主要涉及到加法、减法、乘法和除法。
下面我们将分别介绍这些运算的方法。
1.分式的加法和减法要进行分式的加法和减法,我们需要先找到这些分式的公共分母,然后将分子进行相应的加法或减法操作,并保持公共分母不变。
例如,我们要计算$\frac{1}{2}+\frac{2}{3}$,首先找到这两个分式的公共分母,由于2和3的最小公倍数为6,因此通分后,我们得到$\frac{3}{6}+\frac{4}{6}=\frac{7}{6}$。
最后,我们可以将$\frac{7}{6}$化简为最简形式,得到$\frac{7}{6}$。
2.分式的乘法对于分式的乘法,我们只需要将两个分式的分子相乘,分母相乘即可。
分式与因式分解在数学领域中,分式和因式分解是两个基础但极其重要的概念。
它们不仅在代数中占据核心地位,而且对于解决各种数学问题具有关键作用。
本文将详细探讨分式的定义、性质以及因式分解的方法和应用。
一、分式的概述分式,顾名思义,是指一个数学表达式被另一个数学表达式除所得的商。
具体来说,分式由分子和分母两部分组成,形如$\frac{a}{b}$,其中$a$是分子,$b$是分母。
需要注意的是,分母不能为0,否则分式无意义。
分式具有多种性质,如基本性质、运算性质等。
基本性质包括分式的值不变性,即分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。
运算性质则涉及分式的加减乘除运算,这些运算都需遵循一定的法则和步骤。
二、因式分解的概念与方法因式分解是将一个多项式表示为几个整式的乘积的形式。
这种方法在解决代数方程、不等式以及函数问题等方面具有广泛应用。
因式分解的核心在于找到多项式中的公因式或利用公式进行分解。
常见的因式分解方法包括提取公因式法、公式法(如平方差公式、完全平方公式等)以及分组分解法等。
这些方法各有特点,适用于不同类型的多项式。
在实际应用中,我们需要根据具体情况选择合适的因式分解方法。
三、分式与因式分解的联系分式和因式分解在代数中紧密相连。
一方面,因式分解可以简化分式,使其更易于计算和理解。
例如,通过因式分解,我们可以将复杂的分式化简为几个简单分式的和或差,从而便于进行后续的运算和分析。
另一方面,分式运算中也经常需要用到因式分解的技巧。
例如,在求解分式方程时,我们通常需要对方程两边进行因式分解,以便消除分母或降低方程的次数。
此外,在分式的加减运算中,通过因式分解可以找到通分母,从而简化运算过程。
四、分式与因式分解的应用分式和因式分解在数学领域具有广泛的应用。
在代数中,它们是解决方程、不等式和函数问题的重要工具。
在几何中,分式和因式分解也被用来描述和解决与形状、面积和体积相关的问题。
此外,在实际生活中,分式和因式分解也发挥着重要作用。
代数式的因式分解与分式化简代数式是数学中常见的一类表达式,由数、字母和运算符号组成。
在数学问题中,经常需要对代数式进行因式分解和分式化简,以方便进行运算和推导。
本文将介绍代数式的因式分解和分式化简的方法和步骤。
一、代数式的因式分解因式分解是指将一个代数式表示为几个乘积的乘积形式,其中每个乘积因子称为因式。
因式分解的目的在于将复杂的代数式拆解为简单的成分,以便进行进一步的计算和推导。
1.1 一元二次三项式的因式分解一元二次三项式的一般形式为ax²+bx+c,其中a、b、c 为已知实数,且a≠0。
对于此类代数式,我们可以通过配方法进行因式分解。
步骤如下:1. 将三项式中的第一项和最后一项相乘,得到 ac。
2. 找出两个因数 m 和 n,使得它们的和等于第二项的系数 b,且乘积等于 ac。
3. 将第二项拆分为 mx 和 nx(注意要保持等式成立)。
4. 通过提取公因式的方式进行因式分解。
例如:ax²+bx+c =a(x+m)(x+n)。
1.2 多项式的因式分解对于多项式的因式分解,一般需要使用更复杂的方法,如提取公因式、分组分解、平方法、差二次平方和公式等。
例如,对于代数式 x³+3x²-4x-12,我们可以通过以下步骤进行因式分解:1. 尝试提取公因式,如果存在公因式,则进行提取。
例如,x³+3x²-4x-12 = x²(x+3)-4(x+3) = (x+3)(x²-4)。
2. 继续对括号中的二次式进行因式分解,如公式 a²-b² = (a+b)(a-b)。
例如,x²-4 = (x+2)(x-2)。
3. 将分解得到的因式整合,得到最终的因式分解形式。
例如,x³+3x²-4x-12 = (x+3)(x+2)(x-2)。
二、代数式的分式化简分式化简是指将一个复杂的分式表示为简单分式和整式的和的形式,以便进行运算和推导。
基础内容: 1因式分解 2分式的综合运算 及分式方程的训练解题 及重要概念3不等式或不等式组的解法及双向应用一、因式分解的检测与补救1 3x 3ay 4z n+1与6xy 2z n 的公因式为2 (x-1)(x 2-1)与x 2+2x-3的公因式为 ;3 x 2+mxy+9y 2是完全平方式则m=4 x 2-24xy+m 是完全平方式则m=5 若2x 2-24x+m 有一个因式为x-1则m=6、△ABC 的三边满足a 2-2bc=c 2-2ab ,则△ABC 是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、锐角三角形7、已知2x 2-3xy+y 2=0(xy ≠0),则x y +y x的值是 8 给下列各式分解因式(1) 2xy-x 2-y 2+1 (2) ma+nb+mb+na (3) 21372+--x x (4) ab 2x 2-2ab 2xy+ab 2y 2(5) 2324--x x (6) 37622--ab b a (7) m 2n 3b n+2 - n 3m 2a n+2 (8) x 2-6x-72(9) 9p-6p(m+n)+p(m+n)2 (10) 32286y xy y x -+-(11)(a-2b)2+3a-6b-10 (12)(x 2+3x-3)(x 2+3x+4)-8(13).1n n 1n a 41a a -++-(n 是大于1的自然数) (14)2244c a a -+-(15)2224)1(a a -+9 计算 (1)34×1.78+25×1.78+41×1.78 (2) (4mn-m 2-4n 2)÷(2n-m)(3)(x 2-7xy+12y 2)÷(x-3) (4)(x 3+6x 2+11x+6)÷(x+3) 10 解方程(1)x 3 = x (2)x 3+x=6x 2+6(3) 14x 2+5x-1=0 (4) x 3+x=2x 2+211 思考题(1)已知的值 求 ab b a b a 2122=+=+,的值2)(b a -; 的值44b a + (2)已知,a 2 +b 2+4a-12b=-40求(1)a ,b 的值(2)a 2+b 2的值(3)证明: 2a 2 -4a+3 恒正 (用配方法)12.若5mx x 2-+能在有理数范围内分解成两个一次因式的积,则m=_________ 13 已知2kx x 4-+有因式1x x 2--,求k 的值和另一个因式14、设n 为正整数,且64n -7n 能被57整除,证明:21278+++n n 是57的倍数一基础知识知识点回顾:1、分式的定义: 。
分式运算中的常用技巧与方法分式是数学中常见且重要的运算形式,它可以表示两个数之间的比例关系或者一个数与一个无穷小量之间的关系。
分式的运算需要注意一些技巧和方法,下面我将详细介绍一些常用的技巧和方法。
1.分式的化简:分式的化简是指将一个复杂的分式转化为一个更简单的分式,通常可以通过约分或者通分来达到目的。
- 约分:如果分式的分子和分母有一个公因子,可以将这个公因子约掉。
例如,$\frac{8}{12}$可以约分为$\frac{2}{3}$。
- 通分:如果分式的分母不同,可以通过求最小公倍数来将分母变为相同的数。
例如,$\frac{1}{3}$和$\frac{2}{5}$可以通分为$\frac{5}{15}$和$\frac{6}{15}$。
2.分式的加减:分式的加减运算需要将分母变为相同,然后对分子进行相应的加减操作。
- 通分:对于两个分母不同的分式,需要找到它们的最小公倍数,然后将分母变为最小公倍数,再对分子进行加减操作。
例如,$\frac{1}{2}+\frac{1}{3}$可以通分为$\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$。
- 减法的变形:对于分式的减法运算,可以改写为加法的形式,即将减号变为加号,然后将第二个分式的分子取反。
例如,$\frac{1}{2}-\frac{1}{3}$可以写为$\frac{1}{2}+\left(-\frac{1}{3}\right)=\frac{1}{2}+\frac{-1}{3}=\frac{1}{2}-\frac{1}{3}$。
3.分式的乘法:分式的乘法是将两个分式的分子相乘,分母相乘得到结果。
- 化简:如果乘法运算结果可以进行约分,则进行约分。
例如,$\frac{2}{6}=\frac{1}{3}$。
4.分式的除法:分式的除法是将两个分式交叉相乘,即将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。
因式分解
1、分解因式:226136x xy y x y +-++-
2、已知乘法公式:
55432234a +b =(a+b)(a -a b+a b -ab +b ) 55432234a -b =(a-b)(a +a b+a b +ab +b )
利用或者不用上述公式分解因式:
8642x +x +x +x +1
Ps :
22()()x y x y x y -=+-3322()()x y x y x xy y ±=±+
3、因式分解(添项):4
2x
-7x +1
4、因式分解(替换)3
33(x-2)
-(y-2)-(x-y)
5、(x -y)2+12(y -x)z +36z 2;
6、x 2-4ax +8ab -4b 2
;
7、(ax +by)2+(ay -bx)2+2(ax +by)(ay -bx)
8、-m 4+18m 2-17
9、已知a +b=0,求a 3-2b 3+a 2b -2ab 2的值. 当a 为何值时,多项式x 2+7xy +ay 2-5x +43y -24可以分解为两个一次因式的乘积
10、若x 、y 为任意有理数,比较6xy 与x 2
+9y 2
的大小
11、若m 2-3m +2=(m +a)(m +b),则a=______,b=______;
12、abc(a 2+b 2+c 2)-a 3bc +2ab 2c 2 13、(a +b +c)3-a 3-b 3-c 3 14、(x -1)(x -2)(x -3)(x -4)-48
15、已知a +b=0,求a 3-2b 3+a 2b -2ab 2的值 16、若x 2+mx +n=(x -3)(x +4),求(m +n)2的值
17、分解因式3a 2x -4b 2y -3b 2x +4a 2y ,正确的
是
A .-(a 2+b 2)(3x +4y)
B .(a -b)(a +b)(3x +4y)
C .(a 2+b 2)(3x -4y)
D .(a -b)(a +b)(3x -4y)
分式
1、计算2312+++x x x +4222--x x
x
2、233322+-+-x x x x -657522+-+-x x x x -341
2+-x x
3、计算)1(1+x x +)3)(1(2
++x x +)6)(3(3++x x 4、21-a +12
+a -12-a -21+a
5、b=a+1,c=a+2,d=a+3,求
d
a d
d c b c c b a b d a a +++++++++的值. 6、已知c z b y a x ==,求证:
22
a
x ca bc ab zx yz xy =++++ 7、
113a b -=,求分式232a ab b a ab b
+---的值. 8、
,,,0.xy xz yz
a b c abc x y x z y z ===≠+++且求证ab
ac bc abc
x -+=
2
9、已知a
c c b b a 1
11+=+=+
,且a 、b 、c 互不相等,求证:12
2
2
=c b a
10、已知22
22
23,2342a b c a bc b a ab c -+==--则 的值等于
11、若a 2
+b 2
=3ab,则(1+33
322)(1)b b
a b a b
÷+--的值等于 12、如果x+x 1=3,则1
x x x 2
42
++的值为 13、已知a+b=3,ab=1,则a b +b
a 的值等于
14、计算 2301
()20.1252005|1|2---⨯++-
1、小红骑自行车在公路上行驶,当天虽无风,但小红骑在车上觉得刮了西风,以小红为参照物,空气是向 运动的,以地面为参照物,小红向 行驶.
2、10.(09宁波)如图所示,物体甲静止在水平桌面上,当物体乙轻放到甲上后,下列现 象不可能发生的是 ()
A .甲相对于桌面保持静止状态,而乙相对于甲也静止
B .甲相对于桌面保持静止状态,而乙相对于甲沿斜面滑下
C .甲相对于桌面向右运动,而乙相对于甲沿斜面滑下
D .甲相对于桌面向右运动,而乙相对于甲静止
3、向北行驶的甲列车上乘客,看到一向南行驶的乙列车从旁边驶过时,且感到乙列车开得特别快,这是因为乘客所选取的参照物是()
A .甲车
B .乙车
C .地面
D .路旁大楼
4、某刻度尺的刻度大于标准刻度,用它测量长度时,测量值和真实值相比较( ) A .偏大 B .偏小 C .一样大 D .无法判断 4、完成下列单位换算: 1.2m=_____dm=_____mm=______nm; 长度常见的单位有光年、千米(km )、米(m )、分米(dm )、厘米(cm )、毫米(mm )、微米(μm )、
纳米(nm )。
国际单位是m 。
10km=nm 10-4m=mm 104mm=m , 106
nm=km
106μm=m 104cm=km 104
dm=km 104
m=km 3m/s=km/h, 10m/s=km/h 25m/s=km/h
12km/h=m/s 72km/h=m/s 36km/h=m/s 20ml =3cm , 10003cm =3dm 10003cm =3
m 2500l =3m 2.53m =3
cm 0.5l =3cm 2.53
m =l 2.5l =3
cm
5、.某学习小组对一辆在平直公路上做直线运
动的小车进行观测研究.他们记录了小车在某段时间内通过的路程与所用的时间,并根据记录的数据绘制了如图所示的路程与时间图象.你从该图象中可获得哪些信息?
6、蹦极游戏是将一根有弹性的绳子一端系在身上,另一端固定在高处,从高处跳下,a 是弹性绳自然下垂的位置,C 点是游戏者所到达的最低点,游戏者从离开跳台到最低点的过程中,物体速度是如何变化的?_
7、一人从甲地到乙地,前一半路程用速度v1匀速前进,后一半路程用v2匀速前进.求此人从甲地到乙地的平均速度.
8、2012年7月10日中国海军有南海时行实弹军演以彰显我国维护国家主权的实力,军演中导弹打一飞机,导弹的速度为830m/s,飞机的速度为800km/h,若导弹发射时,飞机离导弹发射处的距离
为10km,则从导弹发射到击落飞机只需多少秒 9、若游码没有放在零刻度线处,就将天平的横梁调节平衡,用这样的天平称物体的质量,所得的数据比物体的实际值 A.偏大 B.偏小
C.不变
D.不能确定
10、分别用分度值为1m 、1dm
、1cm 、1mm 四种直
尺,测量同一物体的长度,并用米为单位作记录,则记录数据中小数点后面的位数最多的是
( )
A .用米尺测量的结果
B .用分米尺测量的结果
C .用厘米尺测量的结果
D .用毫米尺测量的结
果
11、
5.下列情况只中是因为误差而引起结果不准确
的是( )
A .测量时物体的边缘未对准“0”刻度线
B .刻度尺本身刻度不均匀
C .观察时视线未能与刻度尺垂直
D .读数时没有再估读一位数字。