数控加工刀具的选择及切削用量的确定
- 格式:doc
- 大小:373.00 KB
- 文档页数:29
数控编程时,编程人员必须确定每道工序的切削用量,并以指令的形式写入程序中。
切削用量包括切削速度、背吃刀量及进给速度等。
对于不同的加工方法,需要选用不同的切削用量。
1、刀具切削用量的选择原则粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
从刀具的耐用度出发,切削用量的选择顺序是:先确定背吃刀量,其次确定进给量,最后确定切削速度。
2、吃刀量的确定背吃刀量由机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量,这样可以减少走刀次数,提高生产效率。
确定背吃刀量的原则:(1)在工件表面粗糙度值要求为Ra12.5μm~25μm时,如果数控加工的加工余量小于5mm~6mm,粗加工一次进给就可以达到要求。
但在余量较大,工艺系统刚性较差或机床动力不足时,可分多次进给完成。
(2)在工件表面粗糙度值要求为Ra3.2μm~12.5μm时,可分粗加工和半精加工两步进行。
粗加工时的背吃刀量选取同前。
粗加工后留0.5mm~1.0mm余量,在半精加工时切除。
(3)在工件表面粗糙度值要求为Ra0.8μm~3.2μm时,可分粗加工、半精加工、精加工三步进行。
半精加工时的背吃刀量取1.5mm~2mm。
精加工时背吃刀量取0.3mm~0.5mm。
3、刀具进给量的确定进给量主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料选取。
最大进给速度受机床刚度和进给系统的性能限制。
确定进给速度的原则:1)当工件的质量要求能够得到保证时,为提高生产效率,可选择较高的进给速度。
一般在100~200m/min范围内选取。
2)在切断、加工深孔或用高速钢刀具加工时,宜选择较低的进给速度,一般在20~50m/min范围内选取。
3)当加工精度,表面粗糙度要求高时,进给速度应选小些,一般在20~50m/min 范围内选取。
数控车削中切削用量的选择
数控车削中,切削用量的选择是确保加工效率和质量的重要因素之一。
合理的切削用量可以有效地避免切削过热和剧烈碰撞等问题,并保证达到预期的工件质量和加工效率。
一般来说,选择正确的切削用量需要考虑以下几个方面:
1. 工件材料:不同材料的切削用量不同。
硬度和韧性大的材料往往需要较大的切削用量,而硬度和韧性小的材料需要较小的切削用量。
2. 切削刀具:不同切削刀具的切削用量不同,因此需要根据刀具的类型和特性进行选择。
3. 加工表面的光洁度要求:如果需要较高的表面光洁度,则切削用量应适当减小,以减少表面粗糙度。
4. 机床性能:切削用量还需要结合机床的性能进行选择,包括机床的刚性、功率、切削速度等因素。
5. 加工过程中的震动和共振情况:过大的切削用量容易引起加工过程中的震动和共振,因此需要适当减小切削用量,以保证加工的稳定性和精度。
选择合适的切削用量可以帮助实现加工效率和质量的平衡,提高数控车削加工的效率和质量。
数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量 1)切削深度a p在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。
切削深度ap计算公式:a p =式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc 计算公式: Vc=式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min表1 硬质合金外圆车刀切削速度参考表2mw d d注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。
下列为一般数控车床车螺纹时主轴转速计算公式:n≤–k式中:p—工件螺纹的螺距或导程,单位mm。
k—保险系数,一般为80。
3)进给速度进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。
⑴确定进给速度的原则①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。
②切断、车削深孔或精车时,选择较低的进给速度。
③刀具空行程尽量选用高的进给速度。
④进给速度应与主轴转速和切削深度相适应。
⑵进给速度V f的计算 V f = n f式中:n—车床主轴的转速,单位r/min。
数控车床常用数控刀具和切削用量的选择在数控加工中,数控刀具和切削用量的选择直接影响到加工效率、加工质量和刀具寿命,非常重要。
在这篇文章中,我们将介绍数控车床常用的数控刀具和切削用量的选择方法。
数控刀具全面分析刀具特性选择刀具应从以下几个角度综合考虑:1.切削材料。
2.工件材料。
3.加工模式和要求。
4.工件尺寸和精度等级。
5.刀具本身的性能和技术指标。
常用刀具类型1.直角铣刀:广泛用于铣削各种材料,主要用于倒角、铣槽和平面铣削等。
2.面铣刀:用于加工平面、曲面和轮廓表面,精度和表面质量好。
3.端铣刀:用于在工件的末端加工平面或拐角处加工凸起的平面。
4.刀球铣刀:适用于模具、模板、塑料、铸造和轻质合金等材料。
5.镗刀:适用于各种精度要求的孔加工,如轴承座孔、液压、气动元件的孔、箱体法兰孔等。
6.钻头:适用于较小的孔加工。
7.换刀式铣刀:高效、自动换刀、可以同时完成多种切削任务。
刀具选择原则1.根据加工材料选择刀具的刀具材料。
2.选择合适的刀具类型和尺寸。
3.规避尽可能少的工具更换次数,提高生产效率。
4.对于高精度加工,需选择高精度刀具。
5.对于大批量生产,要选择高效率的刀具。
切削用量切削用量的重要性切削用量的大小直接关系到加工表面粗糙度、切削温度和工具磨损,因此,切削用量的选择非常重要。
如何选择适当的切削用量1.根据所加工的材料选择对应的切削用量。
2.根据所加工的形状选择适当的切削用量。
3.根据所使用的工具选择适当的切削用量。
4.根据所需的表面质量选择适当的切削用量。
5.根据所需要的加工效率选择适当的切削用量。
正确选择数控刀具和切削用量是保证加工效率、加工质量和刀具寿命的关键。
应从刀具特性、刀具类型、刀具材料、切削用量等多个方面进行全面分析,根据加工材料、形状、工具选择、表面质量和加工效率等原则选择适当的刀具和切削用量。
摘要在数控机床加工中,数控刀具的选择和切削用量的确定是数控加工工艺的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。
现在,如Pro/ENGINEER、UG、Cimatron、MasterCAM等许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。
因此,随着数控机床在生产实际中的广泛应用,数控编程已经成为数控加工中的关键问题之一在数控程序的编制过程中,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。
众所周知,在借助CAM软件进行数控编程的过程中,刀具的选择和切削用量的确定是十分重要,它不仅对被加工零件的质量影响巨大,甚至可以决定着机床功效的发挥和安全生产的顺利进行。
所以无论是手工编程或计算机辅助编程,在编制加工程序时,选择合理的刀具和切削用量,是编制高质量加工程序的前提。
关键词:刀具;切削用量;数控加工。
目录摘要 (2)引言 (4)1.数控车床刀具的选择及切削用量的确定 (5)1.1 数控车床类刀具知识 (5)1.1.1 刀具材料性能 (5)1.1.2 常用刀具材料 (6)1.1.3 如何选择车床刀具 (12)1.2 数控车床切削用量的选择及其如何确定 (13)2 数控铣加工中的刀具和切削用量合理选择 (15)2.1 刀具的选择 (15)2.1.1一般应遵循以下原则: (18)2.2数控铣床切削用量的选择 (18)2.2.1如何选择切削用量 (18)2.2.2 切削用量的选择原则 (19)3 CNC加工中心刀具的选择与切削用量的确定 (22)3.1数控加工刀具的选择 (22)3.2 数控加工切削用量的确定 (23)4 图样设计(4-1)及程序编程 (24)结论 (28)致谢 (29)参考文献 (30)引言刀具的选择和切削用量的确定是数控加工工艺中的重要内容,不仅影响数控机床的加工效率,而且影响工件加工质量。
随着CAD\CAM软件技术的发展,使得数控加工中直接利用CAD或PRO/E软件设计的数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划、编程的整个过程全在计算机上完成。
例如选择刀具、确定加工路线、设定切削用量等,编程人员只要设置了有关的参数,就可以自动生成CNC程序,并传输至数控机床完成加工。
因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,一般不需要输出专门的工艺文件。
因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点,能够正确选择刀刃具及切削用量。
铣床的出口量下降比较严重,部分产品出口转内销,进一步加剧了国内市场竞争。
而对于产品档次比较高的企业来说,受到的冲击就不是很明显,特别是高精尖的高档机床依旧是供不应求。
这些都在说明,国内机床市场转型已迫在眉睫。
1.数控车床刀具的选择及切削用量的确定1.1 数控车床类刀具知识由于机床、刀具、夹具、工件等组成的切削加工工艺系统中,刀具是最活跃的成员。
刀具性能的好坏取决于其材料和结构。
其中,刀具材料起决定作用,它直接影响切削生产率、刀具寿命、加工成本、加工精度和表面质量等高低。
刀具材料包括刀体材料和刀具切削部分材料两部分,但通常刀具材料是指刀具切削部分材料。
1.1.1 刀具材料性能刀具材料性能刀具材料不仅是影响刀具切削性能的重要因素,而且它对刀具耐用度、切削用量、生产率、加工成本等有着重要的影响。
因此,在机械加工过程中,不数控车床但要熟悉各种刀具材料的种类、性能和用途,还必须能根据不同的工件和加工条件,对刀具材料进行合理的选择。
切削时,刀具在承受较大压力的同时,还与切屑、工件产生剧烈的摩擦,由此而产生较高的切削温度;在加工余量不均匀和切削断续表面时,加工中心刀具还将受到冲击,产生振动。
为此,刀具切削部分的材料应具备下列基本性能。
刀具材料性能:刀具材料不仅是影响刀具切削性能的重要因素,而且它对刀具耐用度、切削用量、生产率、加工成本等有着重要的影响。
因此,在机械加工过程中,不但要熟悉各种刀具材料的种类、性能和用途,还必须能根据不同的工件和加工条件,对刀具材料进行合理的选择。
大压力的同时,还与切屑、工件产生剧烈的摩擦,由此而产生较高的切削温度;在加工余量不均匀和切削断续表面时,刀具还将受到冲击,产生振动。
为此,刀具切削部分的材料应具备下列基本性能。
1.硬度和耐磨性:刀具材料的硬度必须大于工件材料的硬度,一般情况下,要求其常温硬度在60HRC以上。
通常,刀具材料的硬度越高,耐磨性也越好,刀具切削部分抗磨损的能力也就越强。
耐磨性还取决于材料的化学成分、显微组织。
刀具材料组织中硬质点的硬度越高,数量越多,晶粒越细,分布越均匀,则耐磨性越好。
此外,刀具材料对工件材料的抗黏附能力越强,耐磨性也越好。
2.强度和韧性:由于切削力、冲击和振动等作用,数控车床刀具材料必须具有足够的抗弯强度和冲击韧性,以避免刀具材料在切削过程中产生断裂和崩刃。
3.耐热性与化学稳定性:耐热性是指刀具材料在高温下保持其硬度、耐磨性、强度和韧性的能力。
耐热性越好,则允许的切削速度越高,同时抵抗切削刃塑性变形的能力也越强。
化学稳定性是指刀具材料在高温下不易和工件材料、周围介质发生化学反应的能力。
化学稳定性越好,刀具的磨损越慢。
4.工艺性能:刀具材料应具备好的制造性能、热处理性能、焊接性能、磨削加工性能等。
5.经济性能:在具有上述性能的同时,刀具材料尽可能满足资源充足、价格低廉的要求。
6.适应性能:随着科学的发展,各种高强度、高硬质、耐腐蚀和抗拉工程材料越来越多的被采用,刀具材料应能适应新型难加工材料的需要。
1.1.2 常用刀具材料1.刀体材料一般刀体军用普通碳钢或合金钢制作。
如焊接车、镗刀的刀柄,钻头、铰刀的刀体常用45钢或40Cr制造。
尺寸较小的刀具或切削负荷较大的刀具宜用合金钢或高速钢整体制成,如螺纹刀具、成型铣刀、拉刀等;尺寸较小的精密刀具(如小镗刀、小铰刀)也可用硬质合金整体制成。
机夹、可转位硬质合金刀具、镶硬质合金钻头、可转位铣刀等可用合金工具钢,如9SiCr或GCr15等制成刀体。
2.切削部分材料目前刀具材料分四大类:工具钢(包括碳素工具钢、合金工具钢、高速钢)、硬质合金、陶瓷及超硬刀具材料等。
刀具材料的硬度按照由大到小的顺序为:金刚石刀具、立方氮化硼刀具、陶瓷刀具、硬质合金刀具、高速钢刀具。
刀具材料的抗弯强度按照由大到小的顺序为:高速钢刀具、硬质合金刀具、陶瓷刀具、合金石刀具和立方氮化硼刀具。
各种刀具材料的物理力学性能见以下表格。
下面分别介绍各种刀具材料的组成、性能、使用等各种刀具材料的物理力学性能3. 高速钢高速钢(High Speed Steel ,简称HSS )是一种加入较多的钨(W )、锰(Mo )、铬(Cr )、钒(V )等合金元素的高合金工具钢,有较高的热稳定性,切削温度达500~650℃时仍材料种类 相对密度或密度/(g/cm 3) 硬度/HRC(HRA)[HV ]抗弯强度σbb/GPa冲击韧度αk/(MJ/m 2) 热导率λ/[W/(m · K )] 耐热性/ °C切削速度大致比值工 具 钢碳素工具钢 7.6~7.8 60~65(81.2~84) 2.16-≈41.87200~2500.32~0.4 合金工具钢 7.7~7.9 60~65(81.2~84)2.35-≈41.87 300~400 0.48~0.6 高速钢 8.0~8.8 63~70(83~86.6)1.96~4.41 0.098~0.588 16.75~25.1 600~700 1~1.2 硬 质 合 金钨钴类 14.3~15.3 (89~91.5)1.08~2.160.019~0.05975.4~87.98003.2~4.8 钨钛钴类 9.35~13.2 (89~92.5) 0.882~1.370.0029~0.0068 20.9~62.89004~4.8 含有碳化钼、铌类 — (≈92) ≈1.47— — 1000~11006~10 碳化钛基类 5.56~6.3 (92~93.3) 0.78~1.08— — 1100 6~10 陶 瓷氧化铝陶瓷3.6~4.7(91~95) 0.44~0.6860.0049~0.01174.19~20.93 12008~12 氧化铝碳化物混合陶瓷 0.71~0.8811006~10氮化硅陶瓷 3.26 [5000] 0.735~0.83 — 37.68 1300 — 超 硬 材料立方氮化硼3.44~3.49 [800~9000]≈0.294—75.55 1400~1500— 人造金刚石3.47~3.56[10000]0.21~8 —146.54700~800≈25能进行切削,有较高的强度、韧性、硬度和耐磨性。
其制造工艺简单,容易磨成锋利的切削刃,可锻造,这对于一些形状复杂的工具,如钻头、成形刀具、数控车床拉刀、齿轮刀具等尤为重要,是制造这些刀具的主要材料。
高速钢刀具在强度、韧性及工艺性等方面具有优良的综合性能,在复杂大局,尤其是制造孔加工刀具、铣刀、螺纹刀具、拉刀、切齿刀具等一些刃形复杂刀具时,高速钢占据着重要的地位。
由于钨(W)、钴(Co)等主要元素的资源紧缺,高速钢刀具在所有刀具材料的比重逐渐下降,今后高速钢的使用比例还将逐渐减少。
高速钢刀具的发展方向包括:发展各种少钨(W)的通用型高速钢,扩大使用各种无钴(Co)、少钴(Co)的高性能高速钢,目前,推广使用粉末冶金高速钢(PMHSS)和涂层高速钢。
高速钢的品种繁多:按切削性能可分为普通高速钢和高性能高速钢:按化学成分可分为钨系、钨钼系和钼系高速钢;按制造工艺不同,分为熔炼高速钢和粉末冶金高速钢。
⑴普通高速钢通用型高速钢约占高速钢总产量的75%~80%。
按钨钼的含量可分为钨系、钨钼系两类。
这类高速钢碳(C)的质量分数为0.7%~0.9%,钨钼钢中钨(W)的质量分数的不同,可分为12%或18%的钨钢、钨(W)的质量分数为6%或8%的钨钼钢、钨(W)的质量分数为2%或不含钨(W)的钼钢。
普通型高速钢具有一定的硬度(63~66HRC)和耐磨性、搞的强度和韧性、良好的塑性和加工工艺性,因此广泛用于制造各种复杂刀具。
①钨钢我国长期使用的通用型高速钢中的钨钢,其典型牌号为W18Cr4V,具有较好的综合性能,在600℃时的高温硬度为48.5HRC,可用于制造各种复杂刀具。