思考:在数列中 {}与表示的意义一样吗?为什么?
{}:表示数列
:仅表示数列中的第项这一个数值
数列{}中的每一项与它的序号(下标)有下列的对应关系:
序号
1
项 a1
2
3
a2
a3
…
n
… an …
…
问题4:数列中各项 与各项序号 之间的对应关系是什么关系?
序号
1
2
3
…
思考:观察三个例题中的数列的项数有什么区别?
项数有限的数列称为有穷数列,如数列1、2;
项数无限的数列称为无穷数列,如数列3.
概念辨析
(1):1,3,5,7是一个数列,7,5,3,1也是一个数列,这两
个数列是不是同一个数列?
(2):1,1,1,1,1…是不是一个数列?
思考: 数列中的每一个数和集合中的元素有什么区别?
可否用一个公式表示?
如果数列{ }的第项 与之间的关系可以用一个公式来表示,
那么这个公式就叫做这个数列的通项公式.
思考: 你能写出例3中
−
= −
、
、− 、 ...,数列的通项公式吗?
追问:数列的通项公式有什么作用?
追问:例1、例2中的两个数列也能写成通项公式的形式吗?
系列的形数.
他们发现,当小石子的数目是1,3,6,10等数时,小石子都能摆成正三角
形,如图(a),他们把这些数叫做三角形数;
当小石子的数目是1,4,9,16等数时,小石子都能摆成正方形,如图(b),
他们把这些数叫做正方形数;等等.
新知探究
实例1:王芳从1岁到17岁每年的身高依次排成一列数: