高一数学-含绝对值的不等式解法·例题剖析 精品
- 格式:doc
- 大小:61.01 KB
- 文档页数:4
绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。
⎨ ⎩ 含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用 x > a 与 x < a 的解集求解。
主要知识:1、绝对值的几何意义: x 是指数轴上点 x 到原点的距离; x 1 - x 2 两点间的距离.。
2、 x > a 与 x < a 型的不等式的解法。
是指数轴上 x 1 , x 2 当a > 0 时,不等式 x > 的解集是{x x > a ,或x < -a}不等式 x < a 的解集是{x - a < x < a };当a < 0 时,不等式 x > a 的解集是{x x ∈ R }不等式 x < a 的解集是∅ ;3. ax + b > c 与 ax + b < c 型的不等式的解法。
把 ax + b 看作一个整体时,可化为 x < a 与 x > a 型的不等式来求解。
当c > 0 时,不等式 ax + b > c 的解集是{x ax + b > c ,或ax + b < -c}不等式 ax + b < c 的解集是{x - c < ax + b < c };当c < 0 时,不等式 ax + b > c 的解集是{x x ∈ R }不等式 a + bx < c 的解集是∅ ;例 1 解不等式 x - 2 < 3分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“ x - 2 ” 看着一个整体。
答案为{x - 1 < x < 5}。
(解略)⎧a (a > 0), (二)、定义法:即利用 a = ⎪0(a = 0), ⎪-a (a < 0). 去掉绝对值再解。
含绝对值的不等式的解法·例题例5-3-13解以下不等式:(1)|2-3x|-1<2(2)|3x+5|+1>6解(1)原不等式同解于(2)原不等式可化为|3x+5|>5 3x+5>5或3x+5<-5注解含绝对值的不等式,关键在于正确地根据绝对值的定义去掉绝对值符号。
解5-3-14解不等式4<|x2-5x|≤6。
解原不等式同解于不等式组不等式(i)同解于x2-5x<-4或x2-5x>4不等式(ii)同解于-6≤x2-5x≤6取不等式(i),(ii)的解的交集,即得原不等式的解集其解集可用数轴标根法表示如下:注本例的难点是正确区别解集的交、并关系。
“数轴标根法〞是确定解集并防止出错的有效辅助方法。
例5-3-15解不等式|x+2|-|x-1|≥0。
解原不等式同解于|x+2|≥|x-1| (x+2)2≥(x-1)2注解形如|ax+b|-|cx+d|≥0的不等式,适合于用移项后两边平方脱去绝对值符号的方法。
但对其他含多项绝对值的情形,采用此法一般较繁,不可取。
例5-3-16解以下不等式:解(1)原不等式同解于不等式组左边不等式同解于右边不等式同解于取(i),(ii)的交集,得原不等式的解集为{x|1<x<2} (2)原不等式同解于取(Ⅰ)、(Ⅱ)、(Ⅲ)的并集,得原不等式的解集为例5-3-17解不等式||x+1|-|x-1||<x+2。
分析要使不等式有解,必须x+2>0即x>-2。
又|x+1|,|x-1|的零点分别为-1,1,故可在区间(-2,-1),[-1,1],[1,+∞)内分别求解。
解原不等式同解于注解含多个绝对值项的不等式,常采用分段脱号法。
其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,确定所求解集。
例5-3-18 a>0,b>0,解不等式|ax-b|<x。
解显然x>0,故原不等式同解于注含绝对值的不等式中,假设含有参数,那么先去掉绝对值符号并化简,再根据具体情况对参数进行分类讨论。
含绝对值的不等式解法·典型例题能力素质例1 不等式|8-3x|>0的解集是[ ]A B RC {x|x }D {83}...≠.∅83 分析∵->,∴-≠,即≠. |83x|083x 0x 83答 选C .例2 绝对值大于2且不大于5的最小整数是 [ ]A .3B .2C .-2D .-5分析 列出不等式.解 根据题意得2<|x|≤5.从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D .例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形.解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A .分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为2<|2x -6|<5即-<-<,->或-<-,52x 652x 622x 62⎧⎨⎩ 即<<,>或<,12x 112x 82x 4⎧⎨⎩解之得<<或<<.4x x 211212因为x ∈N ,所以A ={0,1,5}.说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么[ ]A .|a -b|<|a|+|b|B .|a +b|>|a -b|C .|a +b|<|a -b|D .|a -b|<||a|+|b||分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C .例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为[ ]A .a =1,b =3B .a =-1,b =3C .a =-1,b =-3D a b .=,=1232分析 解不等式后比较区间的端点.解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得.a b 1a b 2a b -=-+=,解之得=,=.⎧⎨⎩1232 答 选D .说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论.解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112式的解集为;∅若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12x <m .综上所述得:当≤时原不等式解集为;当>时,原不等式的解集为m m 1212{x|1-m <x <m}.说明:分类讨论时要预先确定分类的标准.点击思维例解不等式-+≥.8 3212||||x x分析 一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.解 注意到分母|x|+2>0,所以原不等式转化为2(3-|x|)≥|x|+2,整理得|x|x {x|x }≤,从而可以解得-≤≤,解集为-≤≤.4343434343说明:分式不等式常常可以先判定一下分子或者分母的符号,使过程简便.例9 解不等式|6-|2x +1||>1. 分析 以通过变形化简,把该不等式化归为|ax +b|<c 或|ax +b|>c 型的不等式来解.解 事实上原不等式可化为6-|2x +1|>1①或 6-|2x +1|<-1②由①得|2x +1|<5,解之得-3<x <2;由②得|2x +1|>7,解之得x >3或x <-4.从而得到原不等式的解集为{x|x <-4或-3<x <2或x >3}. 说明:本题需要多次使用绝对值不等式的解题理论.例10 已知关于x 的不等式|x +2|+|x -3|<a 的解集是非空集合,则实数a 的取值范围是________.分析 可以根据对|x +2|+|x -3|的意义的不同理解,获得多种方法. 解法一 当x ≤-2时,不等式化为-x -2-x +3<a 即-2x +1<a 有解,而-2x +1≥5,∴a >5.当-2<x ≤3时,不等式化为x +2-x +3<a 即a >5.当x >3是,不等式化为x +2+x -3<a 即2x -1<a 有解,而2x -1>5,∴a >5.综上所述:a >5时不等式有解,从而解集非空.解法二 |x +2|+|x -3|表示数轴上的点到表示-2和3的两点的距离之和,显然最小值为3-(-2)=5.故可求a 的取值范围为a >5.解法三 利用|m|+|n|>|m ±n|得|x +2|+|x -3|≥|(x +2)-(x -3)|=5. 所以a >5时不等式有解.说明:通过多种解法锻炼思维的发散性. 例11 解不等式|x +1|>2-x .分析一 对2-x 的取值分类讨论解之. 解法一 原不等式等价于:①-≥+>-或+<-2x 0x 12x x 1x 2⎧⎨⎩或②-<∈2x 0x R ⎧⎨⎩由①得≤>或<-x 2x 1212⎧⎨⎪⎩⎪ 即≤>,所以<≤;x 2x x 21212⎧⎨⎪⎩⎪ 由②得x >2.综合①②得>.所以不等式的解集为>.x {x|x }1212分析二 利用绝对值的定义对|x +1|进行分类讨论解之.解法二 因为|x 1| x 1x 1x 1x 1+=+,≥---,<-⎧⎨⎩原不等式等价于:①≥>或②<>x x x x x x ++-⎧⎨⎩+---⎧⎨⎩10121012由①得≥>即>;x x -⎧⎨⎪⎩⎪11212 x由②得<-->即∈.x 112 x ⎧⎨⎩∅所以不等式的解集为>.{x|x }12学科渗透例12 解不等式|x -5|-|2x +3|<1.分析 设法去掉绝对值是主要解题策略,可以根据绝对值的意义分区间讨论,事实上,由于=时,-=,=-时+=.x 5|x 5|0x |2x 3|032所以我们可以通过-,将轴分成三段分别讨论.325x解当≤-时,-<,+≤所以不等式转化为 x x 502x 3032-(x -5)+(2x +3)<1,得x <-7,所以x <-7;当-<≤时,同理不等式化为32x 5-(x -5)-(2x +3)<1,解之得>,所以<≤;x x 51313当x >5时,原不等式可化为x -5-(2x +3)<1,解之得x >-9,所以x >5.综上所述得原不等式的解集为>或<-.{x|x x 7}13说明:在含有绝对值的不等式中,“去绝对值”是基本策略. 例13 解不等式|2x -1|>|2x -3|.分析 本题也可采取前一题的方法:采取用零点分区间讨论去掉绝对值,但这样比较复杂.如果采取两边平方,即根据>>解|a||b|a b 22之,则更显得流畅,简捷.解 原不等式同解于(2x-1)2>(2x-3)2,即4x2-4x+1>4x2-12x+9,即8x>8,得x>1.所以原不等式的解集为{x|x>1}.说明:本题中,如果把2x当作数轴上的动坐标,则|2x-1|>|2x-3|表示2x到1的距离大于2x到3的距离,则2x应当在2的右边,从而2x>2即x>1.。
例1 不等式|8-3x|>0的解集是[ ]A B R C {x|x } D {83}...≠.83分析∵->,∴-≠,即≠.|83x|083x 0x 83答选C .例2 绝对值大于2且不大于5的最小整数是[] A .3B .2C .-2D .-5分析列出不等式.解根据题意得2<|x|≤5.从而-5≤x <-2或2<x ≤5,其中最小整数为-5,答选D .例3不等式4<|1-3x|≤7的解集为________.分析利用所学知识对不等式实施同解变形.解原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383例4已知集合A ={x|2<|6-2x|<5,x ∈N},求A .分析转化为解绝对值不等式.解∵2<|6-2x|<5可化为2<|2x -6|<5即-<-<,->或-<-,52x 652x 622x 62即<<,>或<,12x 112x 82x 4解之得<<或<<.4x x 211212因为x ∈N ,所以A ={0,1,5}.说明:注意元素的限制条件.例5 实数a ,b 满足ab <0,那么[] A .|a -b|<|a|+|b|B .|a +b|>|a -b|C .|a +b|<|a -b|D .|a -b|<||a|+|b||分析根据符号法则及绝对值的意义.解∵a 、b 异号,∴|a +b|<|a -b|.答选C .例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为[] A .a =1,b =3B .a =-1,b =3C .a =-1,b =-3D a b .=,=1232分析解不等式后比较区间的端点.解由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得.a b 1a b 2a b -=-+=,解之得=,=.1232答选D .说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x 的不等式|2x -1|<2m -1(m ∈R)分析分类讨论.解若-≤即≤,则-<-恒不成立,此时原不等2m 10m |2x 1|2m 112式的解集为;若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12x <m .综上所述得:当≤时原不等式解集为;当>时,原不等式的解集为m m 1212{x|1-m <x <m}.说明:分类讨论时要预先确定分类的标准.例解不等式-+≥.8 3212||||x x 分析一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接去分母.解注意到分母|x|+2>0,所以原不等式转化为2(3-|x|)≥|x|+2,整理得|x|x {x|x }≤,从而可以解得-≤≤,解集为-≤≤.4343434343说明:分式不等式常常可以先判定一下分子或者分母的符号,使过程简便.例9 解不等式|6-|2x +1||>1.分析以通过变形化简,把该不等式化归为|ax +b|<c 或|ax +b|>c 型的不等式来解.解事实上原不等式可化为6-|2x +1|>1①或6-|2x +1|<-1②由①得|2x +1|<5,解之得-3<x <2;由②得|2x +1|>7,解之得x >3或x <-4.从而得到原不等式的解集为{x|x <-4或-3<x <2或x >3}.说明:本题需要多次使用绝对值不等式的解题理论.例10已知关于x 的不等式|x +2|+|x -3|<a 的解集是非空集合,则实数a 的取值范围是________.分析可以根据对|x +2|+|x -3|的意义的不同理解,获得多种方法.解法一当x ≤-2时,不等式化为-x -2-x +3<a 即-2x +1<a 有解,而-2x +1≥5,∴a >5.当-2<x ≤3时,不等式化为x +2-x +3<a 即a >5.当x >3是,不等式化为x +2+x -3<a 即2x -1<a 有解,而2x -1>5,∴a >5.综上所述:a >5时不等式有解,从而解集非空.解法二|x +2|+|x -3|表示数轴上的点到表示-2和3的两点的距离之和,显然最小值为3-(-2)=5.故可求a 的取值范围为a >5.解法三利用|m|+|n|>|m ±n|得|x +2|+|x -3|≥|(x +2)-(x -3)|=5.所以a >5时不等式有解.说明:通过多种解法锻炼思维的发散性.例11 解不等式|x +1|>2-x .分析一对2-x 的取值分类讨论解之.解法一原不等式等价于:①-≥+>-或+<-2x 0x 12x x 1x 2或②-<∈2x 0x R由①得≤>或<-x 2x 1212即≤>,所以<≤;x 2x x 21212由②得x >2.综合①②得>.所以不等式的解集为>.x {x|x }1212分析二利用绝对值的定义对|x +1|进行分类讨论解之.解法二因为|x 1| x 1x 1x 1x 1+=+,≥---,<-原不等式等价于:①≥>或②<>xx x x x x 10121012由①得≥>即>;x x 11212x 由②得<-->即∈.x 112x 所以不等式的解集为>.{x|x }12例12 解不等式|x -5|-|2x +3|<1.分析设法去掉绝对值是主要解题策略,可以根据绝对值的意义分区间讨论,事实上,由于=时,-=,=-时+=.x 5|x 5|0x |2x 3|032所以我们可以通过-,将轴分成三段分别讨论.325x 解当≤-时,-<,+≤所以不等式转化为x x 502x 3032-(x -5)+(2x +3)<1,得x <-7,所以x <-7;当-<≤时,同理不等式化为32x 5-(x -5)-(2x +3)<1,解之得>,所以<≤;x x 51313当x >5时,原不等式可化为x -5-(2x +3)<1,解之得x >-9,所以x >5.综上所述得原不等式的解集为>或<-.{x|x x 7}13说明:在含有绝对值的不等式中,“去绝对值”是基本策略.例13 解不等式|2x -1|>|2x -3|.分析本题也可采取前一题的方法:采取用零点分区间讨论去掉绝对值,但这样比较复杂.如果采取两边平方,即根据>>解|a||b|a b 22之,则更显得流畅,简捷.解原不等式同解于(2x -1)2>(2x -3)2,即4x 2-4x +1>4x 2-12x +9,即8x >8,得x >1.所以原不等式的解集为{x|x >1}.说明:本题中,如果把2x 当作数轴上的动坐标,则|2x -1|>|2x -3|表示2x 到1的距离大于2x 到3的距离,则2x 应当在2的右边,从而2x >2即x >1.。
含绝对值的不等式解法·例题剖析【例1】解不等式1<|x-2|≤3.分析(一)列式不等式a<|f(x)|<b的解法是把列式不等式化为不等系是“且”,因此要把得到的两个解集再求交集,而不是并集,这也是初学时最容易混淆的.由(1)得:x-2>1或x-2<-1即:x<1或x>3由(2)得:-3≤x-2≤3即-1≤x≤5,如图1.4-3所示∴原不等式解集为{x|-1≤x<1或3<x≤5}分析(二)此绝对值不等式也可用分类讨论的数学思想,把|x-2|用绝对值的意义分类讨论,将原不等式化为两个不等式组,特别注意此时两个不等式组得到的解集要求并集而不是交集,一般地,分类讨论得到的若干情况都要求并集而不是交集.解(二)由原不等式可得:(Ⅰ)的解集是{x|3<x≤5}(Ⅱ)的解集是{x|-1≤x<1}∴原不等式的解集为{x|-1≤x<1或3<x≤5},如图1.4-4所示.【例2】解不等式|x+3|>|x-5|分析(一)此题无法像例1一样直接脱去两个绝对值,而可用例1的解法(二)的技巧,按每个取绝对值的解析式的值的正、负(和零)分段求解,也就是解决绝对值问题的常用手段——零点分段法.解法(一)原不等式的解集可以化为下列四个不等式组的并集.可分别求出:(Ⅰ)的解集为{x|x≥5}(Ⅱ)的解集为{x|1<x<5}(Ⅲ)(Ⅳ)∴原不等式的解集为{x|x>1}.分析(二)显然解法(一)的办法虽然通用但比较繁琐,而此类问题最好的解决办法是不等式两边平方,可将含绝对值的不等式一次化为不含绝对值的不等式.解法(二)∵不等式两边非负∴两边平方得x2+6x+9>x2-10x+25∴x>1 ∴原不等式的解集为{x|x>1}注意此方法要注意不等式两边平方的等价问题.分析(一)此不等式比起例1、例2又复杂了,但零点分段法仍然适用,而且也是解决这类题目普遍采用的方法.分析(二)此题的两个含绝对值的解析式是同一个“零点”为解法(二)由原不等式得:【例4】解关于x的不等式|2x-1|<2m-1.(m∈R)解析此题的难点在于不知道2m-1的符号是“+”还是“-”,因此应分类讨论来求解.|2x-1|<2m-1恒不成立,此时原不等式无解.∴1-m<x<m注意此题的分类讨论与例2中解法一的分类讨论不同,那是对x的讨论,因此最后的解集是各种情况的并集,而此题是解关于x的不等式,讨论的是参数m,因此最后的解集要按m的分类情况一一写出而不能把它们求并集.【例5】对任意实数x,若不等式|x+1|-|x-2|>k恒成立,则k的取值范围是[ ] A.k<3B.k<-3C.k≤3D.k≤-3分析(一)此题也可用分类讨论的思想零点分段去掉绝对值.解法(一)由1)得k<-3 由2)得-1<x<2时k<2x-1而2x-1∈(-3,3)由3)得k<3依题意,要对任意x都使该不等式成立∴k<-3时,1)2)3)都可以满足,故选B.分析(二)显然解法一通俗但繁琐,而此类题也可以根据绝对值的几何意义来求解,方法很巧妙也具有一般性,要注意|x-a|可以看作在数轴上点x到点a的距离.解法(二)根据绝对值的几何意义:|x+1|可看作点x到点-1的距离,|x-2|可以看作点x到点2的距离,因此|x+1|-|x-2|即为数轴上任一点x到点-1的距离与到点2的距离的差记作(*),要使它大于k恒成立就要讨论点x在哪:1)当点x在点-1左侧时,如图中点R,则(*)恒为-3.2)当点x在点2右侧时,如图中点T,则(*)恒为3.3)当点-1≤x≤2时,如图中点S,则-3≤(*)≤3.由1)2)3)可知,无论x为任何实数,(*)的范围是-3≤(*)≤3.因此若使|x+1|-|x-2|>k,只需k<-3.注当k=-3时,若|x+1|-|x-2|=-3则无法取“>”号.分析(三)此题也可用函数图像的方法来解,而这部分知识下一章就要介绍,这种方法也是今后学习函数后经常用到的.解法(三)令y=|x+1|-|x-2|,在直角坐标系下作出其图像如图1.4-7所示:由图1.4-7得到-3≤y=|x+1|-|x-2|≤3以下同解法(二).【例6】解不等式|2x+1|<-x分析(一)此题形式与例4相似,因此可对不等式右边的x进行分类讨论,注意它不是数字而是含未知数的代数式,因此不能像例1一样直接按绝对值的意义展开.②当x<0时,-x>0,原不等式转化为不等式组:x<2x+1<-x分析(二)此不等式也可以先考虑利用绝对值的意义,对绝对值内部的2x+1进行分类讨论,从而先去掉绝对值变为整式不等式,再求它的解集.解法(二)原不等式等价于:参见图1.4-8.分析(三)通过解这样的不等式,使我们联想推广到解不等式|f(x)|<g(x),其中f(x)、g(x)都是含x的代数式.1)当f(x)≥0时,0≤f(x)<g(x);2)当f(x)<0时,-f(x)<g(x),即-g(x)<f(x)<0;∴-g(x)<f(x)<g(x)∴我们得到重要结论:从而解上述不等式|2x+1|<-x时我们可以不必担心分析(一)所述的“不等式右边是含未知数x 的代数式,而不能直接展开”,而可以“稀里糊涂”地解不等式:x<2x+1<-x即可.解法(三)由原不等式得x<2x+1<-x基础练习(一)选择题1.设集合A={x|-2<x<3},集合B={x||x+1|>2,x∈R},则A∪B=[ ] A.{x|1<x<3}B.{x|-3<x<3}C.{x|-2<x<1}D.{x|x<-3,或x>-2}2.不等式|x-2|+1<0的解集是[ ] A.{x|1<x<3}B.{x|x<1,或x>3}C.R3.集合{x∈N|0<|x-1|<3}的真子集个数为[ ] A.16个B.15个C.8个D.7个4.与不等式|1-3x|<-2x解集相同的不等式是[ ] A.-2x<1-3x<2xB.2x <3x-1<-2xC.-2x<3x-1<2xD.以上答案都不对5.已知关于x的不等式|x-a|<b的解集为{x|-3<x<9},则a,b的值分别为[ ] A.-3,9B.3,6C.3,9D.-3,6(二)填空题1.|x|<a(a>0)的解集是集合A={x|x<a}与集合B={x|x>-a}的________集;|x|>a(a>0)的解集是集合A={x|x>a}与集合B={x|x<-a}的________集.2.不等式|x|>x的解集是________.4.不等式|x-1|+|x+2|<5的解集是________.5.已知关于x的不等式|x+2|+|x-3|<k的解集是非空集合,则实数k的取值范围是________ 6.已知A={x||2-x>3},B={x||x+3|<5},则A∩B=________.(三)解答题1.解关于x的不等式(2)|2x-1|>|2x+3|(3)|x-2|+|x-3|>2(4)|2x-1|<2-3x(5)|ax+2|>1(a∈R)2.已知|x-2|+|x-3|>a的解集是R,求a的取值范围.3.已知方程|x+b|=7的解是x=-10或x=4,求|x+b|<7的解集.*4.已知a>b>0,全集I=R,A={x||x-b|<a=,B={x||x-a|>b},求(CI A)∩(C I B).参考答案(一)选择题∴A∪B={x<-3或x>-2})2.D(由|x-2|+1<0得|x-2|<-1 又∵|x-2|≥0 ∴解故该集合子集为23=8个,真子集为7个)4.B(解此类不等式可以直接由绝对值的意义展开,见本节例六,因此排除(D),另外要注意(A)中-2x不是负数,此时-2x>0,又排除(A)(C),而(B)选项似乎与直接展开的2x<1-3x<-2x不同,但实质是一样的,因为|1-3x|=|3x-1|.)5.B(由|x-a|<b得-b<x-a<b ∴a-b<x<a+b 与(二)填空题1.交;并3.{x|-7≤x≤7} (先求|x|的范围,3|x|-1≤2|x|+6 ∴|x|≤7 ∴-7≤x≤7即{x|-7≤x ≤7})4.{x|-3<x<2}(解:点-3到点-2与到点1的距离的和等于点2到点-2与到点1的距离的和为5,因此当-3<x<2时,点x到点-2到点1的距离的和小于5,故满足|x-1|+|x+2|<5的解集为{x|-3<x<2}.注:本题也可零点分段去讨论.)5.k>5(如图可知当x<-2时或当x>3时,点x到-2与3的距离之和大于5,当-2≤x≤3时,点x到-2与到3的距离之和等于5,所以|x+2|+|x-3|≥5,要使|x+2|+|x-3|<k的解集非空则k>5.)6.{x|-8<x<-1}(解:A={x|x-2<-3,或x-2>3}={x|x>5,或x<-1} B={x|-8<x<2}∴A∩B={x|-8<x<-1}.(三)解答题(解:由原不等式得(解:不等式两边平方得4x2-4x+1>4x2+12x+9 即16x2.a<1(由绝对值的几何意义知|x-2|+|x-3|≥3-2=1∴a<13.{x|-10<x<4}(解:由已知点-10与点4到点-b的距离相等为7,所以-b=-3 ∴b=3 ∴|x+b|<7的解集为{x|-10<x<4}4.{a+b}(解:A={x|b-a<x<a+b} B={x|x<a-b,或x<a+b} ∵全集I=R ∴C I A={x|x ≤b-a,或x≥a+b} C I B={x|a-b≤x≤a+b} ∵a>b>0 ∴b-a<a-b<a+b ∴(C I A)∩(C I B)={a+b}。
含绝对值不等式的解法练习题高一数学(含解析)含绝对值不等式的解法练习题高一数学含绝对值不等式的解法练习题1.不等式1|2x-1|2的解集是( )A.(- ,0)(1, )B.(- ,0)][1, ])C.(- ,0)[1, ]D.(-,- )[1, ]答案:B解析:原不等式等价于-2-1或12.解得-2.假如a0,那么下列各式中错误的是( )A. B.a+cb+c C.adbd D.a-cb-c答案:C解析:反例可举d=0.3.已知a1,则不等式|x|+a1的解集是( )A.{x|a-1C. D.R答案:D解析:由|x|+a1,得|x|1-a.∵a1,1-a0.故该不等式的解集为R.4.在数轴上与原点距离不大于2的点的坐标的集合是( )A.{x|-2C.{x|-22}D.{x|x2或x-2}答案:C解析:由绝对值的几何意义易知.5.关于任意实数x,不等式|x|m-1恒成立,则实数m的取值范畴是_______ __________.答案:m1解析:|x|m-1对一切实数x恒成立,则m-1应不大于|x|的最小值,即m-10,得m1.6.|x-1||x+1|的解集是______________.答案:{x|x0}解析:原不等式可化为(x-1)2(x+1)2,解得x0.7.已知集合A={x||x+7|10},B={x|?|x-5|?2c},又AB=B,求实数c的范畴.解:先解|x+7|10,得x+710或x+7-10,有x3或x-17,即A={x|x3若x-17}.由AB=B得B A,对B讨论如下情形:(1)B= 有c(2)B 有c0,解|x-5|2c,得-2c解得c-11或c1.取c1,即0由(1)(2)知实数c的取值范畴是{c|c{c|0能力提升踮起脚,抓得住!8.已知集合M={x| 1},P={x|x-t0},要使MP= ,则t的取值范畴是( )A.{t|t1}B.{t|t1}C.{t|t1}D.{t|t1}答案:A解析:M={x|-11},P={x|xt},由MP= 知t1.9.若|x-4|+|x-3|A.aB.aC.aD.a3或a-4答案:B解析:由几何意义:|x-4|+|x-3|的最小值为1,则当a1时,原不等式的解集为空集.10.不等式|6-|2x+1||1的解集是________________.答案:{x|x-4或-3解析:原不等式等价于6-|2x+1|1或6-|2x+1|-1,又等价于-55或2x+17或2x+1-7.解之可得.11.不等式|x-2|+|x-3|9的解集是________________.答案:{x|-2解析:当x3时,原不等式为x-2+x-39,解得x7,即有3当23时,为x-2+3-x9,即19成立,即有2当x2时,为2-x+3-x9,解得x-2,即有-2综合得原不等式的解集为{x|37}{x|23}{x|-212.设A={x||2x-1|1},B={x||2x-a|1},AB= ,AB=R,求实数a的值.解:|2x-1|1 2x-11或2x-1-1,即x1或x0,即A={x|x1或x解|2x-a|1,得-11,即,即B={x| }.由AB= ,AB=R,图示如下:可得解得a=1.13.关于实数x的不等式|x- | 与|x-a-1|a的解集依次记为A与B,求使A B的a的取值范畴.解:由|x- | ,得- ,因此2aa2+1.由|x-a-1|a,得-ax-a-1a,则12a+1,要使A B,就必须即故a的取值范畴为2.拓展应用跳一跳,够得着!14.已知aR,则(1-|a|)(1+a)0的解集为( )A.|a|B.aC.|a|D.a1且a-1答案:D解析:(1)a0时,(1-|a|)(1+a)=(1-a)(1+a)a(2)a0时,(1+a)(1+a)=(1+a)20,且a-1.综合知a1,且a-1.15.已知关于x的不等式|x+2|+|x-3|答案:a5解析:∵|x+2|+|x-3|5恒成立,当a5时,|x+2|+|x-3|故要使|x+2|+|x-3|16.设不等式|x+1|-|x-2|k的解集为R,求实数k的取值范畴.解法一:依照绝对值的几何意义,|x+1|能够看作数轴上点P(x)到点A(-1)的距离|PA|,|x-2|能够看作是数轴上点P(x)到点B(2)的距离|PB|,则|x+1|-|x-2|=| PA|-|PB|.如图所示:当点P在线段AB上时,-3|PA|-|PB|3,当P在A点左侧时,|PA|-|PB|=-3,当P在B点右侧时,|PA|-|PB|=3,则不等式-3|x+1|-|x-2|3恒成立.故使原不等式的解集为R的实数k的取值范畴是k-3.解法二:令y=|x+1|-|x-2|课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
含绝对值的不等式解法·例题剖析
【例1】解不等式1<|x-2|≤3.
分析(一)列式不等式a<|f(x)|<b的解法是把列式不等式化为不等
系是“且”,因此要把得到的两个解集再求交集,而不是并集,这也是初学时最容易混淆的.由(1)得:x-2>1或x-2<-1即:x<1或x>3
由(2)得:-3≤x-2≤3即-1≤x≤5,如图1.4-3所示
∴原不等式解集为{x|-1≤x<1或3<x≤5}
分析(二)此绝对值不等式也可用分类讨论的数学思想,把|x-2|用绝对值的意义分类讨论,将原不等式化为两个不等式组,特别注意此时两个不等式组得到的解集要求并集而不是交集,一般地,分类讨论得到的若干情况都要求并集而不是交集.
解(二)由原不等式可得:
(Ⅰ)的解集是{x|3<x≤5}
(Ⅱ)的解集是{x|-1≤x<1}
∴原不等式的解集为{x|-1≤x<1或3<x≤5},如图1.4-4所示.
【例2】解不等式|x+3|>|x-5|
分析(一)此题无法像例1一样直接脱去两个绝对值,而可用例1的解法(二)的技巧,按每个取绝对值的解析式的值的正、负(和零)分段求解,也就是解决绝对值问题的常用手段——零点分段法.解法(一)原不等式的解集可以化为下列四个不等式组的并集.
可分别求出:(Ⅰ)的解集为{x|x≥5}(Ⅱ)的解集为{x|1<x<5}(Ⅲ)(Ⅳ)
∴原不等式的解集为{x|x>1}.
分析(二)显然解法(一)的办法虽然通用但比较繁琐,而此类问题最好的解决办法是不等式两边平方,可将含绝对值的不等式一次化为不含绝对值的不等式.
解法(二)∵不等式两边非负∴两边平方得x2+6x+9>x2-10x+25
∴x>1 ∴原不等式的解集为{x|x>1}
注意此方法要注意不等式两边平方的等价问题.
分析(一)此不等式比起例1、例2又复杂了,但零点分段法仍然适用,而且也是解决这类题目普遍采用的方法.
分析(二)此题的两个含绝对值的解析式是同一个“零点”为
解法(二)由原不等式得:
【例4】解关于x的不等式|2x-1|<2m-1.(m∈R)
解析此题的难点在于不知道2m-1的符号是“+”还是“-”,因此应分类讨论来求解.|2x-1|<2m-1恒不成立,此时原不等式无解.
∴1-m<x<m
注意此题的分类讨论与例2中解法一的分类讨论不同,那是对x的讨论,因此最后的解集是各种情况的并集,而此题是解关于x的不等式,讨论的是参数m,因此最后的解集要按m的分类情况一一写出而不能把它们求并集.
【例5】对任意实数x,若不等式|x+1|-|x-2|>k恒成立,则k的取值范围是
[ ] A.k<3B.k<-3
C.k≤3D.k≤-3
分析(一)此题也可用分类讨论的思想零点分段去掉绝对值.
解法(一)
由1)得k<-3 由2)得-1<x<2时k<2x-1
而2x-1∈(-3,3)由3)得k<3
依题意,要对任意x都使该不等式成立∴k<-3时,1)2)3)都可以满足,
故选B.
分析(二)显然解法一通俗但繁琐,而此类题也可以根据绝对值的几何意义来求解,方法很巧妙也具有一般性,要注意|x-a|可以看作在数轴上点x到点a的距离.
解法(二)
根据绝对值的几何意义:|x+1|可看作点x到点-1的距离,|x-2|可以看作点x到点2的距离,因此|x+1|-|x-2|即为数轴上任一点x到点-1的距离与到点2的距离的差记作(*),要使它大于k恒成立就要讨论点x在哪:
1)当点x在点-1左侧时,如图中点R,则(*)恒为-3.
2)当点x在点2右侧时,如图中点T,则(*)恒为3.
3)当点-1≤x≤2时,如图中点S,则-3≤(*)≤3.
由1)2)3)可知,无论x为任何实数,(*)的范围是-3≤(*)≤3.
因此若使|x+1|-|x-2|>k,只需k<-3.
注当k=-3时,若|x+1|-|x-2|=-3则无法取“>”号.
分析(三)此题也可用函数图像的方法来解,而这部分知识下一章就要介绍,这种方法也是今后学习函数后经常用到的.
解法(三)令y=|x+1|-|x-2|,在直角坐标系下作出其图像如图1.4-7所示:
由图1.4-7得到-3≤y=|x+1|-|x-2|≤3
以下同解法(二).
【例6】解不等式|2x+1|<-x
分析(一)此题形式与例4相似,因此可对不等式右边的x进行分类讨论,注意它不是数字而是含未知数的代数式,因此不能像例1一样直接按绝对值的意义展开.
②当x<0时,-x>0,原不等式转化为不等式组:x<2x+1<-x
分析(二)此不等式也可以先考虑利用绝对值的意义,对绝对值内部的2x+1进行分类讨论,从而先去掉绝对值变为整式不等式,再求它的解集.
解法(二)原不等式等价于:
参见图1.4-8.
分析(三)通过解这样的不等式,使我们联想推广到解不等式|f(x)|<g(x),其中f(x)、g(x)都是含x的代数式.
1)当f(x)≥0时,0≤f(x)<g(x);
2)当f(x)<0时,-f(x)<g(x),
即-g(x)<f(x)<0;
∴-g(x)<f(x)<g(x)
∴我们得到重要结论:
从而解上述不等式|2x+1|<-x时我们可以不必担心分析(一)所述的“不等式右边是含未知数x 的代数式,而不能直接展开”,而可以“稀里糊涂”地解不等式:x<2x+1<-x即可.解法(三)由原不等式得
x<2x+1<-x
基础练习
(一)选择题
1.设集合A={x|-2<x<3},集合B={x||x+1|>2,x∈R},则A∪B=
[ ] A.{x|1<x<3}
B.{x|-3<x<3}
C.{x|-2<x<1}
D.{x|x<-3,或x>-2}
2.不等式|x-2|+1<0的解集是
[ ] A.{x|1<x<3}
B.{x|x<1,或x>3}
C.R
3.集合{x∈N|0<|x-1|<3}的真子集个数为
[ ] A.16个B.15个
C.8个D.7个
4.与不等式|1-3x|<-2x解集相同的不等式是
[ ] A.-2x<1-3x<2x
B.2x <3x-1<-2x
C.-2x<3x-1<2x
D.以上答案都不对
5.已知关于x的不等式|x-a|<b的解集为{x|-3<x<9},则a,b的值分别为
[ ] A.-3,9B.3,6
C.3,9D.-3,6
(二)填空题
1.|x|<a(a>0)的解集是集合A={x|x<a}与集合B={x|x>-a}的________集;|x|>a(a>0)的解集是集合A={x|x>a}与集合B={x|x<-a}的________集.
2.不等式|x|>x的解集是________.
4.不等式|x-1|+|x+2|<5的解集是________.
5.已知关于x的不等式|x+2|+|x-3|<k的解集是非空集合,则实数k的取值范围是________ 6.已知A={x||2-x>3},B={x||x+3|<5},则A∩B=________.
(三)解答题
1.解关于x的不等式
(2)|2x-1|>|2x+3|
(3)|x-2|+|x-3|>2
(4)|2x-1|<2-3x
(5)|ax+2|>1(a∈R)
2.已知|x-2|+|x-3|>a的解集是R,求a的取值范围.
3.已知方程|x+b|=7的解是x=-10或x=4,求|x+b|<7的解集.
*4.已知a>b>0,全集I=R,A={x||x-b|<a=,B={x||x-a|>b},求(C
I A)∩(C I B).
参考答案
(一)选择题
∴A∪B={x<-3或x>-2})
2.D(由|x-2|+1<0得|x-2|<-1 又∵|x-2|≥0 ∴解
故该集合子集为23=8个,真子集为7个)
4.B(解此类不等式可以直接由绝对值的意义展开,见本节例六,因此排除(D),另外要注意(A)中-2x不是负数,此时-2x>0,又排除(A)(C),而(B)选项似乎与直接展开的2x<1-3x<-2x不同,但实质是一样的,因为|1-3x|=|3x-1|.)
5.B(由|x-a|<b得-b<x-a<b ∴a-b<x<a+b 与
(二)填空题
1.交;并
3.{x|-7≤x≤7} (先求|x|的范围,3|x|-1≤2|x|+6 ∴|x|≤7 ∴-7≤x≤7即{x|-7≤x ≤7})
4.{x|-3<x<2}(解:点-3到点-2与到点1的距离的和等于点2到点-2与到点1的距离的和为5,因此当-3<x<2时,点x到点-2到点1的距离的和小于5,故满足|x-1|+|x+2|<5的解集为{x|-3<x<2}.注:本题也可零点分段去讨论.)
5.k>5(如图可知当x<-2时或当x>3时,点x到-2与3的距离之和大于5,当-2≤x≤3时,点x到-2与到3的距离之和等于5,所以|x+2|+|x-3|≥5,要使|x+2|+|x-3|<k的解集非空则k>5.)
6.{x|-8<x<-1}
(解:A={x|x-2<-3,或x-2>3}={x|x>5,或x<-1} B={x|-8<x<2}
∴A∩B={x|-8<x<-1}.
(三)解答题
(解:由原不等式得
(解:不等式两边平方得4x2-4x+1>4x2+12x+9 即16x
2.a<1(由绝对值的几何意义知|x-2|+|x-3|≥3-2=1∴a<1
3.{x|-10<x<4}(解:由已知点-10与点4到点-b的距离相等为7,所以-b=-3 ∴b=3 ∴|x+b|<7的解集为{x|-10<x<4}
4.{a+b}(解:A={x|b-a<x<a+b} B={x|x<a-b,或x<a+b} ∵全集I=R ∴C I A={x|x ≤b-a,或x≥a+b} C I B={x|a-b≤x≤a+b} ∵a>b>0 ∴b-a<a-b<a+b ∴(C I A)∩(C I B)={a+b}。