相似三角形_经典模型总结与例题分类[1]
- 格式:doc
- 大小:703.50 KB
- 文档页数:9
①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;知识点二、相似三角形的判定判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。
(2)顶角或底角对应相等的两个等腰三角形相似。
例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出AD AEBD CE=吗?请说明理由。
(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =例题精讲AEDBCABCD吗?说说你的理由.例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。
2分之3倍根号3 随练: 一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )CADCBEF G F E DCBA。
相似三角形经典模型总结经典模型【精选例题】 “平行型”【例 1】 如图,EEJ / FFJ / MM 1,若 AE=EF=FM=MB ,贝V S.A E ® : S 四边形EE 1F 1F : S 四边形FF 1M 1M : S 四边形MM QB 二翻折180°翻折180°V平行型斜交型斜交型平行型斜交型双垂直双垂直特殊平移翻折180°一般平移旋转180°一般一般特殊特殊C1[例2】如图,AD// EF M/N BC若AD =9 , BC =18 , AE :EM :MB = 2:3: 4,则EF = _____ , MN = ______长线,AB的延长线分别相交于点E,F,G,H求证:PE PH PF 一PG【例3】已知, P为平行四边形ABCD对角线,AC上一点,过点P的直线与AD , BC , CD的延【例4】已知:在ABC中,D为AB中点, 求目匸的值EF E为AC上一点,且Ah2,BE、CD相交于点F ,NCWORD整理版1 1【例引已知:在ABC中,AD AB,延长BC到F,使CF BC ,连接FD交AC于点E2 3AE =2CE求证: ① DE 二EF ②【例6】已知:D , E为三角形ABC中AB、BC边上的点,连接DE并延长交AC的延长线于点F , BD: DE 二AB:AC求证::CEF为等腰三角形【例7】如图,已知AB//EF / /CD,若AB =a,CD = b,EF = c,求证:1 =——cab【例8】如图,找出S.ABD、S BED、S.BCD之间的关系,并证明你的结论【例9】如图,四边形ABCD中,B=/D =90,M是AC上一点,ME _ AD于点E , MF _ BC于占JF 求证: MF ME ,1AB CDC【例10】如图,在ABC中,D是AC边的中点,过D作直线EF交AB于E,交BC的延长线于F 求证:AE BF 二BE CF【例11】如图,在线段AB上,取一点C,以AC,CB为底在AB同侧作两个顶角相等的等腰三角形ADC和CEB,AE交CD于点P,BD交CE于点Q,求证:CP =CQ【例12】阅读并解答问题.在给定的锐角三角形ABC中,求作一个正方形DEFG,使D,E落在BC边上,F , G分别落在AC , AB边上,作法如下:第一步:画一个有三个顶点落在ABC两边上的正方形D'E'F'G'如图,第二步:连接BF'并延长交AC于点F第三步:过F点作FE _ BC ,垂足为点E 第四步:过F点作FG // BC交AB于点G 第五步:过G点作GD _ BC,垂足为点D 四边形DEFG即为所求作的正方形问题:⑴证明上述所作的四边形DEFG为正方形⑵在ABC中,如果BC =6「3 , ABC =45 , • BAC = 75 ,求上述正方形DEFG的边长B D' E' D E C“平行旋转型”图形梳理:C , E', F'共线【例13】已知梯形ABCD , AD // BC,对角线AC、BD互相垂直,则①证明:AD2 BC2二AB2 CD2色AEF旋转到公AE 一AEF旋转到一AE ' F' AAEF旋转到至AE ''二AEF旋转到二AE 'F' △AEF旋转至U色AE ' F'△AEF旋转至U色AE ' F' △AEF旋转至U色AE ' F'【例14】当 MOD ,以点O 为旋转中心,逆时针旋转 日度(0£日<90),问上面的结论是否成立,请 说明理由D【例15】(全国初中数学联赛武汉选拔赛试题)如图,四边形AG : DF : CE = ___________ .“斜交型”【例16】如图,.:ABC 中,D 在AB 上,且DE // BC 交AC 于E , F 在AD 上,且AD^AF AB , 求证:AEF L ACD【例17】如图,等边三角形 ABC 中,D , E 分别在BC , AB 上,且CE 二BE , AD , CE 相交于M , 求证:EAM L ECAABCD 和BEFG 均为正方形,求GFBEDCD【例18】如图,四边形 ABCD 的对角线相交于点 O , . BAC — CDB ,求证:.DAC = . CBDAB BC CA【例佃】如图,设伴二CA ,则.仁.2吗?AD DE EA等于18和2,DE =2,求AC 边上的高BD 1【例21】如图,在等边 ABC 的边BC 上取点D ,使 ,作CH _AD ,H 为垂足,连结BH 。
初三相似三角形知识点与经典题型知识点 1 相关相似形的看法(1) 形状同样的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2) 若是两个边数同样的多边形的对应角相等,对应边成比率,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比( 相似系数 ) .知识点 2 比率线段的相关看法( 1)若是采用同一单位量得两条线段a,b 的长度分别为 m, n ,那么就说这两条线段的比是a mbn ,或写成 a : bm : n .注:在求线段比时,线段单位要一致。
的比,那么这四条线段a,b,c, d 叫做成比率线段,( )在四条线段a, b, c, d 中,若是a 和b 的比等于c 和d 2简称比率线段. 注:①比率线段是有次序的, 若是说 a 是 b, c, d 的第四比率项, 那么应得比率式为:bd .②在比率式ac(a : bcac : d)中,a 、d 叫比率外项, b 、c 叫比率内项 , a 、c 叫比率前项, b 、d 叫比率后b d此时有 b 2项, d 叫第四比率项,若是 b=c ,即a :b b :d 那么 b 叫做 a 、 d 的比率中项, ad 。
( 3)黄金切割:把线段AB 分成两条线段 AC , BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比率中项,即AC 2AB BC ,叫做把线段 AB 黄金切割,点 C 叫做线段 AB 的黄金切割点,其中AC5 1 AB ≈20.618 AB .即ACBC 5 1 简记为:长=短=5 1ABAC 2全 长2注:黄金三角形:顶角是360 的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点 3比率的性质( 注意性质立的条件:分母不能够为0)( 1) 基本性质:① a : b c : d adbc ;② a : b b : c b 2a c . ad bc ,除注:由一个比率式只可化成一个等积式,而一个等积式共可化成八个比率式,如了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c , c : a d : b ,d : c b : a , d : b c : a .a b,交换内项 )cd( 2) 更比性质 ( 交换比率的内项或外项) :ac d()c ,交换外项b db ad b.同时交换内外项)ca( 3)反比性质 ( 把比的前项、后项交换) :ac bd .b dac( 4)合、分比性质:a c ab cd .b d bd注:实质上,比率的合比性质可扩展为:比率式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比率仍建立.如:a cac 等等.b da b c da bc d( 5)等比性质:若是ac e m(bdfn 0) ,那么 acem a .b d fnb d f nb注:①此性质的证明运用了“设 k 法”(即引入新的参数 k )这样能够减少未知数的个数,这种方法是相关比率计算变形中一种常用方法.②应用等比性质时,要考虑到分母可否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也建立.如:a c e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0.b d f b 2d 3 f b 2d 3 fb知识点 4比率线段的相关定理1. 三角形中平行线分线段成比率定理: 平行于三角形一边的直线截其他两边( 或两边的延长线) 所得的对应线段成比率 .A由 DE ∥ BC 可得:ADAE 或 BD EC 或 ADAE DB ECADEAABACDE注:BC①重要结论:平行于三角形的一边, 而且和其他两边订交的直线, 所截的三角形的三边 与原三角形三边 对应成比...... ......例 .②三角形中平行线分线段成比率定理的逆定理: 若是一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比率 . 那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法 , 即:利用比率式证平行线 .③平行线的应用:在证明相关比率线段时,辅助线经常做平行线, 但应依照的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 .2. 平行线分线段成比率定理: 三条平行线截两条直线, 所截得的对应线段成比率 .A D 已知 AD ∥ BE ∥CF,B E可得AB DE AB DE BC EFBC EFAB BCCFBC EF或DF或或AC 或DE 等.AC AB DE DFEF注:平行线分线段成比率定理的推论:平行线均分线段定理: 两条直线被三条平行线所截, 若是在其中一条上截得的线段相等, 那么在另一条上截得的线段也相等。
三角形全等、相似及综合应用模型题型解读|模型构建|通关试练三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和/外角和定理、“三线”基本性质等。
特殊三角形的性质与判定也是考查重点,年年都会考查,最为经典的“手拉手”模型就是以等腰三角形为特征总结的,且等腰三角形单独出题的可能性还是比较大。
直角三角形的出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。
模型01 与三角形有关的线段应用高(AD)中线(AD)角平分线(AD)中位线(DE)模型02 与三角形有关的角的应用(1)三角形的内角:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(2)三角形的外角:(1)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(2)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(3)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.(4)探究角度之间的不等关系,多用外角的性质③,先从最大角开始,观察它是哪个三角形的外角.模型03 三角形全等的判定及应用(1)全等三角形的定义:全等的图形必须满足:(1)形状相同;(2)大小相等能够完全重合的两个三角形叫做全等三角形。
AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.二、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似. 三、相似证明中的基本模型8字形图①8字型,结论:AO BO ABOD CO CD==,【例1】.如图,在▱ABCD 中,F 是AD 延长线上一点,连接BF 交DC 于点E ,则图中相似三角形共有( )对A .2对B .3对C .4对D .5对 【解答】解:∵ABCD 是平行四边形, ∴AD ∥BC ,DC ∥AB , ∴△ABF ∽△DEF ∽△CEB , ∴相似三角形共有三对. 故选:B .【例2】.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长AD 于点F ,已知S △AEF =4,则下列结论中不正确的是( ) A .B .S △BCE =36C .S △ABE =12D .△AFE ∽△ACD【解答】解:∵在▱ABCD 中,AO=AC , ∵点E 是OA 的中点, ∴AE=CE ,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故选项A正确,不合题意;∵S△AEF=4,=()2=,∴S△BCE=36;故选项B正确,不合题意;∵==,∴=,∴S△ABE=12,故选项C正确,不合题意;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故选项D错误,符合题意.故选:D.【练习1】.如图,E为▱ABCD的DC边延长线上一点,连AE,交BC于点F,则图中与△ABF相似的三角形共有2 个.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABF∽△CEF,△CEF∽△AED,∴△ABF∽△AED.∴图中与△ABF相似的三角形是:△CEF,△AED.故答案为:2【练习2】.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF∽△ACD,其中一定正确的是①②③.(填序号)【解答】解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵==,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故答案为:①②③.【练习3】.如图,在平行四边形ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有 4 对.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△ABG∽△FHG,△ABE∽△DHE∽△CHB,∴图中的相似三角形共有4对.故答案为:4.【练习4】.在△ABC中,DB=CE,DE的延长线交BC的延长线于P,求证:AD•BP=AE•CP.【解答】解:过点C作CG∥DP交AB于G,∴,,∴DG=,DG=,∴=,∵BD=EC,∴,∴AD•BP=AE•CP.【练习5】.如图,在△ABC中,AB>AC,边AB上取一点D,边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证:BP:CP=BD:CE.【解答】证明:如图,过点B作BF∥AC交PD延长线于点F.则△PCE∽△PBF,∴=.∵BF∥AC,∴∠1=∠2.又∵AD=AE,∴∠2=∠4,∠1=∠3=∠4,∴BF=BD.∴=,∴BP:CP=BD:CE.【练习6】.已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.(1)如图1,当OA=OB,且D为OA中点时,求的值;(2)如图2,当OA=OB,且时,求tan∠BPC的值.(3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值.【解答】解:(1)过D作DE∥CO交AC于E,∵D为OA中点,∴AE=CE=,,∵点C为OB中点,∴BC=CO,,∴,∴PC==,∴=2;(2)过点D作DE∥BO交AC于E,∵,∴==,∵点C为OB中点,∴,∴,∴PC==,过D作DF⊥AC,垂足为F,设AD=a,则AO=4a,∵OA=OB,点C为OB中点,∴CO=2a,在Rt△ACO中,AC===2a,又∵Rt△ADF∽Rt△ACO,∴,∴AF=,DF=,PF=AC﹣AF﹣PC=2a﹣﹣=,tan∠BPC=tan∠FPD==.(3)与(2)的方法相同,设AD=a,求出DF=a,PF=a,所以tan∠BPC=.【练习7】.已知线段OA⊥OB,C为OB上中点,D为AO上一点,连AC、BD交于P点.(1)如图1,当OA=OB且D为AO中点时,求的值;(2)如图2,当OA=OB,=时,求△BPC与△ACO的面积之比.【解答】解:(1)过C作CE∥OA交BD于E,∴△BCE∽△BOD,∴,∵C为OB上中点,∴CE=OD,∵D为AO中点,∴CE=AD,∵△ECP∽△DAP,∴=2;(2)过C作CE∥OA交BD于E,过P作PF⊥OB交OB于F,设AD=x,∵=,∴AO=OB=4x,∴OD=3x,∵△BCE∽△BOD,C为OB上中点,∴CE=OD=x,∵△ECP∽△DAP,∴;由勾股定理可知BD=5x,DE=x,∴,∴PD=AD=x,∵PF=,S△BPC=,∵S△ACO=4x2,∴.图②反8字型,结论:AO BO ABCO DO CD==、四点共圆【例3】.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【解答】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选:B.【练习1】.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOC B.△AOB∽△DOC C.CD=BC D.BC•CD=AC•OA【解答】解:A、∵∠DAC=∠DBC,∠AOD=∠BOC,∴△AOD∽△BOC,故此选项正确,不合题意;B、∵△AOD∽△BOC,∴=,∴=,又∵∠AOB=∠COD,∴△AOB∽△DOC,故此选项正确,不合题意;C、∵△AOB∽△DOC,∴∠BAO=∠ODC,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BAC=∠BDC,∵∠DAC=∠DBC,∴∠CDB=∠CBD,∴CD=BC,故此选项正确,不合题意;D、无法得出BC•CD=AC•OA,故此选项错误,符合题意.故选:D.【练习2】.如图,(1)若AE:AB= AF:AC ,则△ABC∽△AEF;(2)若∠E= ∠B ,则△ABC∽△AEF.【解答】解:(1)若AE:AB=AF:AC,则△ABC∽△AEF;(2)若∠E=∠B,则△ABC∽△AEF.故答案为:AF:AC,∠B.图③双8字型,结论:AE DF BE CF,【例4】如图,AB//CD,点E为AB上一点,点F为CD上一点,求证:【例5】.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①② B.②③ C.②④ D.③④【解答】解:①平行四边形中邻边垂直则该平行四边形为矩形,故本题中AC≠BD,即AO≠BO,故①错误;②∵AB∥CD,∴∠E=∠F,又∵∠EOA=∠FOC,AO=CO∴△AOE≌△COF,∴OE=OF,故②正确;③∵AD∥BC,∴△EAM∽△EBN,故③正确;④∵△AOE≌△COF,且△FCO和△CNO不全等,故△EAO和△CNO不全等,故④错误,即②③正确.故选:B.20.如图,在△ABC中,E为高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A、D重合).过点F作BC的平行线与AB交于P,与AC交于Q,连接PE并延长交直线BC于点N,连接QE并延长交直线BC于点M,连接PM、QN.(1)试判断四边形PMNQ的形状,并说明理由;(2)若要使四边形PMNQ是一个矩形,则△ABC还应满足什么条件?请说明理由;(3)若BC=10,AD=6,则当点E在何处时,四边形PMNQ的面积与△APQ的面积相等?【解答】解:(1)四边形PMNQ是平行四边形.∵PQ∥MN,∴∠EPQ=∠ENM;∠EQP=∠EMN,∴△PEQ∽△NEM,∵ED⊥MN,EF⊥PQ,∴=,∵F、D关于点E对称,∴EF=ED,∴PQ=MN,∵PQ∥MN,∴四边形PMNQ是平行四边形;(2)满足条件:AB=AC,∵PQ∥BC,∴∠APQ=∠B,∠AQP=∠C,∵AB=AC,∴∠B=∠C,∴∠APQ=∠AQP,∴AP=AQ,∵AF⊥PQ,∴AF平分PQ,∴EP=EQ,∵四边形PMNQ是平行四边形,∴PE=EN,ME=EQ,∴PE=EQ=EM=EN,∴MQ=PN,∴当AB=AC时,PMNQ是矩形;(3)设ED=x,∵S PMNQ=S△APQ,∴PQ×2x=PQ×(6﹣2x),∴x=1,∴当ED=1时,四边形PMNQ与△APQ面积相等.21.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,(1)求证:△AOE≌△COF;(2)若AM:DM=2:3,△ONC的面积为2cm2,求△AEM的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠E=∠F,在△AOE和△COF中,∵,∴△AOE≌△COF(AAS);(2)解:∵AB∥CD,∴△AEM∽△DFM,∴EM:FM=AM:DM=2:3,∵△AOE≌△COF,∴OE=OF,∵AD∥BC,∴∠AMO=∠CNO,在△AOM和△CON中,∵,∴△AOM≌△CON(AAS),∴OM=ON,即EM=FN,设EM=2x,FM=3x,则FN=2x,OM=ON=MN=(FM﹣FN)=x,∴EM:OM=2x:x=4,∵S△ONC=2cm2,∴S△OAM=2cm2,∴S△AEM=4S△ONC=4×2=8(cm2).22.如图,ABCD为四边形,两组对边延长后得交点E、F,对角线BD∥EF,AC的延长线交EF于G.求证:EG=GF.【解答】证明:如图,过C作EF的平行线分别交AE、AF于M、N.由BD∥EF,可知MN∥BD.易知S△BEF=S△DEF.又,则S△BMC=S△DCN.则MC=NC.又==,∴EG=GF.图④A8字型,结论:111 AB CD EF +=【例6】.如图,在▱ABCD中,过点B的直线与对角线AC,边AD分别交于点E和点F,过点E作EG∥BC,交AB于G,则图中相似的三角形有 5 对.【解答】解:图中相似三角形有△ABC∽△CDA,△AGE∽△ABC,△AFE∽△CBE,△BGE∽△BAF,△AGE∽△CDA 共5对,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,AB=CD,∠D=∠ABC,∴△ABC≌△CDA,∴△ABC∽△CDA,∵GE∥BC,∴△AGE∽△ABC∞△CDA,∵GE∥BC,AD∥BC,∴GE∥AD,∴△BGE∽△BAF,∵AD∥BC,∴△AFE∽△CBE.故答案是:5.故选:C.【练习3】.如图,AB∥DC,AC与BD 交于点E,EF∥DC交BC于点F,CE=5,CF=4,AE=BC,则等于()A.B.C.D.【解答】解:∵EF∥DC交BC于点F,CE=5,CF=4,AE=BC,∴△CEF∽△CAB,∴,即,∴,解得,AE=20,∵AB∥DC,∴△DCE∽△BAE,∴,即,故选:B.【练习4】.已知:如图,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,FG∥AD,且FG=EF.(1)求证:四边形ABED是菱形;(2)连接AE,又知AC⊥ED,求证:AE2=EF•ED.【解答】证明:(1)∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∵FG∥AD,∴△CFG∽△CAD,∴=.同理:=,∴=.∵FG=EF,∴AD=AB,∴四边形ABED是菱形.(2)连接BD ,与AE 交于点H ,如图所示.∵四边形ABED 是菱形,∴EH=AE ,BD ⊥AE ,∴∠DHE=90°.同理:∠AFE=90°,∴∠DHE=∠AFE .又∵∠AED 是公共角,∴△DHE ∽△AFE ,∴, ∴=EF•ED.图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ⋅=⋅△△△△【例7】.如图,四边形ABCD 中,AD ∥BC ,对角线相交于O 点,EF 过O 点,且EF ∥AD ,则图中一共有 5 对相似三角形.【解答】解:∵四边形ABCD 中,AD ∥BC ,∴∠ADO=∠CBO ,∠DAO=∠BCO ,∴△ADO ∽△CBO ,∵EF ∥AD ,AD ∥BC ,∴EF ∥AD ∥BC ,∴△AEO ∽△ABC ,△DFO ∽△DCB ,△BEO ∽△BAD ,△CFO ∽△CDA ,∴共有5对相似三角形.故答案为:5.【练习1】.如图,在梯形ABCD中,AD∥BC,AD=a,BC=b,E、F分别是AD、BC的中点,且AF交BE于P,CE 交DF于Q,则PQ的长为.【解答】解:∵AD∥BC,E、F分别是AD、BC的中点,∴==,==,∴==,∴PQ∥AD,∴==,∴PQ=.故答案为:.【练习2】.已知P为△ABC的中位线MN上任意一点,BP、CP的延长线分别交对边AC、AB于D、E,求证:+=1.【解答】证明:过点A作QL∥BC,分别交CE、BD的延长线于点Q、L.∵MN为△ABC的中位线,∴MN∥BC,∴QL∥MN∥BC,又∵AM=BM,∴PQ=PC,PL=PB.在△PQL与△PCB中,,∴△PQL≌△PCB(SAS),∴QL=BC.∵AL∥BC,∴△ADL∽△CDB,∴,同理可证,∴,而AL+AQ=QL=BC,∴+=1.。
WORD 格式可编辑相似三角形经典模型总结经典模型平移旋转 180°∽平行型平行型翻折 180°翻折 180°一般特殊翻折 180°斜交型斜交型特殊一边平移一般平移特殊双垂直斜交型双垂直一般【精选例题】“平行型”【例 1】如图,EE1∥FF1∥MM1,若AE EF FM MB ,则S AEE : S四边形EE FF : S四边形FFM M : S四边形 MM C B _________1 1 1 1 1 1AE E1FF 1MM1B CWORD 格式可编辑【例 2】如图,AD∥EF∥MN∥BC,若AD 9,BC 18 , AE:EM :MB 2:3:4,则EF _____ , MN _____A DE FMNB C【例 3】已知,P为平行四边形ABCD 对角线, AC 上一点,过点P 的直线与 AD , BC , CD 的延长线, AB 的延长线分别相交于点 E , F , G , H求证: PE PHPF PGG D CE PFA B H【例 4】已知:在ABC 中, D 为 AB 中点, E 为 AC 上一点,且AE2, BE、 CD相交于点 F ,求BF的值ECEF ADF EB C【例 5】已知:在ABC 中, AD 1AB,延长 BC到F ,使CF1BC,连接 FD交 AC于点 E 2 3求证:① DE EF ② AE 2CEADEB专业知识分享【例 6】已知:D,E为三角形ABC 中 AB 、BC 边上的点,连接 DE 并延长交 AC 的延长线于点 F ,BD: DE AB: AC求证:CEF 为等腰三角形ACDEB F【例7】如图,已知 AB / / EF / /CD ,若 AB a , CD b , EF c ,求证:11 1 .c a bACEB F D【例 8】如图,找出S ABD、 S BED、 S BCD之间的关系,并证明你的结论.CAEB F D【例 9】如图,四边形ABCD中,B D90M是AC上一点,ME AD于点EMF BC,,于点 F 求证:MFME 1AB CDDEMA CFB【例 10】如图,在ABC 中, D 是 AC 边的中点,过 D 作直线 EF 交 AB 于 E ,交 BC 的延长线于 F 求证: AE BF BE CFAEDBC F 【例 11】如图,在线段AB 上,取一点 C ,以 AC , CB 为底在 AB 同侧作两个顶角相等的等腰三角形ADC 和CEB, AE交 CD于点 P, BD交 CE于点Q,求证: CP CQDEP QA C B【例 12】阅读并解答问题 .在给定的锐角三角形ABC 中,求作一个正方形DEFG,使 D, E落在 BC边上, F , G分别落在AC , AB 边上,作法如下:ABC 两边上的正方形D'E'F 'G'如图,第一步:画一个有三个顶点落在第二步:连接 BF ' 并延长交 AC 于点 F第三步:过 F 点作 FE BC ,垂足为点 E第四步:过 F 点作 FG∥BC 交 AB 于点 G第五步:过 G 点作 GD BC ,垂足为点 D四边形 DEFG 即为所求作的正方形问题:⑴证明上述所作的四边形DEFG 为正方形⑵在 ABC 中,如果BC 6 3,ABC 45 , BAC 75 ,求上述正方形DEFG 的边长AG FG'F'E CWORD 格式可编辑“平行旋转型”图形梳理:E'F'AAAF'E'AEF'EFFFEE'FEF'BCBCBBCAEF 旋转到 AE ‘ F ’CAEF 旋转到 AE ‘ F ’AEF 旋转到 AE ‘ F ’AEF 旋转到AE ‘F ’特殊情况: B 、 E'、 F '共线AAEF' EF'E'FE'FBC B CAEF 旋转到 AE ‘ F ’ AEF 旋转到 AE ‘ F ’C , E', F '共线E'AE'AEFEF'FF'BCBCAEF 旋转到 AE ‘ F ’AEF 旋转到 AE ‘ F ’【例 13】已知梯形 ABCD , AD ∥BC ,对角线AC 、 BD 互相垂直,则①证明: AD 2 BC 2AB 2 CD 2ADOB CWORD 格式可编辑【例 14】当AOD ,以点 O 为旋转中心,逆时针旋转度(090 ),问上面的结论是否成立,请说明理由DAOB C【例 15】(全国初中数学联赛武汉选拔赛试题)如图,四边形ABCD 和 BEFG 均为正方形,求AG : DF : CE_________.A DGFB CE“斜交型”【例 16】如图,ABC 中, D 在 AB 上,且 DE∥BC 交 AC 于 E , F 在 AD 上,且 AD2AF AB ,求证:AEF :ACDAFD EB C【例 17】如图,等边三角形ABC中,D,E分别在BC,AB上,且CE BE ,AD ,CE 相交于 M ,求证 : EAM : ECAAEMB DC AGF BE【例 18】如图,四边形ABCD 的对角线相交于点O ,BAC CDB ,求证:DAC CBDADOB C【例 19】如图,设ABBCCA,则 1 2 吗?AD DE EAA1 DE2B C【例 20】在锐角三角形ABC 中, AD , CE 分别为 BC , AB 边上的高,ABC 和BDE 的面积分别等于 18和 2 , DE 2,求 AC 边上的高AEB D C【例 21】如图,在等边ABC 的边 BC 上取点 D ,使BD 1,作CH AD,H为垂足,连结BH。
教师辅导教案授课日期:年月日授课课时:课时△ ABC与厶AB C ■相似,AH是厶ABC中BC边上的高线,AH ■是△ ABC ■中BC ■边上的高线,则有AB _ BC AB^BCAC AHk =AC AH(k为相似比).进而可得S∆ ABCS∆ ABC1BC AH211BC AH2BC AH 2kBC AH、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2•如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似•可简单说成:两角对应相等,两个三角形相似.3•如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6•直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底三、相似证明中的基本模型A字形图①A字型,DE//BC ;结论: AD _ AE _ DE AB 一AC 一BC,【例1】李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()已知:如图,在∆ABC中,点D, E, F分别在边AB, AC, BC上,且DE// BC, DF// AC, 求证:∆ADEs∆ DBF.证明:①又∙∙∙DF//AC,②∙∙∙DE// BC,③∙∙∙∠ A= ∠ BDF,④∙∙∙∠ ADE=∠ B,A.③②④①B.②④①③C.③①④②D.②③④①【解答】证明:②I DE// BC,④∙∠ADE=∠ B,①又∙∙∙DF// AC,③∙∠A= ∠ BDF,•••△ ADE^∆DBF.故选:B.故选:A .【练1】如图,在△ ABC 中,∠ ACB=90, BC=16cm, AC=12cm ,点P 从点B 出发,以2cm∕秒的速度向点 C 移 动,同时点Q 从点C 出发,以1cm∕秒的速度向点 A 移动,设运动时间为与厶ABC 相似.【解答】 解:CP 和CB 是对应边时,△ CPQ^△ CBA 所以,C e ICB CA即-■ -I --t1512解得t=4.8;CP 和CA 是对应边时,△ CPQ^△ CAB, 所以,丄二二,CA CBIMtt 12^16 解得t=-综上所述,当t=4.8或斤一时,△ CPQ 与厶CBA 相似. 故答案为4.8或〒二.AE AD DE 图②反A 字型,∠ ADE ∠ B 或∠仁∠B 结论:==AC AB BCt 秒,当t= 4.8或空秒时,△ CPQ---------- 11-【例2】如同,在△ ABC 中,点D , E 分别在边AB , AC 上,下列条件中不能判断厶 ABC^△ AED 的是( )AD AE AB =AC AD AC-'AB【解答】 解:τ∠ DAE=∠ CAB,•••当∠ AED=∠ B 或∠ ADE=∠ C 时,△ ABC ^△ AED; AD .AC'AE∙≠∙件二 ι∙WA . B.C.∠ ADE=∠ C D .∠ AED=∠ B时,△ ABC ^△ AED. 当—昱L 二一―即【例3】如图,P 是厶ABC 的边AB 上的一点.(不与A 、B 重合)当∠ ACP=∠ B 时,△ APC 与厶ABC 是否相 似;当 AC AP 、AB 满足 丄二丄 时,△ ACP 与厶ABC 相似.— AC AB-【解答】解:τ∠ A= ∠ A ,∠ ACP=∠ B ,故答案为:B ;寺二二【练习1】如图,D 、EABC 的边AC 、AB 上的点,当 ∠ ADE=∠ B 时,△ ADE ^△ ABC.其 中D 、E 分别对应B 、C.(填一个条件). 【解答】解:当∠ ADE=∠ B ,∙∠ EAD=∠ CAB,• △ ADE ^△ ABC. 故答案为∠ ADE=∠ B .【练习2】如图,在△ ABC 中,D E 分别在AB 与AC 上,且AD=5, DB=7, AE=6, EC=4 求证:△ ADE ^△ ACB.【解答】证明:• AD=5, DB=7, AE=6, EC=4, • AB=5+7=12, AC=6+4=10,.AD = 5 _1 AE = 6 _1 • AC 10 T r AB 12 = 2, .AP =Ag• AC AB , 又∙∠ A= ∠ A , • △ ADE ^△ ACB.【练习3】如图,AB=AC, ∠ A=36° , BD 是∠ ABC 的角平分线,求证:△ ABC^△ BCD. 【解答】证明:• AB=AC, ∠ A=36°, ∙∠ ABC=∠ C=72 , • BD 是角平分线,∙∠ ABD=∠ DBC=36 , ∙∠ A= ∠ CBD, 又∙∠ C=∠ C, • △ ABC^△ BCD.•丄二丄''[I∠ A= ∠ A ,【练习4】已知:如图,△ ABC 中,∠ ACD=∠ B ,求证:△ ABC^△ ACD. 【解答】 证明:τ∠ ACD=∠ B ,∠ A= ∠ A ,【例4】如图,在△ ABC 中,D ,E 分别是AB ,AC 上的点,∠ AED=∠ ABC,∠ BAC 的平分线 AF 交DE 于点G ,• △ ABC^△ AED.τ∠ AED=∠ ABC,∠ EAG=∠ BAF,• △ AEG^△ ABF.【练习5】如图,已知 AD?AC=AB?AE 求证:△ ADE^△ ABC. 【解答】证明:I AD?AC=AE?AB— =AEAB AC在厶ABC 与厶ADE 中 ■: 一.AEAB AC• △ ABC^△ ADE.【练习6】已知:如图,在厶ABC 中,D , E 分别为AB 、AC 边上的点,且AD 匚AE,连接DE.若AC=4, AB=5.求 证:△ ADE ^△ ACB【解答】证明:∙∙∙ AC=3, AB=5, ADjL 匕,5.AC _ AB厂-Λ,τ∠ A= ∠ A ,• △ ADE ^△ ACB.图③双A 字型交BC 于点F .(1)试写出图中所有的相似三角形,并说明理由.3'2BC的值. 【解答】 解:(1 )∙∙∙∠ AED=∠ ABC,∠ EAD=∠ BAC,,∠ A= ∠ A , R3(2)若,求小τ∠ EDG=∠ ACF, ∠ DAG=∠ CAF , •••△ ADG sA ACF.•••△ ADG sA ACF,」丄 .A.-. 3GF 5【练习1】如图,在△ ABC 中,D 、E 分别是 AB 、AC 上的点,AE=4, AB=6, AD : AC=2: 3,A ABC 的角平分线AF 交DE 于点G ,交BC 于点F .(1) 请你直接写出图中所有的相似三角形; (2) 求AG 与GF 的比.【解答】 解:(1 )△ ADG sA ACF △ AGE^A AFB,A ADE sA ACB;(2).• AE _4」2 AD _2(∙ TiTE =可,疋=可胚. -AE)AB '又 τ∠ DAE=∠ CAB,• △ ADE sA ACB,∙∠ ADG=∠ C ,∙∙∙ AF 为角平分线,∙∠ DAG=∠ FAE• △ ADG sA ACF,AG. 3GF 2(2)AG . Ar 2 ^^' AC 3 =2.AG GF图④内含正方形 A 字形,结论AH a=_^ ( a 为正方形边长) AH BC【例5】如图,△ ABC ,是一张锐角三角形的硬纸片, AD 是边BC 上的高,BC=40cm,AD=30cm ,从这张硬纸片上剪下一个长 HG 是宽HE 的2倍的矩形EFGH 使它的一边EF 在BC 上,顶点 G 、H 分别在 AC, AB 上,AD 与HG 的交点为 M .(2)的周长;(3)是否存在一个实数 a ,当HEFa 时从三角形硬纸片上剪下的矩形面积最大?若存在,请说明理由.【解答】(1)证明:•••四边形 HEFG 为矩形, ∙∙∙ HG // EF, 而 AD ⊥ BC,∙ AM 丄 BC, •••△ AHGsA ABC,AJfl HGAD - S BC(2)解:设 HE=X HG=2X,•这个矩形 EFGH 的周长=2x+4x=6x=72 (Cm );(3) 存在.AD BC(1)求证:30-x i 2x30 - _40,解得x=12,则30-a . .HG 30当HE=a,则• HG=- 430_ 2X 〔申 即当HEF Cm 时从三角形硬纸片上剪下的矩形面积最大.4• S 矩形 HEFG Fa (- a+30) F -a 2+30a ,当a=- 454时,S 矩形HEFG 最大, 试求出a ;若不存在,【练习1】如图,△ ABC ,是一张锐角三角形的硬纸片, AD 是边BC 上的高,BC=80cm , AD=60cm ,从这张硬纸片上剪下一个长 HG 是宽HE 的2倍的矩形EFGH 使它的一边 EF 在BC 上,顶点G 、H 分别在AC, AB 上,AD 与HG 的交点为M .(2)求这个矩形 EFG H 的面积.∙∙∙ EF// GH, ∙∙∙∠ AHG=∠ ABC,又 τ∠ HAG=∠ BAC,AJI L L … ADBC(2)解:设 HE=XCm, MD=HE=xcm , ■/ AD=60cm ,• AM= (60 - x ) Cm , ∙∙∙ HG=2HE, • HG=2xcm,AD ~BC'解得,x=24, 故 HE=24, HG=2x=48, 则矩形 EFGH 的面积=24 × 12=1152cm 2.【例6】如图,在△ ABC 中,D 为AC 上一点,E 为CB 延长线上一点,且 求证:AD=EB【解答】证明:过D 点作DH / BC 交AB 于H,如图, ∙/ DH // BC, • △ AHD ^△ ABC,∙/ DH // BE ,M L .HG AD BC的理由;(1)试说明:&0-x. -2x60 ' SO可得【解答】(1)证明:I 四边形 EFG H 为矩形,AD DH AC CS B CAD ACBC,即GH5DED-2.-EF HD DP , AC EFBC ' -Il =■> DF ADHD DH,∙∙∙ AD=EB.【例7】如图,在△ ABC中,∠ BAC=90, BC的垂直平分线交BC于点E,交CA的延长线于D,交AB于点F,求证:AE=EF?ED【解答】解:τ∠BAC=90 ,∙∠B+∠ C=90, ∠ D+∠ C=90 ,∙∠B=∠ D,∙∙∙ BC的垂直平分线交BC于点E,∠ BAC=90 .• BE=EA∙∠B=∠ BAE∙∠D=∠ BAEτ∠FEA=∠AED,• △ FEA^△ AED,.恆=DE•EP =AE•AE=EF?ED旋转型”相似三角形,如图•若图中∠仁∠ 2,∠ B=∠ D(或∠ C=∠ £),则厶ADE∞^ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的.【例8】如图,在厶ABC与厶ADE中,∠ BAC=∠ D,要使△ ABC与厶ADE相似,还需满足下列条件中的()AC AB AD=AE AC BC AD==DE【解答】解:τ∠BAC=∠D, • △ ABC^△ ADE.AC ABAD=DEAC ABADAC BCAE ==AEA. B.C D.E故选:C.【练习1】如图所示,在厶ABC 与厶ADE 中,AB?ED=AE?BC 要使△ ABC 与厶ADE 相似,还需要添加一个条件, 这个条件是∠ B=∠ E (答案不唯一)(只加一个即可)并证明.【解答】解:条件①,∠ B=∠ E 证明:∙∙∙ AB?ED=AE?BCAEECAD•••△ ABC^△ AED.故答案为:∠ B=∠ E (答案不唯一)【练习 2】如图,已知:∠ BAC=∠ EAD, AB=20.4, AC=48, AE=17, AD=40. 求证:△ ABC^△ AED.【解答】证明:I AB=20.4, AC=48, AE=17, AD=40. • AB =20. 4 =1 2 AC 座=1 2• AE .,而 40 ., •塑座'二=「,∙∙∙∠ BAC=∠ EAD,• △ ABC^△ AED.【练习3】如图,在△ ABC 和厶ADE 中,已知∠ABC^△ ADE.【解答】 解:如图,τ∠ BAD=∠ CAE, ∙∠ BAD+ ∠ BAE=∠ CAE+ ∠ BAE , 即 ∠ DAE=∠ BAC. 又τ∠ B= ∠ D ,• AB - BCAE F.C∙∙∙∠ B= ∠ E ,• △ ABC^△ AED.条件②, AD==AEAC证明:•• • AB? ED=AE?BC• AB = BCAE EC-AE --- ,AC AB AB =BC = AC B= ∠ D ,∠ BAD=∠ CAE 求证:△C• △ABC^△ADE.【练习4】如图,△ ABC △ DEP是两个全等的等腰直角三角形,∠BAC=∠ PDE=90 .(1)若将△ DEP的顶点P放在BC上(如图1) , PD PE分别与AC、AB相交于点F、G.求证:(2)若使△ DEP的顶点P与顶点A重合(如图2), PD、PE与BC相交于点F、似吗?为什么?【解答】(1)证明:如图1,•••△ ABC △ DEP是两个全等的等腰直角三角形,∙∙∙∠B=∠ C=∠ DPE=45 ,∙∙∙∠BPG+∠ CPF=135,在厶BPG 中,τ∠B=45,∙∠BPG+∠ BGP=135 ,∙∠BGP=∠ CPF,τ∠B=∠C,•••△ PBG∞^ FCP(2)解:△ PBG与厶FCP相似.理由如下:如图2, •••△ ABC △ DEP是两个全等的等腰直角三角形,∙∠B=∠C=∠DPE=45 ,∙∙∙∠ BGP=∠C+∠CPG=45 + ∠CAG,∠CPF=Z FPGF ∠CAG=45 + ∠CAG,∙∠AGP=∠CPF,τ∠B=∠C,•••△ PBG∞^ FCP.课堂小结: △ PBG∞^ FCPG.试问△ PBG与厶FCP还相。
相似三角形经典模型总结经典模型【精选例题】 “平行型”【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===,则111111:::_________AEE EE F F FF M M MM CB S S S S ∆=四边形四边形四边形M 1F 1E 1M E F A BC【例2】 如图,AD EF MN BC ∥∥∥,若9AD =,18BC =,::2:3:4AE EM MB =,则_____EF =,_____MN =M N A BCD E F【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H求证:PE PHPF PG=PHGFEDCBA【例4】 已知:在ABC ∆中,D 为AB 中点,E 为AC 上一点,且2AEEC=,BE 、CD 相交于点F ,求BFEF的值【例5】 已知:在ABC ∆中,12AD AB =,延长BC 到F ,使13CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE =ABCDFEFE DCBA【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC =求证:CEF ∆为等腰三角形FEDCBA【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.FE DCBA【例8】 如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.FE DCBA【例9】 如图,四边形ABCD 中,90B D ∠=∠=︒,M 是AC 上一点,ME AD ⊥于点E ,MF BC⊥于点F求证:1MF MEAB CD+= ABCDEF M【例10】 如图,在ABC ∆中,D 是AC 边的中点,过D 作直线EF 交AB 于E ,交BC 的延长线于F求证:AE BF BE CF ⋅=⋅FEDC BA【例11】 如图,在线段AB 上,取一点C ,以AC ,CB 为底在AB 同侧作两个顶角相等的等腰三角形ADC ∆和CEB ∆,AE 交CD 于点P ,BD 交CE 于点Q ,求证:CP CQ =QPEDC BA【例12】 阅读并解答问题.在给定的锐角三角形ABC 中,求作一个正方形DEFG ,使D ,E 落在BC 边上,F ,G 分别落在AC ,AB 边上,作法如下:第一步:画一个有三个顶点落在ABC ∆两边上的正方形''''D E F G 如图, 第二步:连接'BF 并延长交AC 于点F 第三步:过F 点作FE BC ⊥,垂足为点E 第四步:过F 点作FG BC ∥交AB 于点G 第五步:过G 点作GD BC ⊥,垂足为点D 四边形DEFG 即为所求作的正方形问题:⑴证明上述所作的四边形DEFG 为正方形⑵在ABC ∆中,如果6BC =+45ABC ∠=︒,75BAC ∠=︒,求上述正方形DEFG 的边长G'F'E'D'ABCDEFG“平行旋转型”图形梳理:AEF 旋转到AE‘F’CBAAEF 旋转到AE‘F’CBBCAEF 旋转到AE‘F’ABCAEF 旋转到AE‘F’特殊情况:B 、'E 、'F 共线AEF 旋转到AE‘F’CBAAB CEF E'F'AEF 旋转到AE‘F’C ,'E ,'F 共线AEF 旋转到AE‘F’CBAAEF 旋转到AE‘F’CBA【例13】 已知梯形ABCD ,AD BC ∥,对角线AC 、BD 互相垂直,则①证明:2222AD BC AB CD +=+OAB CD【例14】 当AOD ∆,以点O 为旋转中心,逆时针旋转θ度(090θ<<),问上面的结论是否成立,请说明理由DCB AO【例15】 (全国初中数学联赛武汉选拔赛试题)如图,四边形ABCD 和BEFG 均为正方形,求::AG DF CE =_________.ABEF GGFEDCBA“斜交型”【例16】 如图,ABC ∆中,D 在AB 上,且DE BC ∥交AC 于E ,F 在AD 上,且2AD AF AB =⋅,求证:AEF ACD ∆∆:F ED CBA【例17】 如图,等边三角形ABC 中,D ,E 分别在BC ,AB 上,且CE BE =,AD ,CE 相交于M ,求证:EAM ECA ∆∆:M E D C B A【例18】 如图,四边形ABCD 的对角线相交于点O ,BAC CDB ∠=∠,求证:DAC CBD ∠=∠ODCBA【例19】 如图,设AB BC CAAD DE EA==,则12∠=∠吗? 21ABCDE【例20】 在锐角三角形ABC 中,AD ,CE 分别为BC ,AB 边上的高,ABC ∆和BDE ∆的面积分别等于18和2,2DE =,求AC 边上的高ABCDE【例21】 如图,在等边ABC ∆的边BC 上取点D ,使21=CD BD ,作CH AD ⊥,H 为垂足,连结BH 。
教师辅导教案授课日期:年月日授课课时:课时ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC AD k A B B C A C A D ====''''''''(k 为相似比). 4.相似三角形周长的比等于相似比. ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.二、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似. 三、相似证明中的基本模型A 字形图①A 字型,DE//BC ;结论:AD AE DEAB AC BC==, 【例1】李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,DF ∥AC ,求证:△ADE∽△DBF.证明:①又∵DF∥AC,②∵DE∥BC,③∴∠A=∠BDF,④∴∠ADE=∠B,∴△ADE∽△DBF.A.③②④① B.②④①③ C.③①④② D.②③④①【解答】证明:②∵DE∥BC,④∴∠ADE=∠B,①又∵DF∥AC,③∴∠A=∠BDF,∴△ADE∽△DBF.故选:B.【练1】如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8或秒时,△CPQ与△ABC相似.【解答】解:CP和CB是对应边时,△CPQ∽△CBA,所以,,即,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,,即,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.故答案为4.8或.图②反A字型,∠ADE=∠B或∠1=∠B结论:AE AD DE==AC AB BC【例2】如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A.=B.=C.∠ADE=∠C D.∠AED=∠B【解答】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当=即=时,△ABC∽△AED.故选:A.【例3】如图,P是△ABC的边AB上的一点.(不与A、B重合)当∠ACP=∠ B 时,△APC与△ABC是否相似;当AC、AP、AB满足时,△ACP与△ABC相似.【解答】解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC;∵,∠A=∠A,∴△ACP与△ABC;故答案为:B;.【练习1】如图,D、E为△ABC的边AC、AB上的点,当∠ADE=∠B 时,△ADE∽△ABC.其中D、E分别对应B、C.(填一个条件).【解答】解:当∠ADE=∠B,∵∠EAD=∠CAB,∴△ADE∽△ABC.故答案为∠ADE=∠B.【练习2】如图,在△ABC中,D、E分别在AB与AC上,且AD=5,DB=7,AE=6,EC=4.求证:△ADE∽△ACB.【解答】证明:∵AD=5,DB=7,AE=6,EC=4,∴AB=5+7=12,AC=6+4=10,∴====,∴=,又∵∠A=∠A,∴△ADE∽△ACB.【练习3】如图,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:△ABC∽△BCD.【解答】证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD,又∵∠C=∠C,∴△ABC∽△BCD.【练习4】已知:如图,△ABC中,∠ACD=∠B,求证:△ABC∽△ACD.【解答】证明:∵∠ACD=∠B,∠A=∠A,∴△ABC∽△ACD.【练习5】如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.【解答】证明:∵AD•AC=AE•AB,∴=在△ABC与△ADE 中∵=,∠A=∠A,∴△ABC∽△ADE.【练习6】已知:如图,在△ABC中,D,E分别为AB、AC边上的点,且AD=AE,连接DE.若AC=4,AB=5.求证:△ADE∽△ACB.【解答】证明:∵AC=3,AB=5,AD=,∴,∵∠A=∠A,∴△ADE∽△ACB.图③双A字型【例4】如图,在△ABC中,D,E分别是AB,AC上的点,∠AED=∠ABC,∠BAC 的平分线AF交DE于点G,交BC于点F.(1)试写出图中所有的相似三角形,并说明理由(2)若=,求的值.【解答】解:(1)∵∠AED=∠ABC,∠EAD=∠BAC,∴△ABC∽△AED.∵∠AED=∠ABC,∠EAG=∠BAF,∴△AEG∽△ABF.∵∠EDG=∠ACF,∠DAG=∠CAF,∴△ADG∽△ACF.(2)∵=,∴=,∵△ADG∽△ACF,∴==.【练习1】如图,在△ABC中,D、E分别是AB、AC上的点,AE=4,AB=6,AD:AC=2:3,△ABC的角平分线AF交DE于点G,交BC于点F.(1)请你直接写出图中所有的相似三角形;(2)求AG与GF的比.【解答】解:(1)△ADG∽△ACF,△AGE∽△AFB,△ADE∽△ACB;(2)∵==,=,∴=,又∵∠DAE=∠CAB,∴△ADE∽△ACB,∴∠ADG=∠C,∵AF为角平分线,∴∠DAG=∠FAE∴△ADG ∽△ACF , ∴==,∴=2.图④内含正方形A 字形,结论AH a aAH BC-=(a 为正方形边长)【例5】如图,△ABC ,是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC=40cm ,AD=30cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M . (1)求证:=;(2)求这个矩形EFGH 的周长;(3)是否存在一个实数a ,当HE=a 时从三角形硬纸片上剪下的矩形面积最大?若存在,试求出a ;若不存在,请说明理由.【解答】(1)证明:∵四边形HEFG 为矩形, ∴HG ∥EF , 而AD ⊥BC , ∴AM ⊥BC ,。
相似三角形经典模型总结
经典模型
【精选例题】 “平行型”
【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===,
则111
1
1
1
:::_________AEE EE F F FF M M MM CB S S S S ∆=四边形四边形四边形
M 1F 1E 1M E F A B
C
【例2】 如图,A D E F M N B C ∥∥∥,若9AD =,18BC =,::2:3:4AE EM MB =,则
_____EF =,_____MN =
M N A B
C
D E F
【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的直线与AD ,BC ,CD 的延
长线,AB 的延长线分别相交于点E ,F ,G ,H
求证:
PE PH
PF PG
=
P
H
G
F
E
D
C
B
A
【例4】 已知:在ABC ∆中,D 为AB 中点,E 为AC 上一点,且
2AE
EC
=,BE 、CD 相交于点F ,
求
BF
EF
的值
【例5】 已知:在ABC ∆中,12AD AB =
,延长BC 到F ,使1
3
CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE =
A
B
C
D
F
E
F
E D
C
B
A
【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,
::BD DE AB AC =
求证:CEF ∆为等腰三角形
F
E
D
C
B
A
【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111
c a b
=+.
F
E D
C
B
A
【例8】 如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.
F
E D
C
B
A
【例9】 如图,四边形ABCD 中,90B D ∠=∠=︒,M 是AC 上一点,ME AD ⊥于点E ,MF BC
⊥于点F
求证:
1MF ME
AB CD
+= A
B
C
D
E
F M
【例10】 如图,在ABC ∆中,D 是AC 边的中点,过D 作直线EF 交AB 于E ,交BC 的延长线于F
求证:AE BF BE CF ⋅=⋅
F
E
D
C B
A
【例11】 如图,在线段AB 上,取一点C ,以AC ,CB 为底在AB 同侧作两个顶角相等的等腰三角形
ADC ∆和CEB ∆,AE 交CD 于点P ,BD 交CE 于点Q ,
求证:CP CQ =
Q
P
E
D
C B
A
【例12】 阅读并解答问题.
在给定的锐角三角形ABC 中,求作一个正方形DEFG ,使D ,E 落在BC 边上,F ,G 分别落在AC ,AB 边上,作法如下:
第一步:画一个有三个顶点落在ABC ∆两边上的正方形''''D E F G 如图, 第二步:连接'BF 并延长交AC 于点F 第三步:过F 点作FE BC ⊥,垂足为点E 第四步:过F 点作FG BC ∥交AB 于点G 第五步:过G 点作GD BC ⊥,垂足为点D 四边形DEFG 即为所求作的正方形
问题:⑴证明上述所作的四边形DEFG 为正方形
⑵在ABC ∆
中,如果6BC =+45ABC ∠=︒,75BAC ∠=︒,求上述正方形DEFG 的边长
G'
F'
E'D'A
B
C
D
E
F
G
“平行旋转型”
图形梳理:
AEF 旋转到AE‘F’
C
B
A
AEF 旋转到AE‘F’
C
B
B
C
AEF 旋转到
AE‘F’
A
B
C
AEF 旋转到AE‘F’
特殊情况:B 、'E 、'F 共线
AEF 旋转到AE‘F’C
B
A
A
B C
E
F E'
F'
AEF 旋转到AE‘F’
C ,'E ,'F 共线
AEF 旋转到AE‘F’
C
B
A
AEF 旋转到AE‘F’
C
B
A
【例13】 已知梯形ABCD ,AD BC ∥,对角线AC 、BD 互相垂直,则
①证明:2
2
2
2
AD BC AB CD +=+
O
A
B C
D
【例14】 当AOD ∆,以点O 为旋转中心,逆时针旋转θ度(090θ<<),问上面的结论是否成立,请
说明理由
D
C
B A
O
【例15】 (全国初中数学联赛武汉选拔赛试题)如图,四边形ABCD 和BEFG 均为正方形,求
::AG DF CE =_________.
A
B
E
F G
G
F
E
D
C
B
A
“斜交型”
【例16】 如图,ABC ∆中,D 在AB 上,且DE BC ∥交AC 于E ,F 在AD 上,且2
AD AF AB =⋅,
求证:AEF
ACD ∆∆
F E
D C
B
A
【例17】 如图,等边三角形ABC 中,D ,E 分别在BC ,AB 上,且CE BE =,AD ,CE 相交于M ,
求证:EAM ECA ∆∆
M E D
C B A
【例18】 如图,四边形ABCD 的对角线相交于点O ,BAC CDB ∠=∠,求证:DAC CBD ∠=∠
O
D
C
B
A
【例19】 如图,设
AB BC CA
AD DE EA
==
,则12∠=∠吗? 21A
B
C
D
E
【例20】 在锐角三角形ABC 中,AD ,CE 分别为BC ,AB 边上的高,ABC ∆和BDE ∆的面积分别
等于18和2,2DE =,求AC 边上的高
A
B
C
D
E
【例21】 如图,在等边ABC ∆的边BC 上取点D ,使2
1
=CD BD ,作C H A D ⊥,H 为垂足,连结BH 。
求证:DBH DAB ∠=∠
【例22】 已知:在正三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的点,且BD CE =,直线CD
与AE 相交于点F
求证:①DC AE =,②2
AD DC DF =⋅
A
B C
D
E
F
“斜交特殊型”(隐含三垂直)
【例23】 已知,如图,ABC ∆中,AD BC ⊥于点D ,DE AC ⊥于点E ,DF AB ⊥于点F ,求证:
AEF B ∠=∠
A
B
C
D
E
F
【例24】 已知:如图,CE 是直角三角形斜边AB 上的高,在EC 的延长线上任取一点P ,连结AP ,BG
⊥AP ,垂足为G ,交CE 于D ,求证:DE PE CE ⋅=2。
G
P
A
B
C
D
E
【例25】 如图,E 、G 、F 、H 分别是矩形ABCD 四条边上的点,EF GH ⊥,若2AB =,3BC =,
则:EF GH 等于( )
A. 2:3
B. 3:2
C. 4:9
D.无法确定
A
B
C
D E F
G H
【例26】 如图,已知:正方形ABCD 中,点M 、N 分别在AB 、BC 上,且BM BN =,BP MC
⊥于点P
求证:DP NP ⊥
P
A
B C
D
M
N
【例27】 如图,Rt ABC ∆中,90BAC ∠=︒,2AB AC ==,点D 在BC 上运动(不经过B ,C ),过
点D 作45ADE ∠=︒,DE 交AC 于E
①图中有无与ABD ∆一定相似的三角形,若有,请指出来并加以证明
②设BD x =,AE y =,求y 与x 的函数关系,并写出其定义域; ③若ADE ∆恰为等腰三角形,求AE 的长
E
D
C
B
A。