2020届新考案高考物理总复习教师用书:第十六单元 选修3-3模块 第3讲 Word版含解析
- 格式:pdf
- 大小:900.44 KB
- 文档页数:20
第3讲热力学定律与能量守恒定律知识排查热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递。
2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
(2)表达式:ΔU=Q+W。
(3)ΔU=Q+W中正、负号法则:能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。
3.第一类永动机是不可能制成的,它违背了能量守恒定律。
热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体。
(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
或表述为“第二类永动机是不可能制成的”。
2.用熵的概念表示热力学第二定律在任何自然过程中,一个孤立系统的总熵不会减小。
3.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行。
4.第二类永动机不可能制成的原因是违背了热力学第二定律。
小题速练1.(多选)下列说法正确的是________。
A.外界压缩气体做功20 J,气体的内能可能不变B.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递C.科技的进步可以使内燃机成为单一热源的热机D.对能源的过度消耗将使自然界的能量不断减少,形成能源危机E.一定量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加答案ABE2.(多选)下列说法正确的是________。
A.分子间距离增大时,分子间的引力减小,斥力增大B.当分子间的作用力表现为斥力时,随分子间距离的减小分子势能增大C.一定质量的理想气体发生等温膨胀,一定从外界吸收热量D.一定质量的理想气体发生等压膨胀,一定向外界放出热量E.熵的大小可以反映物体内分子运动的无序程度解析分子间距离增大时,分子间的引力、斥力都减小,A错误;当分子间的作用力表现为斥力时,随分子间距离的减小,斥力做负功,分子势能增大,B正确,等温膨胀,温度不变,气体内能不变,体积增大,对外做功。
3动量守恒定律一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统.(2)内力:系统内两物体间的相互作用力称为内力.(3)外力:系统以外的物体对系统的作用力称为外力.一个力对某个系统来说是内力,这个力能变成外力吗?提示:对系统来说是内力,对系统中的某个物体而言,就变成外力了.2.动量守恒定律内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.如图所示,在风平浪静的水面上,停着一艘帆船,船尾固定一台电风扇,正在不停地把风吹向帆面,船能向前行驶吗?为什么?提示:把帆船和电风扇看做一个系统,电风扇和帆船受到空气的作用力大小相等、方向相反,这是一对内力,系统总动量守恒,船原来是静止的,总动量为零,所以在电风扇吹风时,船仍保持静止.二、动量守恒定律的普适性1.动量守恒定律与牛顿运动定律动量守恒定律与牛顿运动定律在经典力学中都占有极其重要的地位,两者密切相关.牛顿运动定律从“力”的角度反映物体间的相互作用;动量守恒定律从“动量”的角度描述物体间的相互作用.2.动量守恒定律普适性的表现(1)相互作用的物体无论是低速还是高速运动,无论是宏观物体还是微观粒子,动量守恒定律均适用.(2)动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域.1666年在英国皇家学会的例会上有人表演了如下实验:用两根细绳竖直悬挂两个质量相等的钢球A和B,静止时两球恰好互相接触靠在一起,使A球偏开一角度后放下,撞击B球,B球将上升到A球原来的高度,而A球则静止,然后B球落下又撞击A球,B球静止,A球又几乎升到原来的高度,以后两球交替往复多次.你知道其中的规律吗?提示:当时许多科学家对此百思不得其解,1668年,英国皇家学会对这一现象悬赏征答,解开了这一神秘现象的面纱,即在整个相互作用过程中有一个量(系统动量)恒定不变.考点一应用动量守恒定律解决问题的基本思路和一般方法1.分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的.2.要对各阶段所选系统内的物体进行受力分析弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态即系统内各个物体的初动量和末动量的量值或表达式.【注意】在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系.4.确定好正方向建立动量守恒方程求解【例1】(多选)如图所示,A、B两物体质量之比m A m B=32,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑.当弹簧突然释放后,则()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒要判断A、B组成的系统是否动量守恒,要先分析A、B组成的系统受到的合外力与A、B之间相互作用的内力;看合外力是否为零,或者内力是否远远大于合外力.【答案】BCD【解析】如果物体A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F A向右,F B向左,由于m A m B=3 2,所以F A F B=32,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,选项A错.对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力的合力为零,故该系统的动量守恒,选项B、D均正确.若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,选项C正确.总结提能判断系统的动量是否守恒时,要注意动量守恒的条件是系统不受外力或所受的合外力为零.因此,要分清系统中的物体所受的力哪些是内力,哪些是外力.在同一物理过程中,系统的动量是否守恒,与系统的选取密切相关,如本题中A项所述的情况A、B组成的系统的动量不守恒,而A、B、C组成的系统的动量却是守恒的.(多选)把木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示.当撤去外力后,下列说法中正确的是(BC)A.a尚未离开墙壁前,a和b系统的动量守恒B.a尚未离开墙壁前,a和b系统的动量不守恒C.a离开墙壁后,a、b系统动量守恒D.a离开墙壁后,a、b系统动量不守恒解析:在b上施加作用力后,b逐渐压缩弹簧,此时墙壁对a木块有力的作用,因而a 尚未离开墙壁前,a和b系统的总动量不守恒;当撤去外力后,弹簧逐渐恢复形变,b向右加速,并逐步带动木块a离开墙壁.一旦离开,a将不受墙壁的作用,a、b组成的系统不受外力作用(水平方向),因而总动量守恒.【例2】如图所示,质量为M的小车静止在光滑的水平面上,小车的最右端站着质量为m的人.若人水平向右以相对车的速度u跳离小车,则人脱离小车后小车的速度多大?方向如何?1.在人跳离小车的过程中,人和小车组成的系统水平方向上是否受到外力?该方向上动量是否守恒?2.人相对于车的速度为u,那么人相对于地的速度是多少?3.人跳离车后,人与车的速度方向相同还是相反?【答案】muM+m,方向水平向左【解析】在人跳离小车的过程中,由人和车组成的系统在水平方向上不受外力,在该方向上动量守恒.由于给出的人的速度u是相对车的,必须把人相对车的速度转化为相对地的速度.设速度u的方向为正方向,并设人脱离车后小车的速度大小为v,则人对地的速度大小为(u-v).根据动量守恒定律得0=m(u-v)-M v,所以小车速度v=muM+m,方向和u的方向相反.总结提能应用动量守恒定律解题的步骤:(1)明确研究对象是哪几个物体所组成的系统;(2)确定研究阶段,有时动量守恒只有一段时间,这时就必须明确研究的是哪一段时间内的相互作用;(3)对研究对象进行受力分析,判断系统的动量是否守恒,由于动量守恒的条件是系统不受外力或所受的合外力为零,所以受力分析时只分析系统所受的外力,而不去分析系统内各物体间的内力;(4)选定正方向,明确系统在相互作用前后的总动量;(5)根据动量守恒定律列方程求解.在光滑的水平地面上,质量为4 kg的物体以3 m/s的速度向右运动,另一质量为8 kg的物体以3 m/s的速度向左运动,两物体正碰后粘在一起运动,碰后它们共同运动的速度大小为1 m/s,方向是向左.解析:以向右为正方向,由动量守恒定律有m1v1-m2v2=(m1+m2)v,得v=m1v1-m2v2m1+m2=3×4-8×34+8m/s=-1 m/s,即共同速度方向与规定正方向相反,向左.考点二多个物体组成的系统动量守恒问题多个物体相互作用时,物理过程往往比较复杂,分析此类问题时应注意:(1)正确进行研究对象的选取,有时需应用整体动量守恒,有时只需应用部分物体动量守恒.研究对象的选取,一是取决于系统是否满足动量守恒的条件,二是根据所研究问题的需要.(2)正确进行过程的选取和分析,通常对全程进行分段分析,并找出联系各阶段的状态量.列式时有时需分过程多次应用动量守恒,有时只需针对初、末状态建立动量守恒的关系式.【例3】质量为M=2 kg的小平板车静止在光滑水平面上,车的一端静止着质量为m A=2 kg的物体A(可视为质点),如图所示.一颗质量为m B=20 g的子弹以600 m/s的水平速度射穿A后,速度变为100 m/s,最后物体A仍静止在车上,求平板车最后的速度是多大.【答案】 2.5 m/s【解析】解法一:子弹射穿A的过程极短,因此在射穿过程中车对A的摩擦力及子弹的重力作用可忽略,即认为子弹和A组成的系统水平方向动量守恒;同时,由于作用时间极短,可认为A的位置没有发生变化.设子弹击穿A后的速度为v′,由动量守恒定律m B v0=m B v′+m A v A,得v A=m B(v0-v′)m A=0.02×(600-100)2m/s=5 m/s.A获得速度v A后相对车滑动,由于A与车间有摩擦,最后A相对车静止,以共同速度v运动,对于A与车组成的系统,水平方向动量守恒,因此有m A v A=(m A+M)v,故v=m A v Am A+M=2×52+2m/s=2.5 m/s. 解法二:因地面光滑,子弹、物体A、车三者组成的系统在水平方向不受外力,水平方向动量守恒,最后A与车速度相同.对于三者组成的系统,由动量守恒定律得m B v0=m B v′+(m A+M)v,得v=m B(v0-v′)m A+M=0.02×(600-100)2+2m/s=2.5 m/s.如图所示,在光滑的水平面上有两块并列放置的木块A与B,已知A的质量是500 g,B 的质量是300 g,有一质量为80 g的小铜块C(可视为质点)以25 m/s的水平初速度开始在A的表面滑动.铜块最后停在B上,B与C一起以2.5 m/s的速度共同前进.求:(1)木块A最后的速度v A′;(2)C离开A时的速度v C′.答案:(1)2.1 m/s(2)4 m/s解析:C在A上滑动时,选A、B、C作为一个系统,其总动量守恒,则:m C v0=m C v C′+(m A+m B)v A′,C滑到B上后A做匀速运动,再选B、C作为一个系统,其总动量也守恒,则m C v C′+m B v A′=(m B+m C)v BC,也可以研究C在A、B上面滑动的全过程,在整个过程中A、B、C组成系统的总动量守恒,则m C v0=m A v A′+(m B+m C)v BC,把上述三个方程式中的任意两个联立求解即可得到v A′=2.1 m/s,v C′=4 m/s.考点三碰撞、爆炸问题的处理方法碰撞和爆炸现象很多,如交通事故中人被车撞了、两车相撞、球与球之间相撞等,那么它们有什么特点呢?我们可以从以下几个方面分析:(1)过程特点①相互作用时间很短.②在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大,远远大于外力,因此作用过程的动量可看成守恒.(2)位移的特点碰撞、爆炸、打击过程是在一瞬间发生的,时间极短,所以在物体发生碰撞、爆炸、打击的瞬间可忽略物体的位移.可以认为物体在碰撞、爆炸、打击前后在同一位置.(3)能量的特点爆炸过程系统的动能增加,碰撞、打击过程系统的动能不会增加,可能减少,也可能不变.【例4】以初速度v0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m和2m的两块弹片.其中质量较大的一块弹片沿着原来的水平方向以2v0的速度飞行.求:(1)质量较小的另一块弹片速度的大小和方向.(2)爆炸过程中有多少化学能转化为弹片的动能.1.手榴弹在空中受到的合力是否为零?2.手榴弹在爆炸过程中,各弹片组成的系统动量是否守恒,为什么?3.在爆炸时,化学能的减少量与弹片动能的增加量有什么关系?【答案】(1)大小为2.5v0,方向与原来的速度方向相反(2)6.75m v 20【解析】(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v =v 0cos60°=12v 0,设v 的方向为正方向,如图所示,由动量守恒定律得3m v =2m v 1+m v 2,其中爆炸后大块弹片速度v 1=2v 0,小块弹片的速度v 2为待求量,解得v 2=-2.5v 0,“-”号表示v 2的方向与爆炸前速度方向相反.(2)爆炸过程中转化为动能的化学能等于系统动能的增量.ΔE k =12×2m v 21+12m v 22-12(3m )v 2=6.75m v 20. 总结提能 对爆炸类问题,在火药爆炸的瞬间,火药产生的内力一般远远大于其他外力,所以在火药爆炸的瞬间,可以认为系统的动量守恒.在高速公路上发生了一起交通事故,一辆质量为1 500 kg 向南行驶的长途客车迎面撞上了一辆质量为3 000 kg 向北行驶的卡车,撞后两车连在一起,并向南滑行一小段距离后静止.根据测速仪的测定,长途客车撞前以20 m/s 的速度匀速行驶,由此可判断卡车撞前的行驶速度( A )A .小于10 m/sB .大于10 m/s ,小于20 m/sC .大于20 m/s ,小于30 m/sD .大于30 m/s ,小于40 m/s解析:两车碰撞过程中尽管受到地面的摩擦力作用,但远小于相互作用的内力(碰撞力),所以动量守恒.依题意,碰撞后两车以共同速度向南滑行,即碰撞后系统的末动量方向向南.设长途客车和卡车的质量分别为m 1、m 2,撞前的速度大小分别为v 1、v 2,撞后共同速度为v ,选定向南为正方向,根据动量守恒定律有m 1v 1-m 2v 2=(m 1+m 2)v ,又v >0,则m 1v 1-m 2v 2>0,代入数据解得v 2<m 1m 2v 1=10 m/s. 考点四 动量守恒定律和机械能守恒定律的比较和综合应用动量守恒定律和机械能守恒定律的比较【例5】如图所示,一个质量为m的木块,从半径为R、质量为M的1/4光滑圆槽顶端由静止滑下.在槽被固定和可沿着光滑平面自由滑动两种情况下,木块从槽口滑出时的速度大小之比为多少?槽被固定时,木块的机械能守恒;槽不被固定时,木块和槽组成的系统的机械能守恒,且水平方向上动量守恒.【答案】m+M M【解析】圆槽固定时,木块下滑过程中只有重力做功,木块的机械能守恒.木块在最高处的势能全部转化为滑出槽口时的动能.设木块滑出槽口时的速度为v1,由mgR=12m v21①木块滑出槽口时的速度:v1=2gR②圆槽可动时,在木块开始下滑到脱离槽口的过程中,木块和槽所组成的系统水平方向不受外力,水平方向动量守恒.设木块滑出槽口时的速度为v2,槽的速度为u,则:m v2-Mu=0③又木块下滑时,只有重力做功,机械能守恒,木块在最高处的重力势能转化为木块滑出槽口时的动能和圆槽的动能,即mgR=12m v22+12Mu2④联立③④两式解得木块滑出槽口的速度:v2=2MgRm+M⑤两种情况下木块滑出槽口的速度之比:v1 v2=2gR2MgR/(m+M)=m+MM.总结提能①此题属于“某一方向上的动量守恒”问题,槽可沿着光滑平面自由滑动时,木块和槽组成的系统在水平方向上动量守恒;②处理力学问题的三条基本途径为:牛顿运动定律、动量关系(动量定理和动量守恒定律)及能量关系(动能定理、机械能守恒定律和能量守恒定律),其中牛顿运动定律适用于解决力和运动的瞬时对应关系,而动量定理和动能定理对应某一过程,动量守恒定律和机械能守恒定律等则考查一个过程的始末两个状态的物理量关系.光滑水平面上放着一质量为M 的槽,槽与水平面相切且光滑,如图所示,一质量为m 的小球以v 0向槽运动.(1)若槽固定不动,求小球上升的高度(槽足够高);(2)若槽不固定,则小球上升多高?答案:(1)v 202g (2)M v 202(m +M )g解析:槽固定时,球沿槽上升过程中机械能守恒,达到最高点时,动能全部转化为球的重力势能;槽不固定时,小球沿槽上升过程中,球与槽组成的系统水平方向上不受外力,因此水平方向动量守恒.由于该过程中只有两者间弹力和小球重力做功,故系统机械能守恒,当小球上升到最高点时,两者速度相同.(1)槽固定时,设球上升的高度为h 1,由机械能守恒得mgh 1=12m v 20,解得h 1=v 202g. (2)槽不固定时,设球上升的最大高度为h 2,此时两者速度为v ,由动量守恒定律得m v 0=(m +M )v ,由机械能守恒定律得12m v 20=12(m +M )v 2+mgh 2, 解得小球上升的高度h 2=M v 202(m +M )g. 重难疑点辨析多运动过程中的动量守恒包含两个及两个以上物理过程的动量守恒问题,应根据具体情况来划分过程,在每个过程中合理选取研究对象,要注意两个过程之间的衔接条件,如问题不涉及或不需要知道两个过程之间的中间状态,应优先考虑取“大过程”求解.(1)对于由多个物体组成的系统,在不同的过程中往往需要选取不同的物体组成的不同系统.(2)要善于寻找物理过程之间的相互联系,即衔接条件.【典例】如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A 的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B 再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.【解析】因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C 的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v ABA与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立以上各式,代入数据得v A=2 m/s.【答案】 2 m/s动量守恒定律的研究对象是系统,为了满足守恒条件,系统的划分非常重要,往往通过适当变换划入系统的物体,可以找到满足守恒条件的系统.在选择研究对象时,应将运动过程的分析与系统的选择统一考虑.类题试解如图所示,质量为m 的子弹,以速度v 水平射入用轻绳悬挂在空中的木块,木块的质量为m ′,绳长为l ,子弹停留在木块中,求子弹射入木块后的瞬间绳子张力的大小.【解析】 在子弹射入木块的这一瞬间,系统动量守恒.取向左为正方向,由动量守恒定律有0+m v =(m +m ′)v ′,解得v ′=m v m +m ′. 随着整体以速度v ′向左摆动做圆周运动.在圆周运动的最低点,整体只受重力(m +m ′)g 和绳子的拉力F 作用,由牛顿第二定律有(取向上为正方向)F -(m +m ′)g =(m +m ′)v ′2l .将v ′代入即得F =(m +m ′)g +m 2v 2(m +m ′)l. 【答案】 (m +m ′)g +m 2v 2(m +m ′)l1.在匀速行驶的船上,当船上的人相对于船竖直向上抛出一个物体时,船的速度将(水的阻力不变)( C )A .变大B .变小C .不变D .无法判定解析:相对于船竖直向上抛出物体时,由于惯性,物体仍然具有和船同方向的速度,船和物体组成的系统水平方向动量守恒,故船速不变.2.(多选)如果问题的研究对象是两个或两个以上的物体,这些物体就组成了系统,它们可以作为一个整体成为我们的研究对象.下列与系统有关的说法中正确的是( AB )A .系统的内力的施力物体一定在系统内部,系统的外力的施力物体一定在系统外部B .系统的内力是系统内物体的相互作用,它不影响系统的总动量C .系统的内力是系统内物体的相互作用,它不影响系统内物体各自的动量D .系统的外力是系统外的物体对系统内的每一个物体都必须施加的作用,它影响系统的总动量解析:系统的内力不影响系统的总动量,但会改变系统内个体的动量,使得动量在系统内物体间转移.系统的外力是系统外物体对系统内物体施加的,影响系统的总动量.系统外力的作用不一定施加到系统内的每一个物体上,给系统内单个物体的力也是给系统的力.3.(多选)如图所示,小车放在光滑的水平面上,轻绳上系有一小球,将小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中( BD )A .小球向左摆动时,小车也向左运动,且系统在水平方向动量守恒B .小球向左摆动时,小车向右运动,且系统在水平方向动量守恒C .小球向左摆到最高点,小球的速度为零而小车速度不为零D .在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反解析:小球摆动过程中,竖直方向上合力不为零,故系统总动量不守恒,但水平方向不受外力,在水平方向动量守恒,所以选项B 、D 正确.4.质量为M 的气球下面吊着质量为m 的物体以速度v 0匀速上升,突然吊绳断裂,当物体上升速度为零时,气球的速度为(M +m )v 0M(整个过程中浮力和阻力的大小均不变). 解析:以气球和物体为系统,整体受重力和浮力,当匀速上升时,合外力为零,吊绳断裂前后,整体受力不变,一直为零,整体动量守恒.匀速上升时动量是(M +m )v 0,当绳断裂物体速度为零时,整体动量为M v ,则有(M +m )v 0=M v .故有v =(M +m )v 0M. 5.质量相等的五个物块在一光滑水平面上排成一条直线,且彼此隔开一定的距离,具有初速度v 0的第5号物块向左运动,依次与其余四个静止物块发生碰撞,如图所示,最后这五个物块粘成一个整体,求它们最后的速度为多少?答案:15v 0 解析:由五个物块组成的系统,沿水平方向不受外力作用,故系统动量守恒,m v 0=5m v x ,v x =15v 0,即它们最后的速度为15v 0.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
[高考导航]第1讲分子动理论内能知识排查分子动理论1.物体是由大量分子组成的(1)分子的大小①分子直径:数量级是10-10m;②分子质量:数量级是10-26 kg;③测量方法:油膜法。
(2)阿伏加德罗常数:1 mol任何物质所含有的粒子数,N A=6.02×1023mol-1。
2.分子永不停息地做无规则运动:一切物质的分子都在永不停息地做无规则运动。
(1)扩散现象:相互接触的不同物质彼此进入对方的现象。
温度越高,扩散越快,可在固体、液体、气体中进行。
(2)布朗运动:悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著。
3.分子间存在着相互作用力:分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快。
(1)r=r0,f引=f斥,f=0(2)r>r0,f引>f斥,f为引力(3)r<r0,f引<f斥,f为斥力温度1.意义:宏观上表示物体的冷热程度(微观上表示物体中分子平均动能的大小)。
2.两种温标(1)摄氏温标和热力学温标的关系T=t+273.15__K;(2)绝对零度(0 K):是低温极限,只能接近不能达到,所以热力学温度无负值。
内能1.分子动能(1)意义:分子动能是分子做热运动所具有的能;(2)分子平均动能:大量分子动能的平均值。
温度是分子平均动能的标志。
2.分子势能(1)意义:由于分子间存在着分子力,分子也具有由它们的相对位置决定的势能。
(2)分子势能的决定因素①微观上:决定于分子间距离和分子排列情况;②宏观上:决定于体积和状态。
3.物体的内能(1)概念理解:所有分子热运动的动能和分子势能的总和,是状态量;(2)决定因素:对于给定的物体,其内能大小由物体的温度和体积决定,即由物体内部状态决定;(3)物体的内能与物体的位置高低、运动速度大小无关。
(4)改变内能的方式小题速练1.(多选)目前,很多省份已开展空气中PM2.5浓度的监测工作。
第3讲 热力学定律1热力学第一定律 (1)热力学第一定律:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
表达式:ΔU=Q+W。
(2)应用热力学第一定律解题的关键就是要熟记、记准符号法则。
对理想气体而言,温度只与内能有关,温度升高,内能增加,ΔU>0;温度降低,内能减少,ΔU<0。
从外界吸收热量Q>0,有促使内能增加的可能;向外界放出热量Q<0,有促使内能减少的可能;若系统与外界绝热,则Q=0,既不吸热,也不放热。
外界对气体做功,W>0,有促使内能增大的可能;气体对外界做功,W<0,有促使内能减少的可能。
【温馨提示】 理想气体内能变化的分析思路①由体积变化分析气体做功情况:体积膨胀,气体对外做功;气体被压缩,外界对气体做功。
②由温度变化判断气体内能变化:温度升高,气体内能增大;温度降低,气体内能减小。
③由热力学第一定律ΔU=W+Q判断气体是吸热还是放热。
福建福州1月考试)一定质量的理想气体在某一过程中,外界对气体做功7.0×104 J,气体内能减少1.3×105 J,则此过程( )。
A.气体从外界吸收热量2.0×105 JB.气体向外界放出热量2.0×105 JC.气体从外界吸收热量6.0×104 JD.气体向外界放出热量6.0×104 J【答案】B浙江绍兴第一中学模拟)一定量的理想气体在某一过程中,从外界吸收热量2.5×104 J,气体对外界做功1.0×104 J,则该理想气体的( )。
A.温度降低,密度增大B.温度降低,密度减小C.温度升高,密度增大D.温度升高,密度减小【答案】D2能量守恒定律 (1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能,分子运动具有内能,电荷的运动具有电能,原子核内部的运动具有原子能,等等。
(2)不同形式的能量之间可以相互转化:摩擦生热是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能,等等。
这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。
(3)能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
条件性:能量守恒定律是自然界的普遍规律,但某一系统或某一种形式的能是否守恒则是有条件的。
河南郑州开学自测)(多选)如图所示,电路与一绝热密闭汽缸相连,R为电阻丝,汽缸内有一定质量的理想气体,外界大气压恒定。
闭合开关后,绝热活塞K缓慢且无摩擦地向右移动,则下列说法正确的是( )。
A.气体分子平均动能变大B.电热丝放出的热量等于气体对外所做的功C.气体的压强不变D.气体分子单位时间内对器壁单位面积的撞击次数减少E.气体分子势能增加【答案】ACD南京第一中学开学考试)木箱静止于水平地面上,现在用一个80 N的水平推力推动木箱前进10 m,木箱受到的摩擦力为60 N,则转化为木箱与地面系统的内能U和转化为木箱的动能E k分别是( )。
A.U=200 J,E k=600 JB.U=600 J,E k=200 JC.U=600 J,E k=800 JD.U=800 J,E k=200 J【答案】B3热力学第二定律 (1)热力学第二定律的两种表述①克劳修斯表述:热量不能自发地从低温物体传到高温物体。
②开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
或表述为“第二类永动机是不可能制成的”。
(2)用熵的概念表示热力学第二定律:在任何自然过程中,一个孤立系统的总熵不会减小。
(3)热力学第二定律的微观意义:一切自发过程总是沿着分子热运动的无序性增大的方向进行。
(4)只从单一热库吸收热量,全部用来做功而不引起其他变化的热机叫作第二类永动机,由于违背了热力学第二定律,第二类永动机不可能制成。
【温馨提示】 热力学第一定律指出任何热力学过程中能量守恒,而对过程没有其他限制。
热力学第二定律指明哪些过程可以发生,哪些不可能发生,例如,第二类永动机不可能实现,热机效率不可能是100%,热现象过程中能量耗散是不可避免的,实际的宏观的热现象过程是不可逆的。
天津十校联考)关于两类永动机和热力学的两个定律,下列说法正确的是( )。
A.第二类永动机不可能制成是因为违反了热力学第一定律B.第一类永动机不可能制成是因为违反了热力学第二定律C.由热力学第一定律可知,做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D.由热力学第二定律可知,热量从低温物体传向高温物体是可能的,从单一热源吸收热量,完全变成功也是可能的【答案】D安徽合肥第一中学测试)(多选)关于热力学定律,下列说法正确的是( )。
A.为了增加物体的内能,必须对物体做功或向它传递热量B.对某物体做功,必定会使该物体的内能增加C.可以从单一热源吸收热量,使之完全变为功D.不可能使热量从低温物体传向高温物体E.功转变为热的宏观自然过程是不可逆过程【答案】ACE题型一热力学第一定律与能量守恒定律 1.内能与热量、内能的改变的区别:内能是物体的状态量,它是物体在某一状态某一时刻所具有的一种能量。
热量是过程量,它是在某一段过程中物体之间发生热交换的那一部分能量。
热量是物体在热传递的过程中其内能(热能)改变量的量度。
在只发生热传递的过程中,物体吸收(放出)多少热量,其内能就增加(减少)多少。
热量不属于哪一个物体,它量度的是流通量、交换量。
说某一物体具有多少热量,就如同说某一物体具有多少功一样不正确。
热传递时,热量一定是由温度高的物体传给温度低的物体,而与其他任何因素无关。
内能的改变是过程量,它可以由做功和热传递来量度。
2.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系。
此定律是标量式,应用时功、内能、热量的单位应统一为国际单位(焦耳)。
3.三种特殊情况:(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加。
(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加。
(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量。
【温馨提示】 对公式ΔU=Q+W符号的规定符号W QΔU+外界对物体做功物体吸收热量内能增加-物体对外界做功物体放出热量内能减少【例1】(多选)关于热力学定律,下列说法正确的是( )。
A.气体吸热后温度可能降低B.对气体做功一定改变其内能C.理想气体等压膨胀过程内能一定增加D.不可能从单一热库吸收热量,使之完全变成功E.如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间分子平均动能相同【解析】物体吸收热量,同时对外做功,如对外做的功大于吸收的热量,则内能减小,所以气体吸热后温度可能降低,故A项正确;做功和热传递都能改变物体的内能,若对物体做的功等于物体向外传递的热量,则物体的内能不变,故B项错误;根据理想气体的状态方程可知,理想气体等压膨胀过程中压强不变,体积增大则气体的温度一定升高,所以气体的内能增大,故C项正确;根据热力学第二定律知,从单一热库吸收热量可以完全变成功,但要引起其他的变化,D项错误;根据热平衡定律可知,如果两个系统分别与状态确定的第三个系统达到热平衡,那么这两个系统彼此之间也必定达到热平衡,即温度相同,分子平均动能相同,故E项正确。
【答案】ACE 【变式训练1】(2018海南华侨中学一模)如图所示为导热汽缸,其内封有一定质量理想气体,活塞与汽缸壁的接触面光滑,活塞上用弹簧悬挂。
当周围环境温度不变,大气压缓慢变大之后,下列说法中正确的是( )。
A.弹簧长度将改变B.气体内能将增加C.气体向外放出热量D.单位时间内碰撞汽缸单位面积的分子数不变【解析】以活塞和汽缸整体为研究对象,根据平衡条件可知,两者的重力大小等于弹簧弹力大小,与大气压无关,所以A项错误;周围环境的温度不变,汽缸是导热的,气体的温度不变,所以气体的内能不变,B项错误;由于大气压强增大,封闭气体的压强增大,根据理想气体状态方程可知,温度不变,压强增大,体积减小,外界对气体做功,根据热力学第一定律可知封闭气体一定放出热量,所以C项正确;温度不变,压强增大,体积减小,相等时间内碰撞汽缸单位面积的分子数一定增多,所以D项错误。
【答案】C题型二热力学定律与气体实验定律的综合 1.绝热过程和自由膨胀过程的判定方法:首先要清楚理想气体的本质特征,其次要能根据题意准确判断研究对象所经历的热学过程,尤其是做好绝热过程和自由膨胀过程的判定。
判定方法如下。
(1)绝热特征:其一,题目中明确说明是绝热容器(包括活塞)或直接说明没有热交换;其二,题目中对气体变化过程在时间上的描述凡出现“迅速”“快速”等字眼时,可以理解为被研究气体没有来得及进行热交换,即视为绝热过程。
(2)自由膨胀特征:一定量气体所在的空间突然和一定体积的真空相连通,气体充满整个连通空间的瞬时过程。
“自由膨胀”的气体不对外做功。
2.解题的基本思路【温馨提示】 气体状态变化的过程遵循理想气体状态方程,状态变化的同时必伴随着内能的改变、做功、吸放热等现象的发生。
因此气体的状态变化问题与热力学第一定律联系密切,分析这类综合问题时应注意:(1)气体的状态变化可由理想气体状态方程=C (C 是与P 、V 、T 无关的常量)分析。
pV T (2)气体的做功情况、内能变化及吸放热关系可由热力学第一定律分析。
【例2】(多选)如图甲所示,一定质量的氢气(可看作理想气体)由状态A 经状态B 变化到状态C 。
设由A 到B 、由B 到C 的过程外界对气体做的功分别为W 1、W 2,气体从外界吸收的热量分别为Q 1、Q 2,则( )。
A.W 1>0,W 2>0B.Q 1>0,Q 2>0C.|W 1|+|W 2|<|Q 1|+|Q 2|D.|W 1|+|W 2|>|Q 1|+|Q 2|【解析】如图乙所示,气体由A 经状态B 变化到状态C 的过程中,图象上的点与原点连线的斜率减小,由气态方程=C 知,pV T 气体的体积不断增大,气体对外界做功,所以W 1<0,W 2<0,A 项错误。
在A →B 过程中,气体的温度不断升高,同时对外做功,根据热力学第一定律ΔU 1=Q 1+W 1知需要吸热,所以Q 1>0;在B →C 过程中,气体的温度不变,内能不变,但同时对外做功,根据热力学第一定律ΔU 2=Q 2+W 2可知要吸热,所以Q 2>0,B 项正确;在全过程中,温度升高,内能增大,根据热力学第一定律ΔU=Q+W 得知,气体吸收的热量大于气体对外做的功,即|W 1|+|W 2|<|Q 1|+|Q 2|,C 项正确,D 项错误。