上海市普陀区2018-2019学年高三第一学期统考数学试卷
- 格式:pdf
- 大小:601.67 KB
- 文档页数:5
普陀区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 2. 给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能 3. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )4. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 5. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34C. 2 D .34-6. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i7. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .8. 已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=9. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A. B. C. D.10.集合{}1,2,3的真子集共有( )A .个B .个C .个D .个 11.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12112.设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A. BC. D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设函数()()()31321x a x f x x a x a x π⎧-<⎪=⎨--≥⎪⎩,,,若()f x 恰有2个零点,则实数的取值范围是 .14.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为.14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .15()23k x =-+有两个不等实根,则的取值范围是 .16.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.三、解答题(本大共6小题,共70分。
普陀区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )是定义在R 上的奇函数,若f (x )=,则关于x 的方程f (x )+a=0(0<a <1)的所有根之和为( ) A .1﹣()a B.()a ﹣1C .1﹣2aD .2a ﹣12. P是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c3. “a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 5. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2 B .﹣2C .8D .﹣86.定义运算,例如.若已知,则=( )A. B. C.D.7. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .3608. 高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .120班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=( )A .B .C .0D .﹣10.已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.11.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .12.已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )A .B .C .D .二、填空题13.已知双曲线的一条渐近线方程为y=x ,则实数m 等于 .14.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .16.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .17.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .18.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .三、解答题19.设函数f (x )=|x ﹣a|﹣2|x ﹣1|. (Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.20.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.21.已知函数f (x )=.(1)求f (f (﹣2));(2)画出函数f (x )的图象,根据图象写出函数的单调增区间并求出函数f (x )在区间(﹣4,0)上的值域.22.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.(1)求数列{a n }的通项公式; (2)设,T n 是数列{b n }的前n项和,求:使得对所有n ∈N *都成立的最大正整数m .23.(14分)已知函数1()ln ,()ex x f x mx a x m g x -=--=,其中m ,a 均为实数.(1)求()g x 的极值; 3分(2)设1,0m a =<,若对任意的12,[3,4]x x ∈12()x x ≠,212111()()()()f x f xg x g x -<-恒成立,求a 的最小值; 5分(3)设2a =,若对任意给定的0(0,e]x ∈,在区间(0,e]上总存在1212,()t t t t ≠,使得120()()()f t f t g x == 成立,求m 的取值范围. 6分24.已知集合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0} (1)求A ∩B(2)若A ∪C=C ,求实数m 的取值范围.普陀区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由题意,关于x的方程f(x)+a=0(0<a<1)共有5个根,从左向右分别为x1,x2,x3,x4,x5,则x≥1,f(x)=,对称轴为x=3,根据对称性,x≤﹣1时,函数的对称轴为x=﹣3,∴x1+x2=﹣6,x4+x5=6,∵0<x<1,f(x)=log2(x+1),∴﹣1<x<0时,0<﹣x<1,f(x)=﹣f(﹣x)=﹣log2(﹣x+1),∴﹣log2(1﹣x3)=﹣a,∴x3=1﹣2a,∴x1+x2+x3+x4+x5=﹣6+1﹣2a+6=1﹣2a,故选:C.2.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.3.【答案】B【解析】解:由a2≠1,解得a≠±1.∴“a≠1”推不出“a2≠1”,反之由a2≠1,解得a≠1.∴“a≠1”是“a2≠1”的必要不充分条件.故选:B.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.【答案】C【解析】考点:三角形中正余弦定理的运用.5.【答案】B【解析】解:∵f(x+4)=f(x),∴f(2015)=f(504×4﹣1)=f(﹣1),又∵f(x)在R上是奇函数,∴f(﹣1)=﹣f(1)=﹣2.故选B.【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.6.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.7.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.8.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B.【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.9.【答案】D【解析】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=1,∴f()=f()=f()+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D.【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.10.【答案】D第Ⅱ卷(共90分)11.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.12.【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.二、填空题13.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.14.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).15.【答案】(2,2).【解析】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.16.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.17.【答案】.【解析】解:∵θ是第四象限角,∴,则,又sin (θ+)=,∴cos (θ+)=.∴cos ()=sin (θ+)=,sin ()=cos (θ+)=.则tan (θ﹣)=﹣tan ()=﹣=.故答案为:﹣.18.【答案】 1 .【解析】解:f (x )的图象关于直线x=3对称,且f (5)=1,则f (1)=f (5)=1, f (x )是偶函数,所以f (﹣1)=f (1)=1. 故答案为:1.三、解答题19.【答案】【解析】解:(Ⅰ)f (x )≥1,即|x ﹣3|﹣|2x ﹣2|≥1 x时,3﹣x+2x ﹣2≥1,∴x ≥0,∴0≤x ≤1;1<x <3时,3﹣x ﹣2x+2≥1,∴x ≤,∴1<x ≤;x ≥3时,x ﹣3﹣2x+2≥1,∴x ≤﹣2∴1<x ≤,无解,…所以f (x )≥1解集为[0,].…(Ⅱ)当x ∈[1,2]时,f (x )﹣|2x ﹣5|≤0可化为|x ﹣a|≤3, ∴a ﹣3≤x ≤a+3,…∴,…∴﹣1≤a ≤4.…20.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【解析】试题解析:(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法. 21.【答案】【解析】解:(1)函数f (x )=.f (﹣2)=﹣2+2=0, f (f (﹣2))=f (0)=0.3分 (2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)… 由图可知:f (﹣4)=﹣2,f (﹣1)=1,函数f (x )在区间(﹣4,0)上的值域(﹣2,1].…12分.22.【答案】【解析】解:(1)由题意知:S n=n 2﹣n ,当n ≥2时,a n =S n ﹣S n ﹣1=3n ﹣2, 当n=1时,a 1=1,适合上式, 则a n =3n ﹣2; (2)根据题意得:b n===﹣,T n =b 1+b 2+…+b n =1﹣+﹣+…+﹣=1﹣,∴{T n }在n ∈N *上是增函数,∴(T n )min =T 1=,要使T n>对所有n ∈N *都成立,只需<,即m <15,则最大的正整数m 为14.23.【答案】解:(1)e(1)()e xx g x -'=,令()0g x '=,得x = 1. 列表如下:∵g (1) = 1,∴y =()g x 的极大值为1,无极小值. 3分(2)当1,0m a =<时,()ln 1f x x a x =--,(0,)x ∈+∞.∵()0x af x x -'=>在[3,4]恒成立,∴()f x 在[3,4]上为增函数. 设1e ()()e x h xg x x ==,∵12e (1)()x x h x x--'=> 0在[3,4]恒成立,∴()h x 在[3,4]上为增函数. 设21x x >,则212111()()()()f x f xg x g x -<-等价于2121()()()()f x f x h x h x -<-, 即2211()()()()f x h x f x h x -<-.设1e ()()()ln 1e xu x f x h x x a x x=-=---⋅,则u (x )在[3,4]为减函数.∴21e (1)()10e xa x u x x x -'=--⋅≤在(3,4)上恒成立. ∴11e e x x a x x---+≥恒成立. 设11e ()e x x v x x x --=-+,∵112e (1)()1e x x x v x x ---'=-+=121131e [()]24x x ---+,x ∈[3,4],∴1221133e [()]e 1244x x --+>>,∴()v x '< 0,()v x 为减函数.∴()v x 在[3,4]上的最大值为v (3) = 3 -22e 3.∴a ≥3 -22e 3,∴a 的最小值为3 -22e 3. 8分(3)由(1)知()g x 在(0,e]上的值域为(0,1].∵()2ln f x mx x m =--,(0,)x ∈+∞,当0m =时,()2ln f x x =-在(0,e]为减函数,不合题意.当0m ≠时,2()()m x m f x x-'=,由题意知()f x 在(0,e]不单调, 所以20e m <<,即2em >.①此时()f x 在2(0,)m 上递减,在2(,e)m上递增,∴(e)1f ≥,即(e)e 21f m m =--≥,解得3e 1m -≥.②由①②,得3e 1m -≥.∵1(0,e]∈,∴2()(1)0f f m =≤成立.下证存在2(0,]t m∈,使得()f t ≥1.取e m t -=,先证e 2m m-<,即证2e 0m m ->.③设()2e x w x x =-,则()2e 10x w x '=->在3[,)e 1+∞-时恒成立.∴()w x 在3[,)e 1+∞-时为增函数.∴3e ))01((w x w ->≥,∴③成立.再证()e m f -≥1.∵e e 3()1e 1m m f m m m --+=>>-≥,∴3e 1m -≥时,命题成立. 综上所述,m 的取值范围为3[,)e 1+∞-. 14分24.【答案】【解析】解:由合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0}.∴A={x|﹣1<x<6},,C={x|m<x<m+9}.(1),(2)由A∪C=C,可得A⊆C.即,解得﹣3≤m≤﹣1.。
上海市普陀区2018届高三一模数学试卷2017.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设全集{1,2,3,4,5}U =,若集合{3,4,5}A =,则U C A = 2. 若1sin 4θ=,则3cos()2πθ+= 3. 方程222log (2)log (3)log 12x x -+-=的解x =4. 91)x的二项展开式中的常数项的值为5. 不等式11|1|x ≥-的解集为6. 函数2()2cos 2xf x x =+的值域为7. 已知i 是虚数单位,z 是复数z 的共轭复数,若1012z ii+=,则z 在复平面内所对应的点所在的象限为第 象限8. 若数列{}n a 的前n 项和2321n S n n =-++(*n N ∈),则lim3nn a n→∞=9. 若直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y ,则1221x y x y +的值为10. 设1a 、2a 、3a 、4a 是1,2,3,4的一个排列,若至少有一个i (1,2,3,4i =)使得i a i =成立,则满足此条件的不同排列的个数为11. 已知正三角形ABC 点M 是ABC ∆所在平面内的任一动点,若||1MA =, 则||MA MB MC ++的取值范围为12. 双曲线2213x y -=绕坐标原点O 旋转适当角度可以成为函数()f x 的图像,关于此函 数()f x 有如下四个命题:① ()f x 是奇函数;② ()f x 的图像过点3()22或3)22-; ③ ()f x 的值域是33(,][,)22-∞-+∞;④ 函数()y f x x =-有两个零点; 则其中所有真命题的序号为二. 选择题(本大题共4题,每题5分,共20分) 13. 若数列{}n a (*n N ∈)是等比数列,则矩阵124568a a a a a a ⎛⎫⎪⎝⎭所表示方程组的解的个数 是( )A. 0个B. 1个C. 无数个D. 不确定14. “0m >”是“函数()|(2)|f x x mx =+在区间(0,)+∞上为增函数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要条件15. 用长度分别为2、3、5、6、9(单位:cm )的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为( ) A. 2582cm B. 4142cm C. 4162cm D. 4182cm16. 定义在R 上的函数()f x 满足2201()4210x xx f x x -⎧+≤<=⎨--≤<⎩,且(1)(1)f x f x -=+,则 函数35()()2x g x f x x -=--在区间[1,5]-上的所有零点之和为( )A. 4B. 5C. 7D. 8三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17.,底面直径2AB =,点C 是弧AB 的中点,点D 是母 线PA 的中点.(1)求该圆锥的侧面积;(2)求异面直线PB 与CD 所成角的大小.18. 某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降 低物流成本,已知购买x 台机器人的总成本21()150600p x x x =++万元. (1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件 送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量8(60)(130)()15480(30)m m m q m m ⎧-≤≤⎪=⎨⎪>⎩(单位:件),已知传统人工分拣每人每日的平均分拣量为1200 件,问引进机器人后,日平均分拣量达最大值时, 用人数量比引进机器人前的用人数量最多可减少 百分之几?19. 设函数()sin()f x x ωϕ=+(0ω>,||2πϕ<),已知角ϕ的终边经过点(1,,点11(,)M x y 、22(,)N x y 是函数()f x 图像上的任意两点,当12|()()|2f x f x -=时,12||x x -的 最小值是2π. (1)求函数()y f x =的解析式;(2)已知ABC ∆面积为,角C所对的边c =,cos ()4C f π=,求ABC ∆的周长.20. 设点1F 、2F 分别是椭圆2222:12x y C t t+=(0t >)的左、右焦点,且椭圆C 上的点到点2F 的距离的最小值为2-,点M 、N 是椭圆C 上位于x 轴上方的两点,且向量1F M 与 向量2F N 平行.(1)求椭圆C 的方程;(2)当120F N F N ⋅=时,求1F MN ∆的面积; (3)当21||||6F N F M -=时,求直线2F N 的方程.21. 设d 为等差数列{}n a 的公差,数列{}n b 的前n 项和n T ,满足1(1)2nn n n T b +=- (*n N ∈),且52d a b ==,若实数23{|}k k k m P x a x a -+∈=<<(*k N ∈,3k ≥),则称m 具有性质k P .(1)请判断1b 、2b 是否具有性质6P ,并说明理由;(2)设n S 为数列{}n a 的前n 项和,若{2}n n S a λ-是单调递增数列,求证:对任意的k (*k N ∈,3k ≥),实数λ都不具有性质k P ;(3)设n H 是数列{}n T 的前n 项和,若对任意的*n N ∈,21n H -都具有性质k P ,求所有满足条件的k 的值.上海市普陀区2018届高三一模数学试卷参考答案一. 填空题1. {1,2}2.143. 1-4. 84-5. [0,1)(1,2]6. [1,3]-7. 一8. 2-9. 16 10. 15 11. [0,6] 12. ①②二. 选择题13. C 14. A 15. C 16. B三. 解答题 17.(1)2π;(2)4π. 18.(1)300;(2)75%.19.(1)()sin(2)3f x x π=-;(2)ABC C ∆=20.(1)22184x y +=;(2)43;(3)2x =+. 21.(1)2b 具有性质6P ,1b 不具有性质6P ;(2)证明略;(3)3和4.。
普陀区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=()A .B .C .D.2. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}3. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( )A .y=x ﹣4B .y=2x ﹣3C .y=﹣x ﹣6D .y=3x ﹣24. 下列函数中,为奇函数的是()A .y=x+1B .y=x 2C .y=2xD .y=x|x|5. 直角梯形中,,直线截该梯形所得位于左边图OABC ,1,2AB OC AB OC BC ===P :l x t =形面积为,则函数的图像大致为()()S f t=6. 已知等差数列{a n }中,a n =4n ﹣3,则首项a 1和公差d 的值分别为( )A .1,3B .﹣3,4C .1,4D .1,27. 执行如图的程序框图,则输出S 的值为()A .2016B .2C .D .﹣18. 下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )9. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .6班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .11.把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)12.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm二、填空题13.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 14.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数()1e e x xf x =-e 的底数,则不等式的解集为________.()()2240f x f x -+-<16.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 . 17.方程(x+y ﹣1)=0所表示的曲线是 .18.设x ,y 满足的约束条件,则z=x+2y 的最大值为 .三、解答题19.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).20.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.21.已知函数f(x)=sinx﹣2sin2(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.22.已知直线l:x﹣y+9=0,椭圆E:+=1,(1)过点M(,)且被M点平分的弦所在直线的方程;(2)P是椭圆E上的一点,F1、F2是椭圆E的两个焦点,当P在何位置时,∠F1PF2最大,并说明理由;(3)求与椭圆E有公共焦点,与直线l有公共点,且长轴长最小的椭圆方程.23.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.24.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式(2)当d >1时,记c n =,求数列{c n }的前n 项和T n .普陀区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D D ADCCBDCC题号1112答案DD二、填空题13.:2x ﹣y ﹣1=0解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,∴圆心与点P 确定的直线斜率为=﹣,∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0.故答案为:2x ﹣y ﹣1=014.15.()32-,16. .17. 两条射线和一个圆 .18. 7 .三、解答题19. 20. 21. 22. 23.24.。
普陀区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体)1111] D .不是定值,随点M 的变化而变化且=2, =2, =2,则则几何体的体积为( ) 34意在考查学生空间想象能力和计算能86,86,86,88,88,88,88.若B 样本数据恰好 ) 是=2)z=( ) ,则使得﹣1)成立的x 的取值范围是( )..(﹣) D .7. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )A .kB .﹣kC .1﹣kD .2﹣k8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .59. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 10.经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 11.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题12.已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3D .﹣1或﹣3二、填空题13.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积S =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.14.已知f (x )=,则f (﹣)+f ()等于 .15.已知函数f (x )=有3个零点,则实数a 的取值范围是 .16.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .17.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .18.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .三、解答题19.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.20.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.21.(本小题满分12分)从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如下表:上一年的出险次数012345次以上(含5次)下一年保费倍率85%100%125%150%175%200%连续两年没有出险打7折,连续三年没有出险打6折经验表明新车商业车险保费与购车价格有较强的线性相关关系,下面是随机采集的8组数据(,)x y (其中x (万元)表示购车价格,y (元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由这8组数据得到的回归直线方程为:1055y bx =+.(1)求b ;(2)广东李先生2016年1月购买一辆价值20万元的新车, (i )估计李先生购车时的商业车险保费;(ii )若该车今年2月已出过一次险,现在又被刮花了,李先生到4S 店询价,预计修车费用为800元,保险专员建议李先生自费(即不出险),你认为李先生是否应该接受建议?说明理由.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)22.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;(3)判断函数f (x )在(1,+∞)上的单调性,并证明.23.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.24.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.普陀区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.2.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.3.【答案】D【解析】4.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.5.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.6.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x≥0时,f(x)为增函数,则当x≤0时,f(x)为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x ∈,故选:A .【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.7. 【答案】D【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k , ∴f (2016)=20163a+2016b+1=k , ∴20163a+2016b=k ﹣1,∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k . 故选:D .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.8. 【答案】C【解析】解:函数f (x )=+6x ﹣1,可得f ′(x )=x 2﹣8x+6,∵a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,∴a 2014,a 2016是方程x 2﹣8x+6=0的两实数根,则a 2014+a 2016=8.数列{a n }中,满足a n+2=2a n+1﹣a n , 可知{a n }为等差数列,∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16, 从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4. 故选:C .【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.9. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 10.【答案】D 【解析】考点:直线的方程.11.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.12.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.二、填空题13.【答案】114.【答案】4.【解析】解:由分段函数可知f()=2×=.f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,∴f()+f(﹣)=+.故答案为:4.15.【答案】(,1).【解析】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).16.【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,∴b=,∴椭圆的方程为=1.故答案为:=1.【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.17.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.18.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.三、解答题19.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P 使得△PAB 与△PMN 的面积相等,此时点P 的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.20.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08, 由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a 1,a 2,a 3,[90,100)之间的2个分数编号为b 1,b 2,在[80,100)之间的试卷中任取两份的基本事件为:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.21.【答案】 【解析】(1)1200(811182525313745)2588x =+++++++==万元, 13200(21502400314037504000456055006500)400088y =+++++++==元,直线1055y bx =+经过样本中心(,)x y ,即(25,4000). ∴105540001055117.825y b x---===.(2)(i )价值为20万元的新车的商业车险保费预报值为:117.82010553411⨯+=元. (ii )由于该车已出过一次险,若再出一次险, 则保费增加25%,即增加341125852.75⨯%=元.因为852.75800>,若出险,明年的保费已超800,故接受建议.22.【答案】【解析】解:(1)∵f (x )=2x ﹣,且f (2)=, ∴4﹣=, ∴a=﹣1;(2分) (2)由(1)得函数,定义域为{x|x ≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f(x)在(1,+∞)上是增函数,…(7分)任取x1,x2∈(1,+∞),不妨设x1<x2,则=…(10分)∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(1,+∞)上是增函数…(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.23.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++. 综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立.24.【答案】(1)x y 82=;(2)964.【解析】试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积22b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直线BD 的方程为()21--=x ky .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .利用四边形ABCD 面积BD AC S 21=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,则直线BD 的斜率为k1-,直线AC 的方程为)2(-=x k y ,联立⎪⎩⎪⎨⎧=+-=148)2(22y x x k y ,得0888)12(2222=-+-+k x k x k .111]∴2221218k k x x +=+,22212188k k x x +-=.12)1(324)(1||22212212++=-+⋅+=k k x x x x k AC .由于直线BD 的斜率为k 1-,用k 1-代换上式中的。
普陀区一中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或2. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .3. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .24. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为()A. B.11015C. D.310255. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米6. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( )12A.缩小到原来的一半B.扩大到原来的倍C.不变D.缩小到原来的167. 已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 的一个交点,若y x 82=l l ,则( )FQ PF 2==QF A .6B .3C .D .3834第Ⅱ卷(非选择题,共100分)8. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数9. 已知函数()在定义域上为单调递增函数,则的最小值是()2()2ln 2f x a x x x =+-a R ∈A .B .C .D . 141210.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为()O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.11.已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④12.设集合是三角形的三边长,则所表示的平面区域是( )(){,|,,1A x y x y x y =--}AA .B .C .D .二、填空题13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.14.若x ,y 满足约束条件,若z =2x +by (b >0)的最小值为3,则b =________.{x +y -5≤02x -y -1≥0x -2y +1≤0)15.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 . 16.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .17.设平面向量,满足且,则,的最大()1,2,3,i a i =1i a = 120a a ⋅= 12a a += 123a a a ++值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.三、解答题18.(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、、)0,1(1-F )0,1(2F P 1F 2F C 1PF 21F F 构成等差数列.2PF (I )求椭圆的方程;C (II )设经过的直线与曲线C 交于两点,若,求直线的方程.2F m P Q 、22211PQ F P F Q =+m 19.已知向量,,.(1)若点A 、B 、C 能构成三角形,求实数m 的取值范围;(2)若在△ABC 中,∠B 为直角,求∠A . 20.如图所示,在正方体中.1111ABCD A B C D (1)求与所成角的大小;11A C 1B C (2)若、分别为、的中点,求与所成角的大小.E F AB AD 11A C EF21.已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .(1)求椭圆的方程;(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.22.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .23.(本小题满分12分)已知函数,数列满足:,().21()x f x x +={}n a 12a =11n n a f a +⎛⎫= ⎪⎝⎭N n *∈(1)求数列的通项公式;{}n a (2)设数列的前项和为,求数列的前项和.{}n a n n S 1n S ⎧⎫⎨⎬⎩⎭n n T 【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.24.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.普陀区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点. 2. 【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a 的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题. 3. 【答案】D【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1.下列a 的取值能使“¬p ”是真命题的是a=2.故选;D . 4. 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P =.3105. 【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt △ABD 中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD 2=BC 2+BD 2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键. 6. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来2113V r h π=的倍,底面半径缩短到原来的,则体积为,所以,故选A.12222111(2)326V r h r h ππ=⨯=122V V =考点:圆锥的体积公式.17. 【答案】A解析:抛物线C :的焦点为F (0,2),准线为:y=﹣2,y x 82=l 设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .8. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数.故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 9. 【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.10.【答案】D【解析】由切线性质知,所以,则由,得,PQ CQ ⊥222PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,2222(3)(4)4x y x y -++-=+68210x y --=P 11.【答案】 D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ),又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x ),图象③对应函数g (x ).故选:D .【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题. 12.【答案】A 【解析】考点:二元一次不等式所表示的平面区域.二、填空题13.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.14.【答案】【解析】约束条件表示的区域如图,当直线l:z=2x+by(b>0)经过直线2x-y-1=0与x-2y+1=0的交点A(1,1)时,z min=2+b,∴2+b =3,∴b=1.答案:115.【答案】 (1,±2) .【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.16.【答案】 6 .【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2,f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.17.. 1+【解析】∵,∴,22212112221012a a a a a a +=+⋅+=++= 12a a +=而,222123121233123()2()21cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅<+>+≤+∴,当且仅当与.1231a a a ++≤+ 12a a + 3a 1+三、解答题18.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若为直线,代入得,即, m 1=x 13422=+y x 23±=y )23,1(P )23,1(-Q 直接计算知,,,不符合题意 ; 29PQ =225||||2121=+Q F P F 22211PQ F P F Q ¹+1=x ②若直线的斜率为,直线的方程为m k m (1)y k x =-由得 ⎪⎩⎪⎨⎧-==+)1(13422x k y y x 0)124(8)43(2222=-+-+k x k x k 设,,则, 11(,)P x y 22(,)Q x y 2221438kk x x +=+222143124k k x x +-=⋅由得,22211PQ F P F Q =+110F P FQ ×=即,0)1)(1(2121=+++y y x x 0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k 代入得,即 0438)1()143124)(1(222222=+⋅-+++-+kk k k k k 0972=-k 解得,直线的方程为773±=km )1(773-±=x y 19.【答案】【解析】解:(1)…(2分)∵A ,B ,C 不共线,∴2m ≠m ﹣2即m ≠﹣2…(4分)(2)∴m=3…(7分),…(10分)【点评】本题考查向量的数量积判断两个向量的垂直关系,考查计算能力,是基础题.20.【答案】(1);(2).60︒90︒【解析】试题解析:(1)连接,,由是正方体,知为平行四边形,AC 1AB 1111ABCD A B C D -11AA C C 所以,从而与所成的角就是与所成的角.11//AC A C 1B C AC 11A C 1B C 由可知,11AB AC B C ==160B CA ∠=︒即与所成的角为.11A C BC 60︒考点:异面直线的所成的角.【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.21.【答案】【解析】解:(1)由题意得e==,a 2=2b ,a 2﹣b 2=c 2,解得a=,b=c=1故椭圆的方程为x2+=1;(2)设A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0).联立直线y=x+m与椭圆的方程得,即3x2+2mx+m2﹣2=0,△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,x1+x2=﹣,所以x0==﹣,y0=x0+m=,即M(﹣,).又因为M点在圆x2+y2=5上,可得(﹣)2+()2=5,解得m=±3与m2<3矛盾.故实数m不存在.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.22.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.23.【答案】【解析】(1)∵,∴. 211()2x f x x x +==+11(2n n na f a a +==+即,所以数列是以首项为2,公差为2的等差数列,12n n a a +-={}n a ∴.(5分)1(1)22(1)2n a a n d n n =+-=+-=(2)∵数列是等差数列,{}n a ∴,1()(22)(1)22n n a a n n n S n n ++===+∴. (8分)1111(1)1n S n n n n ==-++∴1231111n nT S S S S =++++ 11111111(()()()1223341n n =-+-+-++-+ . (12分)111n =-+1n n =+24.【答案】【解析】(Ⅰ)证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,∵PD ⊥底面ABCD ,∴PD ⊥AC ,∴AC ⊥平面PDB ,∴平面AEC ⊥平面PDB .(Ⅱ)解:设AC ∩BD=O ,连接OE ,由(Ⅰ)知AC ⊥平面PDB 于O ,∴∠AEO 为AE 与平面PDB 所的角,∴O ,E 分别为DB 、PB 的中点,∴OE ∥PD ,,又∵PD ⊥底面ABCD ,∴OE ⊥底面ABCD ,OE ⊥AO ,在Rt △AOE 中,,∴∠AEO=45°,即AE 与平面PDB 所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.。
2018学年第一学期普陀区高三数学质量调研卷__ 21. 函数f(x) . 1 x 的定义域为•x12. 若sin ,贝U cos .3 2 --------------〔丄,1, 2,3,若f(x) x为偶函数,则3 25. 若一个球的体积是其半径的4倍,则该球的表面积为3 2018.123.设24. 若直线I经过抛物线C : y4x的焦点且其一个方向向量为 d (1,1),则直线I的方程为6.在一个袋中装有大小、质地均相同的9只球,其中红色、黑色、白色各3只,若从袋中随机取出两个球,则至少有一个红球的概率为_________ (结果用最简分数表示)7.设(x 1)(x 1)5 a0a1x a2x2 a3x36 ra§x,则a3(结果用数值表示)8 88. _________________________________________________________________设a 0且a 1,若log a(sinx cosx) 0,则sin x cos x ____________________ .9. 如图,正四棱柱ABCD A1B1C1D1的底面边长为4,记A1C1 B1D1 F ,10.某人的月工资由基础工资和绩效工资组成.2010年每月的基础工资为2100元、绩效工资为2000元.从2011年起每月基础工资比上一年增加210元、绩效工资为上一年的11.12. 110%.照此推算,此人2019年的年薪为万元(结果精确到0.1).已知点A( 2,0),设B、C是圆0 : x2y21上的两个不同的动点,且向量OB tOA (1 t)OC (其中t为实数),则AB AC设a为整数,记函数f(x)-2 log aa x10且a 1, 0 x a )的反函数为f (x),则f1 1f 1 2f 1 3 f 则T T T2a 12a 12a 11 2a2a 1二、选择题20分,每题5(本大题共有4题,满分纸的相应位置,将代表正确选项的小方格涂黑(C)实轴长为12(D)顶点坐标为6,014.函数 y 2 cos 2x —的图像 ........................................ ()4(A)关于原点对称 (B)关于点38,0对称(C)关于y 轴对称(D)关于直线 x对称415.若a 、b 、c 表示直线,、 表示平面,则a//b ”成立的一个充分非必要条件是()(A) a c , b c(B)a 〃,b//(C)a, b(D) a//c . b c若0 a 1,则函数g(x)在区间 4,5上零点的个数是(A) 5 (C)7三、解答题(本大题共有 5题,满分76分)解答下列各题必须在答题纸相应位置写出必要的步骤 17. (本题满分14分,第1小题满分6分,第2小题满分8分)1 在厶ABC 中,三个内角 A , B , C 所对的边依次为a ,b ,c ,且cosC .4(1 )求 2cos 2 — B sin2C 的值;2(2 )设c 2,求a b 的取值范围•13.下列关于双曲线x 22y 31的判断,正确的是(A)渐近线方程为2y(B)焦点坐标为 3,016.设f (x)是定义在R 上的周期为 4的函数.且f (x)sin 2 x,0 2log 2 x,114•记 g(x) f(x)(B)6 (D)818. (本题满分14分,第1小题满分6分,第2小题满分8分)2 2已知曲线 :—— 1的左、右顶点分别为 A , B ,设P 是曲线 上的任意一点16 12如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有 一端所在的直线竖直向上.并记组成该“钉”的四条等长的线段公共点为 0,钉尖为A i ( i 1,2,3,4).(1 )设0A a ( a 0),当A 「A 2,A 3在同一水平面内时,求 0几与平面A 1A 2A 3所成角的大小 (结果用反三角函数值表示);(2)若该“钉”的三个端尖所确定的三角形的面积为3.. 2 cm 2,要用某种线型材料复制100枚这(1 )当P 异于A , B 时,求证:K k2是定值; (2)设点C 满足AC 求的值. 19.(本题满分14分,第种“钉”(损耗忽略不计) ,共需要该种材料多少米?20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分设数列a n满足a1 3,a n 153a n2a n(1 )求a2、a3的值;(2)求证: 丄1a n 是等比数列,并求limnn的值;a1 a2 a n6分)(3 )记a n 的前n 项和为S n ,是否存在正整数 k ,使得对于任意的n ( n N 且n 2)均有S n k 成立?若存在,求出 k 的值;若不存在,请说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数 f(x) 2x ( x R ),记 g(x) f(x) f( x). (1 )解不等式:f(2x) f (x) 6 ;2(2 )设k 为实数,若存在实数 X 。
普陀区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种2. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a3. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.154. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A.(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D.(﹣,+∞)5. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④D .①③6. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( ) A.B.C.D. =0.08x+1.237. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >28. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,410.若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -11.已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .12.已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π二、填空题13.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .14.若与共线,则y= . 15.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想. 16.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________17.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .18.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .三、解答题19.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.21.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==.(1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.22.已知函数且f (1)=2.(1)求实数k 的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.23.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .24.如图,四棱锥P ﹣ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC=PD=2,E 为PC 的中点,.求证:PC ⊥BC ;(Ⅱ)求三棱锥C ﹣DEG 的体积;(Ⅲ)AD 边上是否存在一点M ,使得PA ∥平面MEG .若存在,求AM 的长;否则,说明理由.普陀区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.2.【答案】A【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,求得10≤ω<12,故选:A.3.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.4.【答案】A【解析】解:∵f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,故函数y=h(x)=f(x)﹣g(x)=x2﹣5x+4﹣m在[0,3]上有两个不同的零点,故有,即,解得﹣<m≤﹣2,故选A.【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.5.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确; 在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .6. 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D 由线性回归直线方程样本点的中心为(4,5), 将x=4分别代入A 、B 、C ,其值依次为8.92、9.92、5,排除A 、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C 满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.7. 【答案】C【解析】解:由于f (x )=x 3+ax 2+(a+6)x ﹣1,有f ′(x )=3x 2+2ax+(a+6).若f (x )有极大值和极小值,则△=4a 2﹣12(a+6)>0,从而有a >6或a <﹣3, 故选:C .【点评】本题主要考查函数在某点取得极值的条件.属基础题.8. 【答案】B【解析】由复数的除法运算法则得,i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=,所以21z z 的虚部为54.9. 【答案】A 【解析】考点:1、集合的表示方法;2、集合的补集及交集. 10.【答案】A 【解析】试题分析:42731,1i i i i i ==-∴==-,因为复数满足71i i z +=,所以()1,1i i i i z i z+=-∴=-,所以复数的虚部为,故选A.考点:1、复数的基本概念;2、复数代数形式的乘除运算. 11.【答案】B【解析】解:f (x )=2x ,则f'(x )=2xln2, 故选:B .【点评】本题考查了导数运算法则,属于基础题.12.【答案】 B 【解析】解:因为函数f (x )的图象过原点,所以f (0)=0,即b=2.则f (x )=x 3﹣x 2+ax ,函数的导数f ′(x )=x 2﹣2x+a ,因为原点处的切线斜率是﹣3, 即f ′(0)=﹣3, 所以f ′(0)=a=﹣3, 故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x 2+y 2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB =﹣,k OA =,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D 内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.二、填空题13.【答案】0.【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,其图象开口向上,对称抽为:x=1,所以函数f(x)在[2,4]上单调递增,所以f(x)的最小值为:f(2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.14.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.15.【答案】A【解析】16.【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:17.【答案】1.【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.18.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题三、解答题19.【答案】【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A所以BD⊥平面PAC(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)所以=(1,,﹣2),设PB与AC所成的角为θ,则cosθ=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC⊥平面PDC,所以=0,即﹣6+=0,解得t=,所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力20.【答案】【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,整理得:PA=;(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得:==,∴PB=sinθ,PC=sin(﹣θ),∴△PBC的面积S(θ)=PB•PCsin=sin(﹣θ)sinθ=sin(2θ+)﹣,θ∈(0,),则当θ=时,△PBC面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.21.【答案】(1)131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)证明见解析.【解析】试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)由于{}n b 为递增数列,所以取1162n n a -⎛⎫=⋅- ⎪⎝⎭,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,其前项和为()1114414n -<+.考点:数列与裂项求和法.122.【答案】【解析】解:(1)f (1)=1+k=2; ∴k=1,,定义域为{x ∈R|x ≠0};(2)为增函数;证明:设x 1>x 2>1,则:==;∵x 1>x 2>1;∴x 1﹣x 2>0,,;∴f (x 1)>f (x 2);∴f (x )在(1,+∞)上为增函数.23.【答案】(1)102n a n =-;(2)229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.【解析】试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .当5n ≤时,12||||||n n S a a a =++2129n a a a n n =+++=-∴229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1考点:等差数列的通项公式;数列的求和.24.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.下面证明之:∵E为PC的中点,O是AC的中点,∴EO∥平面PA,又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,∴,∴所求AM的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.。
普陀区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A. B. C.D.2. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞)C .(﹣9,+∞)D .(﹣∞,﹣9)3. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94B . C.92 D .4 4. 曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .136. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧7. 若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -8. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( ) A.﹣ B.C .﹣1D .19. 下列各组函数中,表示同一函数的是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A 、()f x =x 与()f x =2x xB 、()1f x x =-与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =10.已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .11.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]12.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.二、填空题13.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系是 .14.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .15.下列结论正确的是①在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;②以模型y=ce kx 去拟合一组数据时,为了求出回归方程,设z=lny ,其变换后得到线性回归方程z=0.3x+4,则c=e 4;③已知命题“若函数f (x )=e x ﹣mx 在(0,+∞)上是增函数,则m ≤1”的逆否命题是“若m >1,则函数f (x )=e x ﹣mx 在(0,+∞)上是减函数”是真命题;④设常数a ,b ∈R ,则不等式ax 2﹣(a+b ﹣1)x+b >0对∀x >1恒成立的充要条件是a ≥b ﹣1.16.已知数列}{n a 的各项均为正数,n S 为其前n 项和,且对任意∈n N *,均有n a 、n S 、2n a 成等差数列,则=n a .17.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .18.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .三、解答题19.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.20.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.21.已知二次函数f (x )=x 2+2bx+c (b ,c ∈R ).(1)若函数y=f (x )的零点为﹣1和1,求实数b ,c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b 的取值范围.22.已知f ()=﹣x ﹣1.(1)求f (x );(2)求f (x )在区间[2,6]上的最大值和最小值.23.(本小题满分12分)已知函数()23cos cos 2f x x x x =++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.24.【南师附中2017届高三模拟一】已知,a b 是正实数,设函数()()ln ,ln f x x x g x a x b ==-+. (1)设()()()h x f x g x =- ,求 ()h x 的单调区间; (2)若存在0x ,使03,45a b a b x ++⎡⎤∈⎢⎥⎣⎦且()()00f x g x ≤成立,求b a 的取值范围.普陀区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.2. 【答案】B【解析】解:原函数是由t=x 2与y=()t﹣9复合而成,∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数; 又y=()t﹣9其定义域上为减函数,∴f (x )=()x2﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,∴函数ff (x )=()x2﹣9的单调递减区间是(0,+∞).故选:B .【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.3. 【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。