精选河南省2017届高三数学上学期期末考试试题文
- 格式:doc
- 大小:3.51 MB
- 文档页数:15
豫南九校2017-2018学年上期期末联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则集合中元素的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D.2. 已知:直线与直线平行,则的值为()A. 1B. -1C. 0D. -1或1【答案】A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.3. 函数,则()A. B. 4 C. D. 8【答案】D【解析】∵,∴.故选D4. 设是两个不同的平面,是直线且,,若使成立,则需增加条件()A. 是直线且,B. 是异面直线,C. 是相交直线且,D. 是平行直线且,【答案】C【解析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由直线和平面平行的判定定理可得.故选C.5. 已知函数在区间上是单调增函数,则实数的取值范围为()A. B. C. D.【答案】B【解析】函数f(x)=x2-2ax-3的图象开口向上,对称轴为直线x=a,画出草图如图所示.由图象可知,函数在[a,+∞)上是单调增函数,因此要使函数f(x)在区间[1,2]上是单调增函数,,只需a≤1,从而a∈(-∞,1].故选B.6. 已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B. C. D.【答案】C【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为. 故选C.7. 设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.【答案】B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=ln x单调递增,所以,故选B.8. 已知是定义在上的偶函数,那么的最大值是()A. 0B.C.D. 1【答案】C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.9. 某四面体的三视图如图,则该四面体的体积是()A. 1B.C.D. 2【答案】B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为. 故选B.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10. 已知实数满足方程,则的最小值和最大值分别为()A. -9,1B. -10,1C. -9,2D. -10,2【答案】A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,.....................故选A.11. 已知函数,若对一切,都成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】由题意得,对一切,f(x)>0都成立,即,而,则实数a的取值范围为.故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值) .12. 已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A. 10B. 13C. 15D. 20【答案】B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52.则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13.故选B.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 函数的单调递增区间为__________.【答案】(-∞,-1)【解析】试题分析:因为,所以当时,而,所以函数的单调递增区间为.考点:复合函数单调性14. 已知集合,,则集合中子集个数是__________【答案】4【解析】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离,所以直线与圆相交.集合有两个元素.故集合中子集个数为4.故答案为:4.15. 如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________.【答案】【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形, AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.故答案为:2.点睛:求两条异面直线所成角的关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.16. 已知函数,则函数的零点个数为__________.【答案】3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3.故答案为:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.【答案】(1)A∪B={x|-2<x<3},;(2)(-∞,-2].【解析】试题分析:(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}.(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].18. 已知直线及点.(1)证明直线过某定点,并求该定点的坐标;(2)当点到直线的距离最大时,求直线的方程.【答案】(1)证明见解析,定点坐标为;(2)15x+24y+2=0.【解析】试题分析:(1)直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由,即可解得定点;(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.试题解析:(1)证明:直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由,得,所以直线l恒过定点.(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大.又直线PA的斜率,所以直线l的斜率k l=-.故直线l的方程为,即15x+24y+2=0.19. 设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.【答案】(1);(2)(-∞,-2)∪(0,2).【解析】试题分析:(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,综上所述解集是(-∞,-2)∪(0,2).20. 已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.【答案】(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0.【解析】试题分析:(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==.∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2).综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.21. 如图,四面体中,平面,,,,.(1)求四面体的四个面的面积中,最大的面积是多少?(2)证明:在线段上存在点,使得,并求的值.【答案】(1);(2)证明见解析.【解析】试题分析:(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA 交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.22. 已知函数,.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围;(3)是否存在实数,使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.【答案】(1)[0,2];(2)(-∞,);(3)答案见解析.【解析】试题分析:(1)由h(x)=-2(log3x-1)2+2,根据log3x∈[0,2],即可得值域;(3)由,假设最大值为0,因为,则有,求解即可.试题解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因为x∈[1,9],所以log3x∈[0,2],故函数h(x)的值域为[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k对一切t∈[0,2]恒成立,令,其对称轴为,所以当时,的最小值为,综上,实数k的取值范围为(-∞,)..(3)假设存在实数,使得函数的最大值为0,由.因为,则有,解得,所以不存在实数,使得函数的最大值为0.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值) .。
2017年普通高等学校招生统一考试全国卷Ⅲ理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22x y y x│,则A B=(,)(,)1│,B={}x y x y+=中元素的个数为A.3 B.2 C.1D.0【答案】B【解析】【考点】交集运算;集合中的表示方法。
【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件。
集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性。
2.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12 BCD .2【答案】C 【解析】【考点】 复数的模;复数的运算法则 【名师点睛】共轭与模是复数的重要性质,注意运算性质有: (1)1212z zz z ±=± ;(2) 1212z z z z ⨯=⨯;(3)22z z z z⋅== ;(4)121212z z z z z z -≤±≤+ ;(5)1212z zz z =⨯ ;(6)1121z z z z =。
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】动性大,选项D说法正确;故选D。
【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律。
一.基础题组1。
【湖南省长沙市长郡中学2017届高三摸底考试数学(理)试题】已知等差数列{}na 的前n 项和nS 满足350,5SS ==,数列21211{}n n a a -+的前2016项的和为 。
【答案】20164031-考点:等差数列的通项公式,裂项相消法求和.2. 【江西省新余市第一中学2017届高三上学期调研考试(一)(开学考试)】已知等比数列{}na 中,262,8a a ==,则345a a a =( )A .64±B .64C .32D .16 【答案】B 【解析】试题分析:由等比数列的性质可知226416a a a ⋅==,而246,,a a a 同号,故44a =,所以3345464a a a a ==. 考点:等比数列的性质.3。
【江西省新余市第一中学2017届高三上学期调研考试(一)(开学考试)】 数列{}na 满足()121112n n an N a a *+=+=∈,记212n n n b a =,则数列{}nb 的前n 项和nS = .【答案】2332nn +-【解析】 试题分析:11n a +=得221112n n a a +-=,且2111a =,所以数列21n a ⎧⎫⎨⎬⎩⎭构成以1为首项,2为公差的等差数列,所以211(1)221nn n a =+-⨯=-,从而得到2121n a n =-,则212nnn b-=, 所以21321222nn n S-=+++,231113232122222nn n n n S +--=++++, 两式相减,得2111111121222222n n n n S -+-=++++-1111121323122222n n n n n -++-+=+--=- 所以2332nnn S+=-. 考点:错位相减法求和.【名师点睛】利用错位相减法求数列的前n 项和时,应注意两边乘公比后,对应项的幂指数会发生变化,为避免出错,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两式相减,除第一项和最后一项外,剩下的1n -项是一个等比数列.4。
湖南省常德市2018届高三上学期检测考试(期末)数学(文)试题Word版含答案常德市2017-2018学年度上学期高三数学(文科)检测考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合$A=\{1,2,3\},B=\{2,3,4,5\}$,则$A\cap B$中元素的个数为()。
A.2.B.3.C.4.D.5.2.在复平面内,复数$z=1+2i$($i$为虚数单位)对应的点所在的象限为()。
A.第一象限。
B.第二象限。
C.第三象限。
D.第四象限。
3.在某学校图书馆的书架上随意放着有编号为1,2,3,4,5的五本史书,若某同学从中任意选出两本史书,则选出的两本史书编号相连的概率为()。
A.$\frac{1}{10}$。
B.$\frac{1}{5}$。
C.$\frac{2}{5}$。
D.$\frac{1}{2}$。
4.元朝著名数学家XXX《四元玉鉴》中有一首诗:“我有一壶酒,携着XXX走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”其意思为:“诗人带着装有一倍分酒的壶去春游,先遇到酒店就将酒添加一倍,后遇到朋友饮酒一斗,如此三次先后遇到酒店和朋友,壶中酒恰好饮完,问壶中原有多少酒?”用程序框图表达如图所示,即最终输出的$x=$,那么在这个空白框中可以填入()。
A.$x=x-1$。
B.$x=2x-1$。
C.$x=2x$。
D.$x=2x+1$。
5.已知向量$a=(x,y),b=(1,2),c=(-1,1)$,若满足$a\parallel b,b\perp(a-c)$,则向量$a$的坐标为()。
A.$(\frac{5}{11},\frac{5}{11})$。
B.$(-\frac{5}{11},-\frac{5}{11})$。
C.$(\frac{6}{11},\frac{3}{11})$。
D.$(\frac{5}{11},\frac{6}{11})$。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
2016-2017学年江西省新余一中高三(上)第二次段考数学试卷(文科)一、选择题(每小题5分,共60分)1.已知复数z=(其中i是虚数单位),那么z的共轭复数是()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i2.函数的定义域是()A.B.C.D.[0,+∞)3.已知集合A={x|y=lg(2x﹣x2)},B={y|y=2x,x>0},R是实数集,则(∁R B)∩A=()A.[0,1]B.(0,1]C.(﹣∞,0]D.以上都不对4.若0<x<y<1,则()A.3y<3x B.log x3<log y3 C.log4x<log4y D.5.已知函数f(x)=2sin(2x﹣)﹣1,则下列结论中错误的是()A.f(x)的最小正周期为πB.f(x)的图象关于直线x=对称C.f(x)在区间[0,]上是增函数D.函数f(x)的图象可由g(x)=2sin2x﹣1的图象向右平移个单位得到6.下列判断错误的是()A.若p∧q为假命题,则p,q至少之一为假命题B.命题“∀x∈R,x2﹣x﹣1<0”的否定是“∃x∈R,x2﹣x﹣1≥0”C.幂函数f(x)=mx m﹣2在其定义域上为减函数D.“若am2<bm2,则a<b”的否命题是假命题7.函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A. B.C.D.8.平面向量与的夹角为30°,已知=(﹣1,),||=2,则|+|=()A. B. C. D.9.函数f(x)=log a(2﹣ax2)在(0,1)上为减函数,则实数a的取值范围是()A.[,1)B.(1,2)C.(1,2]D.(,1)10.函数f(x)为奇函数,且图象关于x=1对称,当x∈(0,1)时,f(x)=ln(x+1),则当x∈(3,4)时,f(x)为()A.增函数且f(x)>0 B.增函数且f(x)<0 C.减函数且f(x)>0 D.减函数且f(x)<011.已知命题p:函数f(x)=为R上的单调函数,则使命题p成立的一个充分不必要条件为()A.a∈(﹣1,0)B.a∈[﹣1,0)C.a∈(﹣2,0)D.a∈(﹣∞,﹣2)12.已知定义在区间[0,]上的函数y=f(x)的图象关于直线x=对称,当x时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为()A.B. C. D.3π二、填空题:本大题共4小题,每小题5分,共20分.13.已知对不同的a值,函数f(x)=2+a x﹣1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是.14.若幂函数f(x)的图象经过点,则该函数在点A处的切线方程为.15.已知命题,命题q:x2+2x+1﹣m≤0(m>0)若非p是非q的必要不充分条件,那么实数m的取值范围是.16.已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x(a∈R)在区间(﹣2,2)不单调,则a 的取值范围是.三、解答题:解答应写出文字说明.证明过程或演算步骤.17.已知sin(π﹣α)=,α∈(0,).(1)求sin2α﹣cos2的值;(2)求函数f(x)=cosαsin2x﹣cos2x的单调递增区间.18.为检验寒假学生自主学生的效果,级部对某班50名学生各科的检测成绩进行了统计,下面是物理成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的x值及平均成绩;(2)从分数在[70,80)中选5人记为a1,a2,…,a5,从分数在[40,50)中选3人,记为b1,b2,b3,8人组成一个学习小组现从这5人和3人中各选1人做为组长,求a1被选中且b1未被选中的概率.19.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A;(3)求三棱锥C﹣BC1D的体积.20.已知椭圆C: +=1(a>b>0)的离心率为,且过点P(3,2).(1)求椭圆C的标准方程;(2)设与直线OP(O为坐标原点)平行的直线l交椭圆C于A,B两点,求证:直线PA,PB与x轴围成一个等腰三角形.21.已知函数f(x)=,g(x)=ax﹣2lnx﹣a (a∈R,e为自然对数的底数).(1)求f(x)的极值;(2)在区间(0,e]上,对于任意的x0,总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0),求a的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10.曲线c1:(α为参数).(Ⅰ)求曲线c1的普通方程;(Ⅱ)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣|x﹣2|.(1)若函数f(x)的值域为[﹣4,4],求实数m的值;(2)若不等式f(x)≥|x﹣4|的解集为M,且[2,4]⊆M,求实数m的取值范围.2016-2017学年江西省新余一中高三(上)第二次段考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共60分)1.已知复数z=(其中i是虚数单位),那么z的共轭复数是()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简得答案.【解答】解:∵z==,∴.故选:A.2.函数的定义域是()A.B.C.D.[0,+∞)【考点】函数的定义域及其求法.【分析】根据函数成立的条件即可求函数的定义域.【解答】解:要使函数有意义,则,即,即,解得x>﹣且x≠0,故函数的定义域为,故选:B.3.已知集合A={x|y=lg(2x﹣x2)},B={y|y=2x,x>0},R是实数集,则(∁R B)∩A=()A.[0,1]B.(0,1]C.(﹣∞,0]D.以上都不对【考点】交、并、补集的混合运算.【分析】集合A为对数函数的定义域,集合B为指数函数的值域,分别解出再进行运算即可.【解答】解:由2x﹣x2>0,得x(x﹣2)>0,即0<x<2,故A={x|0<x<2},由x>0,得2x>1,故B={y|y>1},∁R B={y|y≤1},则(∁R B)∩A=(0,1]故选B4.若0<x<y<1,则()A.3y<3x B.log x3<log y3 C.log4x<log4y D.【考点】对数函数的单调性与特殊点;指数函数的单调性与特殊点.【分析】根据对数函数的单调性,y=log4x为单调递增函数,可得答案.【解答】解:∵函数f(x)=log4x为增函数∴log4x<log4y故选C.5.已知函数f(x)=2sin(2x﹣)﹣1,则下列结论中错误的是()A.f(x)的最小正周期为πB.f(x)的图象关于直线x=对称C.f(x)在区间[0,]上是增函数D.函数f(x)的图象可由g(x)=2sin2x﹣1的图象向右平移个单位得到【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的单调性.【分析】由条件利用正弦函数的周期性、图象的对称性、单调性,y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:对于函数f(x)=2sin(2x﹣)﹣1,由于它的最小正周期为π,故A正确;当x=时,f(x)=2sin(2x﹣)﹣1=1,函数取得最大值,故f(x)的图象关于直线x=对称,故B正确;在区间[0,]上,2x﹣∈[﹣,],故f(x)在区间[0,]上是增函数,故C 正确.由于把g(x)=2sin2x﹣1的图象向右平移个单位得到y=2sin2(x﹣)﹣1=2sin(2x ﹣)﹣1的图象,故D错误,故选:D.6.下列判断错误的是()A.若p∧q为假命题,则p,q至少之一为假命题B.命题“∀x∈R,x2﹣x﹣1<0”的否定是“∃x∈R,x2﹣x﹣1≥0”C.幂函数f(x)=mx m﹣2在其定义域上为减函数D.“若am2<bm2,则a<b”的否命题是假命题【考点】命题的真假判断与应用.【分析】A,p∧q为假命题,则p,q至少之一为假命题;B,含有量词的命题的否定,先换量词,再否定结论;C,函数f(x)=mx m﹣2为幂函数,则没m=1,f(x)=mx m﹣2=x﹣1,单调性是局部性质,必须指明区间;D,原命题的否命题是”若am2≥bm2,则a≥b”,其中m可能为0.【解答】解:对于A,p∧q为假命题,则p,q至少之一为假命题,故正确;对于B,含有量词的命题的否定,先换量词,再否定结论,故正确;对于C,函数f(x)=mx m﹣2为幂函数,则没m=1,f(x)=mx m﹣2=x﹣1在(0,+∞),(∞,0)上为减函数,故错;对于D,命题“若am2<bm2,则a<b”的否命题是”若am2≥bm2,则a≥b”,其中m可能为0,为真命题,故正确.故选:C.7.函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A. B.C.D.【考点】函数的图象.【分析】先根据函数的奇偶性排除AB,再取x=π,得到f(π)<0,排除C.【解答】解:f(﹣x)=(﹣x+)cos(﹣x)=﹣(x﹣)cosx=﹣f(x),∴函数f(x)为奇函数,∴函数f(x)的图象关于原点对称,故排除A,B,当x=π时,f(π)=(π﹣)cosπ=﹣π<0,故排除C,故选:D.8.平面向量与的夹角为30°,已知=(﹣1,),||=2,则|+|=()A. B. C. D.【考点】平面向量数量积的运算.【分析】由已知求出||,再由,展开后得答案.【解答】解:由=(﹣1,),得,又||=2,且向量与的夹角为30°,∴=,∴|+|=.故选:D.9.函数f(x)=log a(2﹣ax2)在(0,1)上为减函数,则实数a的取值范围是()A.[,1)B.(1,2)C.(1,2]D.(,1)【考点】二次函数的性质.【分析】由题意可得t=2﹣ax2在(0,1)上为减函数,且t>0,a>1,即,由此求得a的范围【解答】解:由题意可得a>0,a≠1,设t=2﹣ax2,则t=2﹣ax2在(0,1)上为减函数,且t>0.再根据f(x)=log a(2﹣ax2)在(0,1)上为减函数,可得a>1,故有,求得1<a≤2,故选:C.10.函数f(x)为奇函数,且图象关于x=1对称,当x∈(0,1)时,f(x)=ln(x+1),则当x∈(3,4)时,f(x)为()A.增函数且f(x)>0 B.增函数且f(x)<0 C.减函数且f(x)>0 D.减函数且f(x)<0【考点】函数奇偶性的性质.【分析】根据奇函数的性质、函数图象的对称轴求出函数的周期,由题意、函数的奇偶性、周期性、对称性画出函数的图象,由图象可得答案.【解答】解:∵函数f(x)为奇函数,且图象关于x=1对称,∴f(x)=﹣f(﹣x),f(2﹣x)=f(x),∴﹣f(x﹣2)=f(x),则f(x+2)=﹣f(x),即f(x+4)=f(x),∴函数的周期是4,又当x∈(0,1)时,f(x)=ln(x+1),画出函数的图象如图所示:由图可得,当x∈(3,4)时,f(x)为增函数且f(x)<0,故选B.11.已知命题p:函数f(x)=为R上的单调函数,则使命题p成立的一个充分不必要条件为()A.a∈(﹣1,0)B.a∈[﹣1,0)C.a∈(﹣2,0)D.a∈(﹣∞,﹣2)【考点】命题的真假判断与应用.【分析】求出使函数f(x)=为R上的单调函数的a的范围,结合充要条件的定义,可得答案.【解答】解:若函数f(x)=为R上的单调增函数,则,此时不存在满足条件的a值;若函数f(x)=为R上的单调减函数,则,解得:a∈[﹣1,0),故使命题p成立的一个充分不必要条件为a∈(﹣1,0),故选:A.12.已知定义在区间[0,]上的函数y=f(x)的图象关于直线x=对称,当x时,f(x)=cosx,如果关于x的方程f(x)=a有解,记所有解的和为S,则S不可能为()A.B. C. D.3π【考点】余弦函数的图象;函数的图象.【分析】作函数f(x)的图象,分析函数的图象得到函数的性质,分类讨论后,结合方程在a取某一确定值时所求得的所有解的和记为S,即可得到答案【解答】解:依题意作出在区间[0,]上的简图,当直线y=a与函数y=f(x)的图象有交点时,则可得﹣1≤a≤0①当<a≤0,f(x)=a有2个解,此时S=②当时,f(x)=a有3个解,此时S==③当﹣1<a时,f(x)=a有4个交点,此时S==3π④a=﹣1时,f(x)=a有2个交点,此时S==故选A二、填空题:本大题共4小题,每小题5分,共20分.13.已知对不同的a值,函数f(x)=2+a x﹣1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是(1,3).【考点】指数函数的图象与性质.【分析】根据指数函数的性质,我们易得指数函数y=a x(a>0,a≠1)的图象恒过(0,1)点,再根据函数图象的平移变换法则,求出平移量,进而可以得到函数图象平移后恒过的点P的坐标【解答】解:由指数函数y=a x(a>0,a≠1)的图象恒过(0,1)点而要得到函数y=2+a x﹣1(a>0,a≠1)的图象,可将指数函数y=a x(a>0,a≠1)的图象向右平移1个单位,再向上平移2个单位.则(0,1)点平移后得到(1,3)点.则P点的坐标是(1,3)故答案为(1,3)14.若幂函数f(x)的图象经过点,则该函数在点A处的切线方程为4x﹣4y+1=0.【考点】利用导数研究曲线上某点切线方程.【分析】设出幂函数的解析式,根据幂函数f(x)的图象经过点,求出解析式,根据导数的几何意义求出函数f(x)在A处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成一般式即可.【解答】解:设f(x)=xα∵幂函数f(x)的图象经过点,∴=α∴α=,∴f(x)=,∴f′(x)=当x=时,f′()=1,∴函数在点A处的切线方程为y﹣=x﹣,即4x﹣4y+1=0.故答案为:4x﹣4y+1=0.15.已知命题,命题q:x2+2x+1﹣m≤0(m>0)若非p是非q的必要不充分条件,那么实数m的取值范围是[4,+∞).【考点】命题的真假判断与应用.【分析】先求出非p、非q为真时,m的范围,再利用非p是非q的必要不充分条件,可求实数m的取值范围.【解答】解:由题意,,∴或x≥1;q:x2+2x+1﹣m≤0(m>0),∴¬q:x2+2x+1﹣m>0,∴(x+1)2>m,解得或∵¬p是¬g的必要不充分条件,∴,∴m≥4.故实数m的取值范围是[4,+∞)故答案为:[4,+∞)16.已知函数f(x)=x3+(1﹣a)x2﹣a(a+2)x(a∈R)在区间(﹣2,2)不单调,则a 的取值范围是.【考点】利用导数研究函数的单调性.【分析】由题意可得f′(x)=3x2+(2﹣2a)x﹣a(a+2)=0在区间(﹣2,2)上有解,再利用二次函数的性质分类讨论求得a的范围.【解答】解:由题意可得f′(x)=3x2+(2﹣2a)x﹣a(a+2)=0在区间(﹣2,2)上有解,故有①,或f′(﹣2)f(2)<0 ②.可得,a的取值范围是.故答案为:.三、解答题:解答应写出文字说明.证明过程或演算步骤.17.已知sin(π﹣α)=,α∈(0,).(1)求sin2α﹣cos2的值;(2)求函数f(x)=cosαsin2x﹣cos2x的单调递增区间.【考点】三角函数的化简求值;正弦函数的单调性.【分析】通过条件求出sinα=,cosα=,(1)利用二倍角的正弦,余弦的升角降次,直接求出sin2α﹣cos2的值.(2)化简函数f(x)=cosαsin2x﹣cos2x为sin(2x﹣),借助正弦函数的单调增区间,求出函数f(x)的单调递增区间.【解答】解:∵sin(π﹣α)=,∴sinα=.又∵α∈(0,),∴cosα=.(1)sin2α﹣cos2=2sinαcosα﹣=2××﹣=.(2)f(x)=×sin2x﹣cos2x=sin(2x﹣).令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+π,k∈Z.∴函数f(x)的单调递增区间为[kπ﹣,kπ+π],k∈Z.18.为检验寒假学生自主学生的效果,级部对某班50名学生各科的检测成绩进行了统计,下面是物理成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的x值及平均成绩;(2)从分数在[70,80)中选5人记为a1,a2,…,a5,从分数在[40,50)中选3人,记为b1,b2,b3,8人组成一个学习小组现从这5人和3人中各选1人做为组长,求a1被选中且b1未被选中的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图的性质能求出x及平均成绩.(2)从这5人和3人中各选1人做为组长,先求出基本事件总数,再求出a1被选中且b1未被选中包含的基本事件个数,由此能求出a1被选中且b1未被选中的概率.【解答】解:(1)由频率分布直方图的性质得:×3++x+×10=1,平均成绩=45××10+55××10+65××10+75××10+85××10+95××10=74.(2)从分数在[70,80)中选5人记为a1,a2,…,a5,从分数在[40,50)中选3人,记为b1,b2,b3,8人组成一个学习小组,现从这5人和3人中各选1人做为组长,基本事件总数n=5×3=15,a1被选中且b1未被选中包含的基本事件个数m=1×2=2,∴a 1被选中且b 1未被选中的概率p==.19.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面ABC ,且△ABC 为正三角形,AA 1=AB=6,D 为AC 的中点.(1)求证:直线AB 1∥平面BC 1D ;(2)求证:平面BC 1D ⊥平面ACC 1A ;(3)求三棱锥C ﹣BC 1D 的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(1)连接B 1C 交BC 1于点O ,连接OD ,则点O 为B 1C 的中点.可得DO 为△AB 1C 中位线,A 1B ∥OD ,结合线面平行的判定定理,得A 1B ∥平面BC 1D ;(2)由AA 1⊥底面ABC ,得AA 1⊥BD .正三角形ABC 中,中线BD ⊥AC ,结合线面垂直的判定定理,得BD ⊥平面ACC 1A 1,最后由面面垂直的判定定理,证出平面BC 1D ⊥平面ACC 1A ;(3)利用等体积转换,即可求三棱锥C ﹣BC 1D 的体积.【解答】(1)证明:连接B 1C 交BC 1于点O ,连接OD ,则点O 为B 1C 的中点. ∵D 为AC 中点,得DO 为△AB 1C 中位线,∴A 1B ∥OD .∵OD ⊂平面AB 1C ,A 1B ⊄平面BC 1D ,∴直线AB 1∥平面BC 1D ;(2)证明:∵AA 1⊥底面ABC ,∴AA 1⊥BD ,∵底面ABC 正三角形,D 是AC 的中点∴BD ⊥AC∵AA 1∩AC=A ,∴BD ⊥平面ACC 1A 1,∵BD ⊂平面BC 1D ,∴平面BC 1D ⊥平面ACC 1A ;(3)解:由(2)知,△ABC 中,BD ⊥AC ,BD=BCsin60°=3,∴S △BCD ==,∴V C ﹣BC1D =V C1﹣BCD =••6=9. 20.已知椭圆C : +=1(a >b >0)的离心率为,且过点P (3,2).(1)求椭圆C 的标准方程;(2)设与直线OP (O 为坐标原点)平行的直线l 交椭圆C 于A ,B 两点,求证:直线PA ,PB 与x 轴围成一个等腰三角形.【考点】椭圆的简单性质.【分析】(1)由题意可得:, =1,a 2=b 2+c 2,联立解出即可得出.(2)设直线l 的方程为2x ﹣3y +t=0(t ≠0),将直线方程代入椭圆方程得:8x 2+4tx +t 2﹣72=0,利用根与系数的关系、斜率计算公式只要证明:k AP +k BP =0即可证明直线PA ,PB 与x 轴围成等腰三角形.【解答】(1)解:由题意可得:, =1,a 2=b 2+c 2,联立解得:a2=18,b=3.∴椭圆C的标准方程为:.(2)证明:设直线l的方程为2x﹣3y+t=0(t≠0),A(x1,y1),B(x2,y2),将直线方程代入椭圆方程得:8x2+4tx+t2﹣72=0,△>0⇒0<|t|<12,∴,,∵k AP+k BP=+=,∴分子=(x2﹣3)+=+(x1+x2)﹣2t+12=+﹣2t+12=0,∴k AP+k BP=0,∴k AP=﹣k BP,∴直线PA、PB与x轴所成的锐角相等,故围成等腰三角形.21.已知函数f(x)=,g(x)=ax﹣2lnx﹣a (a∈R,e为自然对数的底数).(1)求f(x)的极值;(2)在区间(0,e]上,对于任意的x0,总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0),求a的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出f(x)的导数,得到函数的单调区间,从而求出函数的极值即可;(2)求出当x∈(0,e]时,函数f(x)的值域,通过讨论a的范围结合g(x)的单调性,求出a的具体范围即可.【解答】解:(1)因为f(x)=,所以f′(x)=,…令f′(x)=0,得x=1.…当x∈(﹣∞,1)时,f′(x)>0,f(x)是增函数;当x∈(1,+∞)时,f′(x)<0,f(x)是减函数.所以f(x)在x=1时取得极大值f(1)=1,无极小值.…(2)由(1)知,当x∈(0,1)时,f(x)单调递增;当x∈(1,e]时,f(x)单调递减.又因为f(0)=0,f(1)=1,f(e)=e•e1﹣e>0,所以当x∈(0,e]时,函数f(x)的值域为(0,1].…当a=0时,g(x)=﹣2lnx在(0,e]上单调,不合题意;…当a≠0时,g′(x)=,x∈(0,e],故必须满足0<<e,所以a>.…此时,当x 变化时,g′(x),g(x)的变化情况如下:x(0,)(,e]g′(x)﹣0 +g(x)单调减最小值单调增所以x→0,g(x)→+∞,g()=2﹣a﹣2ln,g(e)=a(e﹣1)﹣2,所以对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的x1,x2使得g(x1)=g(x2)=f(x0),当且仅当a满足下列条件,即,…令m(a)=2﹣a﹣2ln,a∈(,+∞),m′(a)=﹣,由m′(a)=0,得a=2.当a∈(2,+∞)时,m′(a)<0,函数m(a)单调递减;当a∈(,2)时,m′(a)>0,函数m(a)单调递增.所以,对任意a∈(,+∞)有m(a)≤m(2)=0,即2﹣a﹣2ln≤0对任意a∈(,+∞)恒成立.由a(e﹣1)﹣2≥1,解得a≥,综上所述,当a∈[,+∞)时,对于任意给定的x0(0,e],在区间(0,e]上总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0).…[选修4-4:坐标系与参数方程选讲]22.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10.曲线c1:(α为参数).(Ⅰ)求曲线c1的普通方程;(Ⅱ)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.【考点】参数方程化成普通方程;两点间的距离公式.【分析】(1)用x,y表示出cosα,sinα利用cos2α+sin2α=1消参数得到曲线C1的普通方程;(2)先求出曲线C的普通方程,使用参数坐标求出点M到曲线C的距离,得到关于α的三角函数,利用三角函数的性质求出距离的最值.【解答】解:(Ⅰ)∵,∴cosα=,sinα=,∴曲线C1的普通方程是:.(Ⅱ)曲线C的普通方程是:x+2y﹣10=0.点M到曲线C的距离为,().∴α﹣φ=0时,,此时.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣m|﹣|x﹣2|.(1)若函数f(x)的值域为[﹣4,4],求实数m的值;(2)若不等式f(x)≥|x﹣4|的解集为M,且[2,4]⊆M,求实数m的取值范围.【考点】分段函数的应用;函数的值域.【分析】(1)由不等式的性质得:||x﹣m|﹣|x﹣2||≤|x﹣m﹣x+2|=|m﹣2|,即|m﹣2|=4,解得实数m的值;(2)若不等式f(x)≥|x﹣4|的解集M=(﹣∞,m﹣2]或[m+2,+∞),结合[2,4]⊆M,可求实数m的取值范围.【解答】解:(1)由不等式的性质得:||x﹣m|﹣|x﹣2||≤|x﹣m﹣x+2|=|m﹣2|因为函数f(x)的值域为[﹣4,4],所以|m﹣2|=4,即m﹣2=﹣4或m﹣2=4所以实数m=﹣2或6.…(2)f(x)≥|x﹣4|,即|x﹣m|﹣|x﹣2|≥|x﹣4|当2≤x≤4时,|x﹣m|≥|x﹣4|+|x﹣2|⇔|x﹣m|≥﹣x+4+x﹣2=2,|x﹣m|≥2,解得:x≤m﹣2或x≥m+2,即原不等式的解集M=(﹣∞,m﹣2]或M=[m+2,+∞),∵[2,4]⊆M,∴m+2≤2⇒m≤0或m﹣2≥4⇒m≥6所以m的取值范围是(﹣∞,0]∪[6,+∞).…2017年1月8日。
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.33.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣1286.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.201710.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.512.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1二、填空题:13. 1.028≈(小数点后保留三位小数).14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.15.已知:,则cos2α+cos2β的取值范围是.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 【分析】阴影部分所表示的为在集合B中但不在集合A中的元素构成的部分,即在B中且在A的补集中.【解答】解:阴影部分所表示的为在集合A中但不在集合B,C中的元素构成的,故阴影部分所表示的集合可表示为A∩∁U(B∪C),故选:C.【点评】本题考查利用集合运算表示韦恩图中的集合、考查韦恩图是研究集合关系的常用工具.2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.3【分析】利用实系数方程的虚根成对定理,列出方程组,求出a,b即可.【解答】解:1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,一元二次方程虚根成对(互为共轭复数)..得:a=1,b=﹣2,a+b=﹣1.故选:A.【点评】本题考查实系数方程成对定理的应用,考查计算能力.3.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.【分析】设出双曲线方程代入点的坐标,然后求解双曲线方程即可.【解答】解:由题可设双曲线的方程为:y2﹣4x2=λ,将点代入,可得λ=﹣4,整理即可得双曲线的方程为.故选:D.【点评】本题考查双曲线的简单性质的应用以及双曲线方程的求法,考查计算能力.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.【分析】若函数f(x)和g(x)有完全相同的对称轴,则这两个函数的周期是一样的,即ω=1.通过解不等式g(x)>2求得x的取值范围.【解答】解:由题意知,函数f(x)和g(x)的周期是一样的,故ω=1,不等式g(x)>2,即,解之得:.故选:B.【点评】考查了正弦函数的对称性.根据函数的对称性求、求出ω是解决本题的关键.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣128【分析】令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),利用函数的导数求解即可.【解答】解:令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),则f'(x)=g(x)+x•g'(x),故,各项均为正数的等比数列{a n},a3•a5=2,,故.故选:B.【点评】本题考查函数的导数的应用,数列的简单性质的应用,考查转化思想以及计算能力.6.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值【分析】画出可行域,利用目标函数的几何意义,求解函数的最值即可.【解答】解:画出的可行域,如图:A(0,3),,C(4,5),目标函数z=2x﹣3y经过C时,目标函数取得最大值,z max=﹣7,没有最小值.故选:C.【点评】本题考查线性规划的简单应用,目标函数的最值考查数形结合的应用,是基础题.7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>【分析】根据条件判断函数是偶函数,结合条件判断函数的单调性,进行判断即可.【解答】解:f(x)=f(﹣x),故f(x)是偶函数,而当时,f'(x)=cosx•e1+sinx﹣cosx•e1﹣sinx=cosx•(e1+sinx﹣e1﹣sinx)>0,即f(x)在是单调增加的.由f(x1)>f(x2),可得f(|x1|)>f(|x2|),即有|x1|>|x2|,即,故选:D.【点评】本题主要考查函数单调性的应用,根据条件判断函数的奇偶性和单调性是解决本题的关键.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为AG,HA为△ABC外接圆的半径,HG=1,,故,∴该多面体的外接球的表面积.故选:B.【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.2017【分析】根据题意,模拟程序框图的运行过程,根据输出的S值即可得出该程序中a的值.【解答】解:模拟程序的运行,可得:S=2,k=0;满足条件k<a,执行循环体,可得:S=﹣1,k=1;满足条件k<a,执行循环体,可得:,k=2;满足条件k<a,执行循环体,可得:S=2,k=3;…,∴S的值是以3为周期的函数,当k的值能被3整除时,不满足条件,输出S的值是2,a的值可以是2016.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,从而得出正确的结论,是基础题.10.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.【分析】根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理即可求出【解答】解:根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理可得cos36°==故选:B.【点评】本题考查了黄金三角形的定义作法和余弦定理,属于中档题11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.5【分析】利用三角形的面积推出,设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,通过,代入求解即可.【解答】解:,即,不妨设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,即有,又因为,故:p=2.故选:A.【点评】本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,是中档题.12.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1【分析】方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线,即可;方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),列出方程组求解即可.【解答】解:方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.【点评】本题考查函数与方程的应用,求出方程的平方,直线与抛物线的位置关系的应用.二、填空题:13. 1.028≈ 1.172(小数点后保留三位小数).【分析】根据1.028=(1+0.02)8,利用二项式定理展开,可得它的近似值.【解答】解:1.028=(1+0.02)8=+++×0.023+…+≈=+++×0.023=1+8×0.02+28×0.0004+56×0.000008=1.172,故答案为:1.172【点评】本题主要考查二项式定理的应用,属于基础题.14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.【分析】设=(x,y),根据题中的条件求出x+2y=﹣,即=﹣,再利用两个向量的夹角公式求出cosθ的值,由此求得θ的值.【解答】解:设=(x,y),由向量=(1,2),=(﹣2,﹣4),||=,且(+)=,可得﹣x﹣2y=,即有x+2y=﹣,即=﹣,设与的夹角为等于θ,则cosθ===﹣.再由0≤θ≤π,可得θ=,故答案为:.【点评】本题主要考查两个向量的夹角公式的应用,求出=﹣是解题的关键,属于中档题15.已知:,则cos2α+cos2β的取值范围是.【分析】由已知利用二倍角公式化简可求cos2α+cos2β=3(cosβ﹣sinα),由,得sinα的范围,从而可求,进而得解.【解答】解:∵,∴cos2α+cos2β=1﹣2sin2α+2cos2β﹣1=2(sinα+cosβ)(cosβ﹣sinα)=3(cosβ﹣sinα),∵由,得,,易得:,∴,∴.故答案为:.【点评】本题主要考查了二倍角公式在三角函数化简求值中的应用,考查了正弦函数的性质及其应用,考查了计算能力和转化思想,属于基础题.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=1.【分析】以AC为x轴,AC的中点为坐标原点建立坐标系,分别求出△ABC的外接圆与△ACD的内切圆的方程,联立求得交点,利用两点间的距离公式求得两圆公共弦长.【解答】解:以AC为x轴,AC的中点为坐标原点建立坐标系,则A(﹣1,0),C(1,0),B(0,1),D(0,﹣),∴△ABC的外接圆的方程x2+y2=1,①△ACD的内切圆方程为,即,②联立①②可得两圆交点坐标为(,﹣),(,﹣),∴两圆的公共弦长为.故答案为:1.【点评】本题考查圆的方程的求法,考查圆与圆位置关系的应用,是中档题.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【分析】(1)当n=1时计算可知a1=﹣1,当n≥2时将a n=2S n+1与a n﹣1=2S n﹣1+1作差可知a n=﹣a n﹣1,进而可知数列{a n}是首项为﹣1,公比为﹣1的等比数列;(2)通过(1)可知,分n为奇偶两种情况讨论即可.【解答】解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,有:a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减、化简得a n=﹣a n﹣1,所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,从而.(2)由(1)得,当n为偶数时,b n+b n=2,;﹣1当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.【点评】本题考查数列的通项公式和前n项和公式,考查分类讨论的思想,注意解题方法的积累,属于中档题.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.【分析】(1)取CC1的中点O,连接OA,OB1,AC1,说明AO⊥CC1,OB1⊥CC1,推出CC1⊥平面OAB1,然后证明AB1⊥CC1;(2)证明AO⊥OB1,以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,求出平面AB1C的法向量,平面A1B1A的法向量,利用空间向量的数量积求解二面角C﹣AB1﹣A1的正弦值即可.【解答】证明:(1)取CC1的中点O,连接OA,OB1,AC1,∵在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴△ACC1,△BCC1为正三角形,则AO⊥CC1,OB1⊥CC1,又∵AO∩OB1=O,∴CC1⊥平面OAB1,∵AB1⊂平面OAB1∴AB1⊥CC1;…4分(2)∵∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴AC=2,,∵,则,则三角形AOB1为直角三角形,则AO⊥OB1,…6分以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,则C(1,0,0),B1(0,,0),C1(﹣1,0,0),A(0,0,),则则,=(0,,),=(1,0,),设平面AB 1C的法向量为,则,令z=1,则y=1,,则,设平面A 1B1A的法向量为,则,令z=1,则x=0,y=1,即,…8分则…10分∴二面角C﹣AB1﹣A1的正弦值是.…12分.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判定定理以及性质定理的应用,考查计算能力与空间想象能力.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).【分析】(Ⅰ)利用条件,可得设备M的数据仅满足一个不等式,即可得出结论;(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;(ⅱ)确定Z的取值,求出相应的概率,即可求出其中次品个数Z的数学期望E (Z).【解答】解:(Ⅰ)P(μ﹣σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.6826,P(μ﹣2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≥0.9544,P(μ﹣3σ<X≤μ+3σ)=P (58.4<X≤71.6)=0.98≥0.9974,因为设备M的数据仅满足一个不等式,故其性能等级为丙;…(4分)(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;…(8分)(ⅱ)由题意可知Z的分布列为故E(Z)=0×+1×+2×=.…(12分)【点评】本题考查概率的计算,考查正态分布曲线的特点,考查数学期望,考查学生的计算能力,属于中档题.20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【分析】(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合a,b,c的关系解得a,b,可得椭圆的方程;(II)方法一、(i)讨论直线AB的斜率为0和不为0,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,运用韦达定理和判别式大于0,运用直线的斜率公式求斜率之和,即可得证;(ii)求得△MNF的面积,化简整理,运用基本不等式可得最大值.方法二、(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立椭圆方程,消去y,可得x的方程,运用韦达定理和判别式大于0,再由直线的斜率公式,求得即可得证;(ii)求得弦长|MN|,点F到直线的距离d,运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到所求最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和过焦点垂直于对称轴的弦长,考查直线和椭圆方程联立,运用韦达定理和判别式大于0,以及直线的斜率公式,考查基本不等式的运用:求最值,属于中档题.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.【分析】(1)由f(1)=﹣e,得a﹣b=﹣1,由f'(1)=2e+1,得到a﹣4b=2,由此能求出a,b.(2)f(x)<﹣2,即证,令g(x)=(2﹣x3)e x,,由此利用导数性质能证明f(x)<﹣2.【解答】解:(1)因为f(1)=﹣e,故(a﹣b)e=﹣e,故a﹣b=﹣1①;依题意,f'(1)=2e+1;又,故f'(1)=e(4a﹣b)+1=2e+1,故4a﹣b=2②,联立①②解得a=1,b=2;(2)由(1)得,要证f(x)<﹣2,即证;令g(x)=(2﹣x3)e x,,g'(x)=﹣e x(x3+3x2﹣2)=﹣e x(x+1)(x2+2x﹣2)令g'(x)=0,因为x∈(0,1),e x>0,x+1>0,故,所以g(x)在上单调递增,在单调递减.而g(0)=2,g(1)=e,当时,g(x)>g(0)=2当时,g(x)>g(1)=e故当x∈(0,1)时,g(x)>2;而当x∈(0,1)时,,故函数所以,当x∈(0,1)时,ϕ(x)<g(x),即f(x)<﹣2.【点评】本题考查导数的应用,考查导数的几何意义,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.【分析】(I)利用x=ρcosθ,y=ρsinθ可将圆C极坐标方程化为直角坐标方程;(II)先根据(I)得出圆C的普通方程,再根据直线与交与交于A,B两点,可以把直线与曲线联立方程,用根与系数关系结合直线参数方程的几何意义,表示出|PA|+|PB|,最后根据三角函数的性质,即可得到求解最小值.【解答】解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα﹣s inα)t﹣7=0.由△=(2cosα﹣2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,所以,又直线l过点(1,2),故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1﹣t2|====2.所以|PA|+|PB|的最小值为2.【点评】此题主要考查参数方程的优越性,及直线与曲线相交的问题,在此类问题中一般可用联立方程式后用韦达定理求解即可,属于综合性试题有一定的难度.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.【分析】(1)运用绝对值不等式的性质可得f(x)的最小值为a+b,即可得到所求最小值;(2)运用反证法,结合二次不等式的解法,即可得证.【解答】解:(1)∵a>0,b>0,∴f(x)=|x﹣a|+|x+b|≥|(x﹣a)﹣(x+b)|=|a+b|=a+b,∴f(x)min=a+b,由题设条件知f(x)min=2,∴a+b=2;证明:(2)∵a+b=2,而,故ab≤1.假设a2+a>2与b2+b>2同时成立.即(a+2)(a﹣1)>0与(b+2)(b﹣1)>0同时成立,∵a>0,b>0,则a>1,b>1,∴ab>1,这与ab≤1矛盾,从而a2+a>2与b2+b>2不可能同时成立.【点评】本题考查绝对值不等式的性质以及不等式的证明,考查反证法的运用,以及运算能力和推理能力,属于中档题.。
天一大联考2016—2017学年高三年级上学期期末考试数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}0,2,4,6,|233n A B x N ==∈<,则集合A B 的子集个数为 A.8 B. 7 C. 6 D. 42.设i 为虚数单位,复数21a i i++为纯虚数,则实数a 的值为 A. -1 B. 1 C. -2 D. 23.“22a b >”是“ln ln a b >”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件4.三国时代吴国数学家赵爽所注《周髀算经》中给出了股股定理的绝妙证明。
下面是赵爽的弦图和注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实。
图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2⨯勾⨯股+(股-勾)2=4⨯朱实+黄实=弦实,化简得:+=222勾股弦.设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为A. 866B. 500C. 300D. 134 5.已知圆()22314x y -+=的一条切线y kx =与双曲线()2222:10,0x y C a b a b -=>>有两个交点,则双曲线C 的离心率的取值范围是A. (B. ()1,2C. )+∞ D.()2,+∞ 6.函数()cos 21x f x x x π=+的图象大致是7.已知0a >且1a ≠,如图所示的程序框图的输出值[)4,y ∈+∞,则实数a 的取值范围是A. (]1,2B. 1,12⎛⎫ ⎪⎝⎭C. ()1,2D. [)2,+∞ 8. 已知点M 的坐标(),x y 满足不等式组2402030x y x y y +-≥⎧⎪--≤⎨⎪-≤⎩,N 为直线22y x =-+上任一点,则MN 的最小值是9.如图,已知长方体1111ABCD A B C D -的体积为6,1C BC ∠的正切值为,当1AB AD AA ++的值最小时,长方体1111ABCD A B C D -外接球的表面积为A. 10πB. 12πC. 14πD. 16π10.已知函数()()1sin 20,022f x A x A πϕϕ⎛⎫=+-><< ⎪⎝⎭的图象在y 轴上的截距为1,且关于直线12x π=对称,若对任意的0,2x π⎡⎤∈⎢⎥⎣⎦,都有()23m m f x -≤,则实数m 的取值范围是 A. 31,2⎡⎤⎢⎥⎣⎦ B. []1,2 C. 3,22⎡⎤⎢⎥⎣⎦D. 11.某几何体的三视图如图所示,则该几何体的体积为A. 8B. 10C. 12D. 1412.已知()f x '是定义在()0,+∞上的函数()f x 的导函数,若方程()0f x '=无解,且()()20160,,log 2017x f f x x ∀∈+∞-=⎡⎤⎣⎦,设()()()0.542,log 3,log 3a f b f c f π===,则,,a b c 的大小关系是A. b c a >>B. a c b >>C. c b a >>D. a b c >>第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.。
河南省2017届高三数学上学期期末考试试题 文
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.
1.已知复数4723i z i
-=+,则在复平面内,复数z 所对应的点位于 A. 第一象限 B. 第二象限 C.第三象限 D.第四象限
2.已知集合{}{|42830,|A x x x B x y =-+≤==
,则A B = A. 1,12⎡⎤
⎢⎥⎣⎦ B. 1,12⎛⎤ ⎥⎝⎦ C. 31,2⎡⎫⎪⎢⎣⎭ D.31,2⎡⎤⎢⎥⎣⎦ 3.我国古代名著《九章算术》中中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.”意思是:“现有一根金锤,头部的1尺,重4斤;尾部的1尺,重2斤;且从头到尾,每一尺的重量构成等差数列.”则下列说法正确的是
A.该金锤中间一尺重3斤
B.中间三尺的重量和时头尾两尺重量和的3倍
C.该金锤的重量为15斤
D.该金锤相邻两尺的重量之差的绝对值为0.5斤
4.已知正六边形ABCDEF 内接于圆O ,连接,AD BE ,现在往圆O 内投掷粒2000小米,则可以
0.55
==)
A. 275
B. 300
C. 550
D. 600
5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为
A. 916π+
B. 918π+
C. 1228π+
D.1818π+
6.若圆Ω过点()()0,10,5-,且被直线0x y -=截得的弦长为,则圆Ω的方程为
A. ()2229x y +-=或()()22
4225x y ++-= B. ()2229x y +-=或()()22
1210x y -+-= C. ()()224225x y ++-=或()()224217x y ++-=
D. ()()224225x y ++-=或()()224116x y -++=
7.运行如图所示的程序框图,则输出的m 的值为
A. 134
B. -19
C. 132
D. 21
8.已知函数()()2sin 0,2f x x πωϕωϕπ⎛
⎫=+><< ⎪⎝⎭
的图象如图所示,其中点315,0,,044A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
,为了得到函数()2sin 3g x x πω⎛⎫=- ⎪⎝
⎭的图象,则应当把函数()y f x =的图象
A. 向左平移134π个单位
B.向右平移134π个单位
C.向左平移1312π个单位
D. 向右平移1312
π个单位 9.已知0x R ∃∈,使020041x ae x x -->成立,则实数a 的取值范围
A. R
B. ()32,e -+∞
C. 6,e ⎛⎫+∞ ⎪⎝⎭
D.()1,+∞ 10.已知双曲线()22
22:10,0x y C a b a b
-=>>的左、右焦点分别为()()12,0,,0F c F c -,直线l 过不同的两点()2,0,,2
2a b ab b a a ⎛⎫+- ⎪⎝⎭
,若坐标原点到直线的距离为4,则双曲线的离心率为
或43
B. 2
或3
C. 3
D.2 11.如图,长方体1111ABCD A B C D -中,18,4,DC CC CB AM MB +===,点N 是平面1111A B C D
上的点,且满足1C N =1111ABCD A B C D -的体积最大时,线段MN 的最小值是
A. B. 8
12.已知函数()21,22,2416
x m
x f x mx x x -⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎪≥⎪+⎩,当22x >时,对任意[)12,x ∈+∞的总存在()2,2x ∈-∞使
得()()12f x f x =,则实数m 的取值范围是
A. [)2,4
B. []2,4
C. [)3,4
D.[]3,4
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.已知实数,x y 满足30644x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩
,则2z x y =-的最小值为.
14.规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.现采用随机模拟试验的方法估计某选手的投掷飞镖的情况:先由计算机根据该选手以往的投掷情况产生随机数0或1,用0表示该次投掷未在8环以上,用1表示该次投掷在8环以上;再以每三个随机数为一组,代表一轮的结果,经随机模拟试验产生了如下20组随机数:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,该选手投掷1轮,可以拿到优秀的概率为.
15.如图,在ABC ∆中,3,5,60,,AB AC BAC D E ==∠=分别,AB AC 是的中点,连接,CD BE 交于点F ,连接AF ,取CF 的中点G ,连接,则AF BG ⋅=
.
16.已知数列{}n na 的前n 项和为n S ,且2n n a =,则使得1500n n S na +-+<的最小正整数n 的值为.
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.
17.(本题满分12分)已知四边形MNPQ
如图所示,2,MN NP PQ MQ ====其中
(1
cos M P -的值;
(2)记MNQ ∆与NPQ ∆的面积分别是1S 与2S ,求2212S S +与的最大值.
18.(本题满分12分)如图1,在ABC ∆中,MA 是BC 边上的高.如图( 2),将MBC ∆沿MA 进行翻折,使得90BAC ∠=,在过点B 作//BD AC ,连接,,AD CD MD ,且
30.AD CAD =∠=
(1)求证:CD ⊥平面MAD ;
(2)求点A 到平面MCD 的距离.
19.(本题满分12分)2016年天猫双十一活动结束后,某地区研究人员为了研究该地区在双十一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众张抽取了500人作调查,所得概率分布直方图如图所示:
记年龄在[)[)[]55,65,65,75,75,85对应的小矩形的面积分别是123,,S S S ,且12324S S S =-.
(1)以频率作为概率,若该地区双十一消费超过3000元的有30000人,试估计该地区在双十一活动中消费超过3000元且年龄在[)45,65的人数;
(2)计算在双十一活动中消费超过3000元的消费者的平均年龄;
(3)若按照分层抽样,从年龄在[)[)15,25,65,75的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在[)15,25内的概率.
20.(本题满分12分)已知椭圆()22
22:10x y C a b a b +=>>过点()
,1⎛- ⎝⎭,过点()1,0-且斜率为k 的直线l 与椭圆C 交于,A B 两点.
(1)求椭圆C 的方程;
(2)若x 轴上存在一点M ,使得2531MA MB t k ⋅+
=+,其中t 是与k 无关的常数,求点M 的
坐标和t 的值.
21.(本题满分12分)已知函数()ln .f x x x =
(1)求()f x 在()0,+∞上的极值;
(2)当121,,1x x e ⎛⎫∈ ⎪⎝⎭
且121x x <-时,求证:()1212ln ln 4ln x x x x +<+.
请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
22.(本题满分10分)选修4-4:参数方程与极坐标系 在平面直角坐标系xoy 中,已知直线l
的参数方程为122
x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程是sin cos θρθ
=
. (1)求曲线C 的直角坐标方程以及直线l 的极坐标方程;
(2)已知直线l 与曲线C 交于,M N 两点,求MN 的值.
23.(本题满分10分)选修4-5:不等式选讲
已知函数() 4.f x x a x b =+-++
(1)若2,0a b =-=,在下列网格中作出函数()f x 在[]5,5-上的图象;
(2)若关于x 的不等式()0f x ≥恒成立,求a b -的取值范围.。