第1章 电子材料
- 格式:ppt
- 大小:1.91 MB
- 文档页数:47
第一章材料的电子理论第一章材料的电子理论第一节自由电子近似第一节自由电子近似材料的应用要依赖于材料的某种性能材料的应用要依赖于材料的某种性能金属:强度高,塑性好,导电――结构材料.电器元件陶瓷:耐热,耐蚀,耐磨,绝缘――结构材料,隔热材料,绝缘材料金属――金属键结合,晶体,位错陶瓷――离子键结合,晶相与非晶相,位错宽度大→如何成键→从原子电子结构讲起材料的性能从本质上说归结于其电子结构材料的性能从本质上说归结于其电子结构一.历史回顾一.历史回顾经典自由电子说经典自由电子说德鲁特 Drude 等提出浆汁 jellium 模型金属原子聚集成固体时,其价电子脱离相应的离子芯的束缚,在固体中自由运动,故将其称为自由电子。
为保持金属的电中性,设想自由电子体系是电子间毫无相互作用的理想气体(电子气),其行为符合经典的麦克斯韦-玻耳兹曼统计规律,离子芯的正电荷散布与整个体积中,恰好与自由电子的负电荷中和。
成功之处计算出了金属的电导率及其与热导率的关系,一度被认为是对金属中的电子状态的正确描述。
主要缺陷:1 不能解释霍尔系数的反常现象。
2 实际测量的电子平均自由程比用该模型估计的大得多。
3 金属电子比热值只有用该模型估算的百分之一。
4 不能解释导体、半导体、绝缘体导电性的巨大差异。
1924,德布罗意提出物质波的概念1924,德布罗意提出物质波的概念消息传到苏黎世,德拜提出:有了波,就应该有一个波动方程。
不久,由德拜的学生薛定谔提出了这样一个方程――当时谁也没想到它如此重要。
解决的问题――是波动力学的基础.与矩阵力学一起标志量子力学的诞生。
与经典力学不同1 氢原子――量子概念.主量子数、角量子数、磁量子数、自旋量子数、光谱.2 一维无限深势阱――量子、几率3 一维有限深势阱――阱外有几率4 隧道效应――低能也能穿过,有穿过几率――电子可跃出表面尖 V T表面尖与表面很近时,电子云重叠,有隧道电流JT ,由JT大小可知表面高低。
电子材料物理课程设计课程简介电子材料物理是电子工程领域中的重要学科,涉及材料学、凝聚态物理学、半导体物理学、量子力学等多个学科知识。
此课程设计旨在通过理论教学和实验操作,使学生了解电子材料物理的基本原理、常见物理现象以及应用。
教学目标1.了解电子材料物理之间的关系和基本概念2.掌握有关电子材料的结构、层次和特性3.学习电子材料物理的常见物理现象和性质4.熟悉电子材料物理的应用和实验操作教学内容第一章电子材料物理的基础知识1.讲解电子材料的基本定义和概念,了解电子材料的种类和分类方法2.探讨电子材料物理学与其他物理学的关系,介绍电子材料物理相关应用领域3.介绍电子材料物理学的发展历程和现状第二章电子材料的结构和特性1.介绍电子材料的结构特性,讨论其与材料性能的关系2.讲解电子材料组成和特殊成分(如掺杂),以及其对电子行为的影响3.探讨电子材料的物理性质和电学性质第三章半导体物理学1.讲解半导体的基本概念和特性,探讨其在电子技术中的应用2.介绍半导体物理学中的基本理论和半导体器件(如场效应管和晶体管)的工作原理3.进一步讨论半导体中掺杂的特殊作用和杂质的影响第四章量子力学和半导体器件1.介绍量子力学的基本概念和原理,涉及基本的波动力学、量子力学和行为量子力学2.研究量子力学在半导体器件中的应用,包括半导体基本构件的光电效应、磁构件、隧道晶体管和电子晶体管3.探讨半导体平面LED器件、发光器件、太阳能电池等半导体器件的应用第五章实验课1.介绍能带理论的实验验证2.核苷酸序列分析3.太阳能电池的制作与实验测试实验设备及材料•温度控制器•恒温水浴•培养皿、玻璃管、玻璃片•单板计算机•太阳能电池硅片参考书目1.电子材料物理学(原书第三版)(ISBN: 978-7-03-033709-2)2.电子材料(推荐阅读)3.半导体器件(IEEE)(ISBN: 978-1-4244-2147-2)评分标准•学生提出的有关电子材料物理的问题和疑惑•学生在实验过程中的操作技能和合作能力•学生对电子材料物理的理解和应用水平。
课程编号:05064410《电子材料与器件》课程教学大纲(Electronic Materials and Devices)适用于本科电子信息工程专业总学时:16学时总学分:1学分开课单位:物理系课程负责人:郑洁执笔人:郑洁审核人:白心爱一、课程的性质、目的、任务(黑体小四号,下同)《电子材料与器件》是电子信息工程专业的一门重要的专业任选课,是电子类技术人才必须掌握的基础知识。
本课程是一门技术性与实践性较强的应用学科,教学中必须坚持理论联系实际的原则,让学生有一定的动手练习机会。
组织相应的元器件识别、以提高学生的对电子元器件的识别能力、应用能力。
本课程的教学任务是:讲授常用电子材料以及各种常用电子元器件:电阻器、电容器、电感、接插件、晶体管、集成电路的外形,命名和标识,检测和使用等方面的知识,把学生培养成为具有一定理论与实践相结合的高等职业技术人才。
通过本课程的学习,把学生培养成为具有一定电子技术知识和操作能力,能够独立分析、解决有关材料和元器件问题的高等职业技术人才。
二、教学基本要求1、讲授与实验相结合,围绕基本概念、元器件工作原理、结构和应用为主进行教学。
2、本课程应保证学生有充分的实验时间,使他们在实践中不断地发现问题并解决问题,达到教学大纲规定的要求。
3、要注意培养学生的自学能力,在教学中注意引导学生自己发现电子元器件的问题,提出问题,分析问题,培养他们独立解决问题的能力。
三、教学内容、目标要求与学时分配第1章电子材料教学内容:1.1 绝缘材料1.2 导电材料1.3 磁性材料教学目标要求:熟悉各种电子材料的特性,掌握它们的应用。
教学重点:电子材料的特性教学难点:电子材料的特性学时分配:2学时第2章电阻器教学内容:2.1 固定电阻器2.2 电位器2.3 半可调电阻器2.4 敏感电阻器2.5 熔断电阻器教学目标要求:熟悉电阻器的电路符号和主要参数、型号命名和标识,掌握常用电阻器及特点、检测与选用教学重点:常用电阻器及特点、检测与选用教学难点:常用电阻器及特点、检测与选用学时分配:2学时第3章电容器教学内容:3.1 固定电容器3.2 电解电容器3.3 可变电容器和微调电容器教学目标要求:熟悉电容器的电路符号和主要参数、电容器的型号命名和标识,掌握常用电容器的应用、检测与选用教学重点:常用电容器的应用、检测与选用教学难点:常用电容器的应用、检测与选用学时分配:1学时第4章电感元件教学内容:4.1 电感线圈4.2 变压器教学目标要求:了解电感线圈、变压器的结构及主要参数,掌握常见的电感线圈、变压器及使用常识教学重点:电感线圈、变压器的结构及主要参数及使用常识教学难点:常见的电感线圈、变压器及使用常识学时分配:1学时第5章电接触件5.1 开关5.2 接插件5.3 继电器教学目标要求:了解常用电接触件的种类及特点,掌握主要参数及使用常识教学重点:电接触件的主要参数及使用常识教学难点:电接触件的主要参数及使用常识学时分配:1学时第6章半导体晶体管教学内容:6.1 半导体二极管6.2 晶体三极管6.3 场效应晶体管6.4 晶闸管教学目标要求:掌握半导体材料的基本特性、PN结及其单向导电性,掌握半导体二极管、晶体三极管、场效应晶体管、晶闸管的结构、分类、特性及主要参数、检测、典型应用。
第一章电子材料概论1.晶体有哪些基本特征?简述晶体与非晶体的异同。
答:晶体的宏观特征:(1)有规则的外形(自范性);(2)晶体的均匀性,来源于晶体中原子排布的周期性规则,宏观观察中分辨不出微观的不连续性;(3)物理性质的各异向性;(4)稳定性,晶体有固定的熔点;(5)解理性非晶态的特点:原子的空间排列不具有周期性,长程无序,短程有序;物理性能各向同性;介稳状态。
2.晶体中的缺陷及其类型有哪些?答:晶体中的缺陷,是指实际晶体与理想的点阵结构发生偏离的地区。
由于点阵结构具有周期性和对称性,所以凡使晶体中周期性势场畸变的因素称为缺陷。
类型:电子缺陷,原子缺陷。
原子缺陷:杂质、位错、空位等。
原子缺陷按几何形状分为:点缺陷、线缺陷、面缺陷、体缺陷、微缺陷。
3.什么是晶粒间界?大角度晶界有哪些常用模型?相界有哪些类型?答:单相多晶材料中,晶粒与晶粒间的过渡区,称晶粒间界(GB)。
大角度晶界常用模型:过冷液体模型,小岛模型。
相界:系统内含有两个或两个以上的相,当处于热力学平衡时,不同相之间的界面。
类型:非共格相界,共格相界,准共格相界,分界面。
4.简述X射线结构分析的基本原理和常用方法。
答:由于晶体中原子排列的对称性和周期性,X射线对晶体来说是天然光栅,所以当X射线通过晶体时,就会出现衍射现象,因而通过对衍射花样的分析和计算,就可以获得晶体结构的各种参数。
常用方法:单晶衍射法,粉末法。
5.简述近代表面分析方法的基本原理和常用表面分析方法。
答:用一定能量的某种射线或粒子束去激发固体表面后,将产生带有某种表面信息的表面射线,用这种射线进行能量分布的分析。
常用表面分析方法:透射电子显微镜,扫描电子显微镜。
6.简述纳米材料的结构与性能特征。
答:纳米材料是指材料中颗粒(晶粒)尺寸处于纳米范围(2~10nm)的金属、合金、金属氧化物、无机物或聚合物等材料,包括纳米微粒、纳米结构、纳米复合材料;材料本身具有量子尺寸效应、表面界面效应、小尺寸效应和宏观量子隧道效应。