新人教版初中数学八年级上册《第十二章全等三角形:小结》公开课教学设计_0
- 格式:doc
- 大小:750.50 KB
- 文档页数:12
全等三角形的判定复题课教学目标:熟练运用适当的方法判定两三角形全等通过探究与交流培养学生几何逻辑思维能力让学生感受和发现数学中的几何图形直观美教学重点:能够判定两个三角形的全等教学难点:能够利用条件熟练的应用适当的方法迅速的解题教学过程:教学环节、内容、步骤师生互动策划备注(活动目的)教师活动学生活动引入展导知识梳理:引导学生复习全等三角形的判定方法1、通常用于判定两三角形全等的一般方法有方法有种,分别简记为____,______,____ ,____2、对于直角三角形(即Rt△),除了一般方法外:当两直角三角形有一组斜边和直角边分别相等时,两三角形______,简记______。
3、全等三角形的______相等,______相等。
回顾旧知,为后面的学习埋下伏笔主题展导1.合作探究2.学生展评证明全等三角形全等的基本思路:一、挖掘“隐含条件”判全等引导学生总结:公共边,公共角,对顶角这些都是隐含的边,角相等的条件思考:(1)已知两边:SSS, SAS, HL(2)已知两角:ASA, AAS(3)已知一边一角:SAS, ASA,AAS, HL1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB若∠B=20°,CD=5cm,则∠C= __,BE=__,说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= __. 说说理由.学生通过自己探讨获得新知,使学生成为学习的主体,使学生学会学习,交流与合作。
3. 教师指导4. 反馈练习5.拓展延伸二、熟练转化“间接条件”判全等引导学生总结:等量加等量和相等,等量减等量差相等,都是用来间接找边和角相等的方法!5,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.能力提升:如图,在△ABC中, AC=BC,∠ACB=90°, ∠CAB的角平分线AE交边CB于E点,过E点作EF⊥AB于F,已知AB等于10㎝,求△EFB的周长?课后闯关: 略4.如图在△ABC、△ADE中∠B=∠D,AC=AE, 且∠CAE=∠BAD,1.独立思考2.小组讨论3.展示成果1.独立思考2.小组讨论3.展示成果略在教师的指导下主动构建知识的过程。
第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。
四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。
新人教版初中数学八年级上册《第十二章全等三角形:小结:构建知识体系》公开课导学案 0----f2b8f6e2-6eb3-11ec-a44d-7cb59b590d7d新人教版初中数学八年级上册《第十二章全等三角形:小结:构建知识体系》公开课导学案-0初中英语四级复习课的个案研究一、教材分析:这门课是关于全等三角形的一整章复习。
首先,帮助学生阐明全等三角形知识的全章背景,进一步理解全等三角形的概念,理解全等三角形的性质、判断和应用;其次,检查学生所学的全等三角形知识的不足和补漏,通过拓展和延伸之外的练习训练,提高学生综合运用全等三角形解决问题的能力,并通过历年省市高中入学考试中全等三角形的试题,让学生感知全等三角形的调查方向,为以后的复习指明方向。
在实践过程中,要注意知识之间的相互联系,使学生从联系和发展的角度形成学习数学的习惯二、学情分析在知识方面,九年级的学生经历了全等三角形的整个章节的学习。
他们对全等三角形的性质、判断和应用有基本的掌握,并且长期以来对全等三角形有着全面的了解。
然而,由于间隔时间长,他们忘记的更多。
全等三角形是初中几何学习的基础和工具,也是中学入学考试的必修内容。
全等三角形的综合运用和整章知识语境的形成是上述能力的综合体现。
在教学中,学生应该充分发挥自己的主体作用。
通过对学生计算全等三角形的回顾,证明学生的推理能力、发散思维能力、概括归纳能力和综合应用能力将得到提高三、教学目标1.进一步理解同余三角形的概念,掌握三角形同余的条件和性质;能够利用全等三角形的性质和判断来解决相关问题2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生总结能力,使学生认识到数形结合、观念转变在解决问题中的作用3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重点与难点重点:全等三角形性质与判定的应用.难点:能够理解使用三角形同余解决复杂图形问题的基本过程。
第十二章全等三角形12.1 全等三角形 (1)12.2 三角形全等的判定 (5)第1课时边边边 (5)第2课时边角边 (9)第3课时角边角和角角边 (13)第4课时斜边、直角边 (17)12.3 角的平分线的性质 (21)第1课时角的平分线的作法及性质 (21)第2课时角的平分线的判定 (25)12.1 全等三角形【知识与技能】1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.【过程与方法】在图形变换以及操作的过程中发展学生的空间观念,培养学生的几何直觉.【情感态度】使学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验,在探索和运用全等三角形性质的过程中感受到数学的乐趣.【教学重点】探究全等三角形的性质.【教学难点】掌握两个全等形的对应边\,对应角.一、情境导入,初步认识问题1 观察下列图形,指出其中形状与大小相同的图形.问题2 从上面的图形中你有什么感受?在实际生活中,你能找到形状、大小相同的图形的应用的例子么?二、思考探究,获取新知让学生交流问题1,问题2的答案,并带着问题“这些图形有什么共同特征?”自学课本内容.【教学说明】变化的图形易引起学生的注意,使它们很快地投入到学习的情境中,并通过观察发现其中的共同特点,形成猜想.再结合自学课本,从而认识全等形、全等三角形的定义及记法.教师讲课前,先让学生完成“自主预习”.思考1 把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?思考2 全等三角形的对应边、对应角有什么关系?为什么?【教学说明】让两个学生在黑板上引导全体学生操作并画图,从中找到答案.这个过程利用三角形的平移、旋转、翻折的不变性,让学生通过具体操作直观感知全等三角形的概念,然后让学生通过操作和观察,猜测并验证全等三角形的性质.利用基本三角形变换出各种图形,然后观察对应边、角的变化,利于提高学生的识图能力.思考1 得到的基本图案如图:【归纳结论】1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.“全等”用“≌”表示,读作“全等于”.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫对应角.2.全等三角形的对应边相等,对应角相等.三、运用新知,深化理解【教学说明】出示下列问题,让学生通过交流\,思考寻找问题的答案,并共同讨论:全等三角形的对应顶点\,对应边之间有什么关联.1.下列每对三角形分别全等,看看它们是怎样变化而成的,并指出对应边、对应角.2.两个全等的三角形按如下位置摆放,指出它们的对应顶点,对应角,对应边.3.如图,将△ABC沿直线BC平移,得到△DEF.(1)线段AB,DE是对应线段,有什么关系?线段AC和DF呢?(2)线段BE和CF有什么关系?为什么?(3)若∠A=70°,∠B=40°,你知道其他各角的度数吗?为什么?4.如图,将△ABC沿直线BC平移,得到△DEF,说出你得到的结论,并说明理由.5.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,∠A=40°,∠B=30°,求∠ADC的大小.【教学说明】题3题4中要通过观察发现,EC是线段BC与EF的公共部分,从而有BC-EC=EF-EC即BE=CF的结论;可以挖掘更深层次的结论,提升分析问题的能力,如AB∥DE,AC ∥DF,BE=CF,S四边形ABEG=S四边形FDGC等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.图(1)是△EDC由△ABC绕过C点且垂直于BD的直线翻折而成,AB的对应边ED,AC的对应边EC,BC的对应边DC,∠A的对应角∠E,∠B的对应角∠D,∠ACB的对应角为∠ECD.图(2)是△ABC延BC边平移BE长的距离得到△DEB,AC的对应边DB,AB的对应边为DE,CB的对应边为BE,∠A的对应角为∠D,∠C的对应角为∠DBE,∠ABC的对应角为∠E.图(3)是△ABD绕BD的中点旋转180°得△CDB,AB的对应边为CD,BD对应边为DB、AD的对应边为CB,∠A的对应角∠C,∠ABD的对应角为∠CDB,∠ADB的对应角为∠CBD.2.略4.AB=DE AC=DF BC=E F∠A=∠D ∠B=∠DEF ∠ACB=∠F理由:全等三角形对应边相等,对应角相等.5.∠ADC=110°四、师生互动,课堂小结1.引导学生回忆全等三角形定义\,记法与性质.2.归纳寻找对应边\,对应角的规律:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;对应边所对的角是对应角,两条对应边的夹角是对应角.(2)公共边一般是对应边;有对顶角的,对顶角一般是对应角;公共角一般是对应角等.1.布置作业:从教材“习题12.1”中选取.2.完成练习册中本课时的练习.本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等”“对应”等含义的理解.对“全等三角形”的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.12.2 三角形全等的判定第1课时边边边【知识与技能】掌握三角形全等的“边边边”条件,了解三角形的稳定性.【过程与方法】经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】掌握三角形全等的“边边边”条件.【教学难点】三角形全等条件的探索过程.一、情境导入,初步认识1.复习全等三角形的性质,归纳得出:三条边对应相等,三个角对应相等的两个三角形全等.2.提出问题:两个三角形全等,一定需要六个条件吗?如果只满足其中部分条件的两个三角形,是否也能全等呢?指导学生探究下列两个问题:探究1 先任意画出一个△ABC.再画一个△A′B′C′,使△ABC与△A′B′C′满足六个条件中的一个(一边或一角分别相等)或两个(两边、一边一角或两角分别相等).你画出的△A′B′C′与△ABC一定全等吗?通过画图可以发现,满足六个条件中的一个或两个,△ABC与△A′B′C′不一定全等.探究2 先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?在充分的观察、讨论、交流后,引导学生总结出:三边对应相等的两个三角形全等,即“边边边”公理,或写成“SSS”.【教学说明】利用提出的问题激发学生的探究发现兴趣,教师应根据学生观察发现的结论,无论对与错,多给予肯定与鼓励,并引导学生最终得出正确的结果.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师操作演示:由三根木条钉成的一个三角形的框架,大小和形状固定不变,由此归纳出:(1)三边对应相等的两个三角形全等;(2)三角形具有稳定性.例1 如图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD.(由学生思考后表述思路,教师指导并展示证题过程.)证明:∵D是BC中点,∴BD=CD.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).例2如图,已知AC=FE,BC=DE,点A\,D,B\,F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE外,还应有什么条件?怎样才能得到这个条件?答:还需要AB=FD,这个条件可由AD=FB得到.证明:∵AD=FB,∴AD+BD=BD+FB,即AB=FD.在△ABC和△FDE中,∴△ABC≌△FDE(SSS)【教学说明】由以上两例,应让学生掌握:1.证明题的基本格式,做到每一步推理有根有据,并正确用几何语言表述出来.2.积累分析问题的经验,逐步学会怎样探寻未知条件,为证题提供足够的依据.三、运用新知,深化理解1.如图,E是AC上一点,AB=AD,BE=DE,可应用“SSS”证明三角形全等的是()A.△ABC≌△ADCB.△ABE≌△ADEC.△CBE≌△CDED.以上选项都对2.如图,△ABC中,AD=DE,AB=BE,∠A=100°,则∠DEC= 度.3.如图,AB=AC,AD=AE,BE=CD.求证:△ABD≌△ACE.证明:在△ABD和△ACE中,∴△ABD≌△ACE(SSS)上述的证明过程正确吗?若不正确,请写出正确的推理过程.4.如图,已知A,F,C,D在同一直线上,AB=DE,BC=EF,AF=DC,求证:BC∥EF.【教学说明】学生在教师指导下完成上述习题时,教师应提醒学生注意:1.善于利用题中已知条件和隐含条件(如题3的公共线段DE后),联想“SSS”证得三角形全等.2.要灵活地结合三角形全等性质,以证出线段相等或角相等,进而推得两线平行、或互相垂直等位置关系.3.熟悉证题格式.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.B 2.803.不正确.其证明过程如下:∵BE=CD,∴BE-DE=CD-DE,即BD=CE.在△ABD和△ACE中,∴△ABD≌△ACE(SSS).4.先证△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.四、师生互动,课堂小结教师引导学生反思:本节课我们有哪些收获?【指导要点】回顾反思本节课重要知识,探究过程,并归纳方法和结论,并领悟其中所包含的数学思想与规律.1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本课时教学时应抓住以下重点:1.分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.2.教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.3.强调思路分析和书写规范.第2课时边角边【知识与技能】掌握证明三角形全等的“边角边”定理.【过程与方法】1.经历探索三角形全等条件的过程,培养学生观察\,分析图形的能力及动手能力.2.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】应用“边角边”证明两个三角形全等,进而得出线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.一、情境导入,初步认识问题1 教材探究3:已知任意△ABC,画△A′B′C′,使AB=A′B′,A′C′=AC,∠A′=∠A.【教学说明】要求学生规范地用作图工具画图,纠正学生的错误做法,并让学生剪出画好的△ABC,△A′B′C′,把它们放在一起,观察出现的结果,引导学生间交流结论.教师讲课前,先让学生完成“自主预习”.问题2 请各学习小组间交流,并总结出规律.二、思考探究,获取新知根据学生交流情况,教师作出如下归纳总结.1.两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.2.其中的角必须是两条相等的对应边的夹角,边必须是夹相等角的两条对应边.例1 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个可以直接到达A 和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离,为什么?【教学说明】让学生思考后,书写推理过程,教师引导分析.要想证AB=DE,只需要证△ABC≌△DEC.而证这两个三角形全等,已有条件 ,还需条件 .证明:在△ABC和△DEC中,∴△ABC≌△DEC(SAS).∴AB=DE.【归纳结论】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来得到答案.例2 如图,已知AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.【教学说明】由学生依题意寻找条件,涉及三角形边的条件有AB=AC,AD=AE,但∠BAC=∠DAE只是对应边夹角的一部分,怎么办?以此引导学生思考,理清解题思路.证明:∵∠BAC=∠DAE(已知),∴∠BAC+CAD=∠DAE+CAD,即∠BAD=∠CAE.在△ABD与△ACE中,AB=AC(已知),∠BAD=∠CAE(已证),AD=AE(已知),∴△ABD≌△ACE.【归纳结论】用来证明三角形全等的边、角条件,必须是这两个三角形的边、角,而不是其中的一部分,如∠BAC=∠DAE不能直接用于证△ABD与△ACE的全等.三、运用新知,深化理解1.如图,已知∠1=∠2,如果用SAS证明△ABC≌△BAD,还需要添加的条件是.2.如图,已知OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°3.如图,已知AB∥DE,AB=DE,BE=CF,如果∠B=50°,∠A=70°,则∠F=( ).A.70°B.65°C.60°D.55°4.如图,点B,D,C,F在一条直线上,且BC=FD,AB=EF.(1)请你添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是 .(2)添加了条件后,证明△ABC≌△EFD.5.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE.(2)若∠D=50°,求∠B的度数.【教学说明】引导学生应用“SAS”解答上述习题,巩固对“SAS”的认识和提升应用能力.可让学生在黑板上写出4\,5题的过程,强化学生书写证明过程的能力.在完成上述习题的解答后,请学生探究:“两边及其中一边的对角对应相等的两个三角形是否全等?”,指导学生画图分析、共同讨论,形成结论.教师出示下列材料帮助学生探究:如图,在△ABC和△ABD中,∠B=∠B,AB=AB,AC=AD,由图可知,△ABC与△ABD并不全等.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.AC=BD 2.A 3.C4.(1)∠B=∠F或AB∥EF或AC=ED.(2)当∠B=∠F时,在△ABC和△EFD中,AB=EF,∠B=∠F,BC=FD,∴△ABC≌△EFD(SAS).其它证明略.5.(1)∵点C是线段AB的中点,∴AC=BC,又∵CD平分∠ACE,CE平分∠BCD,∴∠1=∠2,∠2=∠3,∴∠1=∠3.在△ACD和△BCE中,CD=CE,∠1=∠3,AC=BC,∴△ACD≌△BCE(SAS).(2)∵∠1+∠2+∠3=180,∴∠1=∠2=∠3=60.∵△ACD≌△BCE,∴∠E=∠D=50°.∴∠B=180°-∠E-∠3=70°.四、师生互动,课堂小结先归纳“SAS”,并强调:“两边及其中一边的对角对应相等的两个三角形不一定全等”.再提出问题供同学思考\,交流\,探讨.1.判定三角形全等的方法有哪些?2.证明线段相等\,角相等的常见方法有哪些?1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.第3课时角边角和角角边【知识与技能】掌握两个三角形全等的条件:“ASA”与“AAS”,并指出用它们判别三角形是否全等.【过程与方法】经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思问题的能力,形成理性思维.【情感态度】敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.【教学重点】理解、掌握三角形全等的条件:“ASA”、“AAS”.【教学难点】探究出“ASA”“AAS”及它们的应用.一、情境导入,初步认识问题1 一张教学用的三角形硬纸板不小心被撕成了如图形状,你能制作出与原来同样大的纸板吗?鼓励学生提出不同的思路方法,并要求学生用纸片对自己的思路操作实验.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 教材探究4.先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B (即两角和它们的夹边分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?要求每个学生先独立动手画图并思考,再在小组内交流.把画好的△A′B′C′剪下,放在△ABC上,观察出现的情形,并根据结果总结规律,说出每个人的发现并交流.二、思考探究,获取新知【归纳结论】根据学生的发言,予以不同的点评,重在鼓励,最后归纳出新知识点:两角和它们的夹边对应相等的两个三角形全等,简称“角边角”或“ASA”.强调注意:“边”必须是“两角的夹边”.例1 如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE.证明:△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA).∴AD=AE.【课堂练习】由学生在黑板上完成证明过程.如图,AB=A′C,∠A=∠A′,∠B=∠C,求证:△ABE≌△A′CD.【分析】本例可直接应用“ASA”证得两个三角形全等,关键是准确地书写证明过程.例2 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.证明△ABC≌△DEF.【教学说明】由已知条件并联想“ASA”不难证明结论,教师关键通过本例引导学生发现:“两个角和其中一个角的对边对应相等的两个三角形全等”.上述判定三角形全等的定理简写成“角角边”或“AAS”.【课堂练习】如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长,为什么?【答案】利用三角形全等得到DE=AB.证明:在△ABC和△EDC中,∠B=∠EDC=90°,BC=DC,∠ACB=∠ECD.∴△ABC≌△EDC.∴DE=AB.三、运用新知,深化理解1.如图,B是CE的中点,AD=BC,AB=DC,DE交AB于F点.求证:(1)AD∥BC;(2)AF=BF.2.如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE,请你添加一个条件,使△BDE≌△CDF(不再添加其它线段,不再标注或使用其他字母),并给出证明.【教学说明】教师引导学生通过上述习题的解答归纳证明三角形全等的方法,并总结证明线段相等(或两线平行\,垂直)或两角相等的常见方法.同时,让学生探究“两个三角形中三个角分别相等,这两个三角形全等吗?”的问题,同学间互相交流探究出来.【答案】1.(1)连接BD,∵AD=CB,AB=DC,BD=DB,∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD.∴AD∥BC.(2)∵B为CE中点,∴EB=BC.由(1)知AD∥BC,AD=BC,∴AD=BE,∠A=∠FBE,又∠AFD=∠BFE,∴△ADF≌△BEF(AAS).∴AF=BF.2.添加条件:BD=DC(或点D是线段BC中点),FD=ED或CF=BE.以BD=DC为例证明如下:∵CF∥BE,∴∠FCD=∠EBD.又∵BD=DC,∠FDC=∠EDB.∴△BDE≌△CDF(ASA).四、师生互动,课堂小结1.证明三角形全等的方法有:SSS,SAS,ASA,AAS.2.三个角对应相等的两个三角形不一定相等.如:大小不同的两个等腰直角三角形不全等.3.证两线相等(或两角相等)的常用方法是证它们所在的两个三角形全等.1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究,合作学习的能力.同时,注重让学生用自己的语言归纳和表达发现的规律,指引学生对知识与方法进行回顾总结,形成良好的反思习惯,获取优秀的学习方法.第4课时斜边、直角边【知识与技能】掌握两个直角三角形全等的条件,并能应用它证明两个直角三角形全等.【过程与方法】通过对知识方法的归纳总结,加深对三角形全等的判定的理解.培养反思习惯,形成理性思维.【情感态度】通过探究与交流,解决问题,获得成功的体验,进一步激发探究的积极性.【教学重点】理解、掌握直角三角形全等的条件:HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.一、情境导入,初步认识问题1舞台的背景形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)请你设法帮工作人员找到解决问题的方式.(2)如果工作人员只带了一卷尺,他能完成这个任务吗?全体学生思考,并互相交流每个人的想法,组长收集每组的结论.问题2 教材探究5任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.要求:每个学生都动手画图,并剪下所画的直角三角形,每两人把剪下的直角三角形,重叠在一起,观察它们是否重合.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知教师根据学生操作、交流情况,引导学生一起归纳上述两个问题的结果.对于问题1,(1)方法有:测量斜边和一个对应的锐角(AAS),或测量没遮住的一条直角边和一个对应的锐角(ASA或AAS);(2)可以完成这个条件,其依据正是本节所要学的知识,以此激发学生探究的兴趣.对于问题2,归纳得到:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.例1 如图,已知AC⊥BC,BD⊥AD,AC=BD.求证:BC=AD.【教学说明】由学生思考\,交流讨论后,指定学生表述思路,并由教师板书证明过程,引导学生正确书写解题步骤.证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90°.在Rt△ABC和Rt△BAD中,AB=BA,AC=BD,∴Rt△ABC≌Rt△BAD(HL).例2 如图,两根长度为12m的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.解:相等.理由如下:由图形及实际情形可知,△ABD和△ACD均为直角三角形.又AB=AC,AD为公共边,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD.例3 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF 相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?解:∠ABC+∠DFE=90°.理由如下:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL).又∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°.三、运用新知,深化理解1.如图,已知AC⊥BD于点P,AP=CP,请增加一个条件,使△ABP≌△CDP,你增加的条件是(不再添加辅助线).2.如图,已知AB=AC,AD⊥BC于D,且△ABC的周长是50cm,△ABD的周长是40cm,则AD= .3.如图,AB⊥BD,AB∥DE,AB=CD,AC=CE,那么BC与DE有怎样的数量关系?写出你的猜想并说明理由.4.如图,AB=AC,AD⊥BC于点D,AD=AE,AB平分∠DAE交DE于点F.请你写出图中三对全等三角形,并选取其中一对加以证明.【教学说明】指导学生解答上述习题时,强调学生应:(1)注意应用“HL”证三角形全等时的书写格式;(2)归纳总结证明直角三角形全等的判定条件共有几个?它们分别是什么?【答案】1.BP=DP或AB=CD或∠B=∠D或AB∥CD. 2.15cm3.猜想:BC=DE.证明:∵AB⊥BD,∴∠ABC=90°,又AB∥DE,∴∠EDC=∠ABC=90°,即△ABC和△EDC为直角三角形.又AB=CD,AC=CE,∴Rt△ABC≌Rt△CDE(HL).∴BC=DE.4.△ADB≌△ADC,△ABD≌△ABE,△ABE≌△ACD,△AFD≌△AFE,△BFD≌△BFE(写出三对即可,可以△ADB≌△ADC为例证明,应用HL证得).四、师生互动,课堂小结1.回顾本书所学知识,巩固“HL”的记忆与认识,清楚地了解到“HL”是直角三角形全等所独有的定理,以直角三角形为前提条件.2.归纳直角三角形全等的证明定理有:SSS,SAS,ASA,AAS,HL共五个,在实际解题时能灵活选用.【教学说明】在总结直角三角形全等判定定理共有几个时,鼓励学生踊跃思考发言,发挥集体智慧得到完整答案,利于引导学生形成合作交流意识.1.布置作业:从教材“习题12.2”中选取部分题目.2.完成练习册中本课时的练习.本课时教学应突出学生主体性原则,即从规律的探究、例题的学习,指引学生独立思考,自主得出,在探究之后,让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.12.3 角的平分线的性质第1课时角的平分线的作法及性质【知识与技能】1.掌握角的平分线的作法.2.会利用角平分线的性质.【过程与方法】经历折纸、画图、文字与符号的翻译活动,培养学生的联想、探索、概括归纳的能力.【情感态度】通过实际操作与探究交流,激发学生学习数学的兴趣.【教学重点】角平分线的性质及其应用.【教学难点】灵活应用两个性质解决问题.一、情境导入,初步认识活动1 学生预习教材,掌握角平分线的作法,小组间交流并动手实际画一画,总结出画角平分线的步骤.活动 2 让学生用准备好的白纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?【教学说明】发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.请同学们折出如图所示的折痕PD、PE,并研究这个图形中隐含了哪些等量关系,互相交流,形成结论.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知由上述活动及交流情况,教师总结以下新知识:1.角平分线上的点到角两边的距离相等.2.到角两边距离相等的点在角的平分线上.【教学说明】1.这两个性质的条件和结论正好相反,分别可以作为证线段相等和证角相等的依据.2.在用几何语言表述性质时,注意强调“点到直线的距离”中的垂直条件.例1 如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个市场应建于何处(在图上标出它的位置,比例尺为1∶20000)?【教学说明】教师提出下列问题,引导学生理清思路:(1)集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?(2)比例尺为1∶20000是什么意思?。
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
全等三角形的复习(第1课时)
一、教材分析:
本节课是全等三角形的全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形的概念,理解性质、判定和运用;其次对学生所学的全等三角形知识进行查缺补漏,再次通过拓展延伸以的习题训练,提高学生综合运用全等三角形解决问题的能力,并对中考对全等三角形考察方向有一个初步的感知,为以后的复习指明方向。
在练习的过程中,要注意强调知识之间的相互联系,使学生养成以联系和发展的观点学习数学的习惯.
二、学情分析
在知识上,学生经历全等三角形全章的学习,对全等三角形性质、判定以及应用基本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何的基础和工具也是中考必考内容。
对全等三角形的综合应用以及全章知识脉络的形成正是以上各种能力的综合体现,教学中要充分发挥学生的主体作用,通过复习学生在全等三角形的计算、证明对学生的推理能力、发散思维能力和概括归纳能力将有所提高.
三、教学目标
1.进一步了解全等三角形的概念,掌握三角形全等的条件和性质;会应用全等三角形的性质与判定解决有关问题.
2.在题组训练的过程中,引导学生总结出全等三角形解题的模型,培养学生归纳总结的能力,使学生体会数形结合思想、转化思想在解决问题中的作用.
3.培养学生把已有的知识建立在联系的思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重难点
重点:全等三角形性质与判定的应用.
难点:能理解运用三角形全等解题的基本过程。
五、教法与学法
以“自助探究”为主,以小组合作、练习法为辅;在具体的教学活动中,要给予学生充足的时间让学生自主学习,先形成自己的全等三角形知识认知体系,尝试完成练习;给予学生充足的空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课的教学目的.
六、教具准备
多媒体课件,
七、课时安排
2课时
八、教学过程
本节课是全等三角形全章的复习课,本节课我主要采用学生“练后思”的模式,帮助学生搜整《全等三角形》全章知识脉络,建构知识网络,通过基础训练、概念变式练习、典例探究、拓展应用等活动进行查缺补漏和拓展延伸;借助“基础了题目-变式题目-典型题目-拓展题目”五个梯次递进的教学活动达成教学目
能力展现:
1.(2013呼和浩特)如图,CD=CA,∠1 .求证:DE=AB.
探究二全等三角形开放性问题命题角度:
能力展现:
2013安顺)如图,已知AE=CF,∠AFD=∠CEB,那
答案不唯一,如:∠C=∠
∠BDC 或AE=AD 或
反思小结,提高认识(3分钟).1、经过本节课的学习你有什么收获?
置关系,一般需要先识别出或作出全等三角形,进而利用其性质解题;
运动变化图形中(如平移、旋转、折叠等)寻求全等.对全等三角形的考查一般不单纯证明两个三角形全等,命题时往往把需要证明的
(如特殊平行四边形)中,或与其他图形变换
九、板书设计。