液压气动基础知识
- 格式:ppt
- 大小:48.83 MB
- 文档页数:50
机械设计基础掌握机械设计中的常见液压与气动原理近年来,机械设计领域的液压与气动技术因其高效、灵活和可靠的特点,被广泛应用于各个行业。
掌握机械设计中的常见液压与气动原理对于工程师而言,是十分重要的。
本文将介绍液压与气动技术的基本原理,并探讨其在机械设计中的应用。
一、液压与气动原理的基础知识1. 液压原理:液压技术是利用液体传递能量的一种技术。
在液压系统中,液压泵将机械能转换为液体压能,通过液压管路传递到执行机构上产生力或运动。
在液压系统中,液压阀控制液压的流动方向和流量大小。
液压缸是将液压能转换为机械能的装置。
2. 气动原理:气动技术是利用气体传递能量的一种技术。
在气动系统中,气动泵将机械能转换为气体压能,通过气动管路传递到执行机构上产生力或运动。
与液压系统相比,气动系统的工作噪音相对较大,但气动系统更加适用于易燃易爆环境。
二、液压与气动技术的应用1. 液压技术的应用:液压技术广泛应用于各种机械设备中,例如液压升降平台、液压压力机和液压车辆制动系统等。
液压技术能够提供高压力、高精度和大功率的传动能力,在各个领域发挥着重要作用。
2. 气动技术的应用:气动技术被广泛应用于自动化设备中,如气动机床、气动搬运系统和气动输送系统等。
气动技术具有快速、灵活和易于控制的优势,能够实现高速、高效的自动化生产。
三、液压与气动原理在机械设计中的重要性液压与气动原理在机械设计中具有重要的作用,主要体现在以下几个方面:1. 动力传输与转换:液压与气动技术能够有效地传递和转换动力,在机械设计中被广泛用于传输大功率和高精度的运动能量。
2. 运动控制:液压与气动技术能够实现对机械设备的精确控制,通过液压阀和气动阀的控制,可以实现机械设备的运动速度、位置和力的控制。
3. 能量储存与回收:液压与气动技术能够通过储能元件(如气动储能器和液压蓄能器)将部分能量储存起来,以便在需要时回收利用,提高能源利用效率。
4. 环境适应性:液压与气动技术具有良好的环境适应性,能够在恶劣的工作环境和高温、低温的条件下正常工作,适用于各个行业的不同需求。
液压与气动技术知识点一、基本知识PART A1.---C---是液压系统的储能元件,它能储存液体压力能,并在需要时释放出来供给液压系统。
A.油箱B.过滤器C.蓄能器D.压力计2.应用较广、性能较好,可以获得小流量的节流口形式为------A------A .针阀式或轴向三角槽式 B.偏心式或周向缝隙式 C.轴向三角槽式或周向缝隙式D.针阀式或偏心式3.调压和减压回路所采用的主要液压元件是-----B----A.换向阀和液控单向阀B.溢流阀和减压阀C.顺序阀和压力继电器D.单向阀和压力继电器4. ---C----管多用于两个相对运动部件之间的连接,还能吸收部分液压冲击。
A. 铜管B.钢管C.橡胶软管D.塑料管5.与节流阀相比较,调速阀的显著特点是( A )。
A.流量稳定性好;B.结构简单;成本C;调节范围大;D.最小压差的限制较小6.能输出恒功率的容积调速回路是-------B------A.变量泵—变量马达回路;B.定量泵—变量马达;C.变量泵—定量马达;D.目前还没有7.溢流阀的作用是配合油泵等溢出系统中多余的油液,使系统保持一定的---A----A.压力B.流量C.流向D.清洁度8.为保证压缩空气的质量,气缸和气马达前必须安装();气动仪表或气动逻辑元件前应安装()。
(B)(A)分水滤气器-油雾器-减压阀,分水滤气器-油雾器(B)分水滤气器-减压阀-油雾器, 分水滤气器-减压阀(C)减压阀-分水滤气器-油雾器,分水滤气器-油雾器(D)分水滤气器-减压阀,分水滤气器-油雾器-减压阀9.当环境温度较高时,宜选用粘度等级---B--的液压油A.较低B.较高C.都行D.都不行10.能将液压能转换为机械能的液压元件是----B-----A.液压泵B.液压缸C.单向阀D.溢流阀11.单作用叶片泵-------D-------A. 定子内表面近似腰圆形B.转子与定子中心的偏心距离可以改变,在重合时,可以获得稳定大流量C.可改变输油量,还可改变输油方向D.转子径向压力不平衡12.液压机床开动时,运动部件产生突然冲击的现象通常是------B-------A.正常现象,随后会自行消除;B.油液中混入了空气;C.液压缸的缓冲装置出故障D.系统其他部分有故障13.下列压力控制阀中,哪一种阀的出油口直接通向油箱-----C----A.顺序阀B.减压阀C.溢流阀D.压力继电器14.液体流经薄壁小孔的流量与孔口面积的()和小孔前后压力差的()成正比。
液压技术(液压与气动技术)知识点复习适应班级:180131/132/133/134/151/152第1章液压传动的认知1.液压传动的定义液压传动是以液体为工作介质,利用液体的压力能来实现运动和动力的传递、转换与控制的一种传动方式。
2.液压传动的特性(1)以液体为传动介质来传递运动和动力;(2)液压传动必须在密闭的系统内进行;(3)依靠密封容积的变化传递运动;(4)依靠液体的静压力传递动力。
3.液压传动系统的组成:(1)动力元件:把原动机输入的机械能转换成液体的压力能,向液压系统提供液压油的元件。
(2)执行元件:将液体的压力能转换成机械能,以驱动工作机构的元件。
(3)控制元件:控制或调节系统中油液的压力、流量或方向,以保证执行机构完成预期工作的元件。
(4)辅助元件:将上述三部分连接在一起,起储油、过滤、测量和密封等作用的元件。
(5)工作介质:传递能量的介质。
第2章液压流体力学基础1.液压油的粘性、粘度(1)粘性:是指液体产生内摩擦力的性质。
流体只有流动时才有粘性,静止流体是不呈现粘性的。
(2)粘度:是指用来衡量流体粘性大小的指标。
粘度愈大,粘性越大,液体的内摩擦力就越大,流动性就越差。
粘度分为:①绝对粘度;②运动粘度;③相对粘度2.液压油的选用环境温度较高,工作压力高或运动速度较低时,为减少泄露,应选用粘度较高的液压油。
否则相反。
3.液体静压力p是指静止液体单位面积上所受的法向力。
p=FA液体静压力的特征:液体静压力垂直于作用面,其方向与该面的法线方向一致。
静止液体中,任一点所受到的各方向的静压力都相等。
4.液体静压力基本方程p=p0+ρgℎ5.帕斯卡原理处于密闭容器中的静止液体,其外加压力发生变化时,只要液体仍保持其原来的静止状态不变,则液体中任一点的压力均将发生同样大小的变化。
注意:液压传动是依据帕斯卡原理实现力的传递、放大和方向变换;液压系统的压力完全取决于外负载。
6.压力的表示方法绝对压力=大气压力+相对压力真空度=大气压力-绝对压力7.理想液体与稳定流动理想液体:既无粘性又无压缩性的假想液体。
液压与气动基础知识嘿,朋友们!今天咱来聊聊液压与气动基础知识,这可有意思啦!你想想看,液压和气动就像是机器世界里的大力士和小精灵。
液压呢,就像是个超级大力士,能扛起超级重的东西,力量大得惊人。
气动呢,就像是个灵活的小精灵,动作迅速又敏捷。
咱先说液压。
液压系统就像是人体的血液循环系统一样。
那些液压油啊,就像血液在血管里流淌,通过各种管子和元件,把力量传递到需要的地方。
比如说,那些大吊车,能吊起那么重的东西,靠的就是液压的力量。
要是没有液压,那可就麻烦啦,我们怎么能轻松地吊起那些大家伙呢?再看看气动。
气动系统就像一阵风,说来就来,说走就走。
它的反应速度特别快,适合一些需要快速动作的地方。
比如一些自动化生产线,气动元件能迅速地完成各种动作,让生产效率大大提高。
那液压和气动都有啥元件呢?这可多了去了。
像液压泵,就像是心脏一样,把液压油抽出来,给系统提供动力。
液压缸呢,就是执行动作的,能把液压油的力量变成实际的动作。
还有各种阀,就像是开关一样,控制着油的流动方向和流量。
气动也有类似的元件,像气泵、气缸、气阀等等。
液压和气动也不是完美无缺的呀!液压油要是漏了,那可就麻烦了,到处都是油乎乎的。
气动呢,有时候会有噪音,“滋滋”地响个不停。
但咱不能因为这点小毛病就嫌弃它们呀,它们可是给我们的生活和工作带来了巨大的便利呢!你看那些工厂里的机器,没有液压和气动,能那么高效地工作吗?能生产出那么多好东西吗?还有那些大型车辆,没有液压刹车,能那么安全地行驶吗?所以说呀,液压与气动基础知识真的很重要呢!我们要好好了解它们,掌握它们的特点和应用。
这样我们才能更好地利用它们,让它们为我们服务呀!你说是不是呢?别小瞧了这小小的液压和气动,它们的作用可大着呢!我们可不能轻视它们,要好好对待它们,让它们发挥出最大的作用!。
《液压与气动》课程基本常识第一章绪论部分[1] 常见的传动主要包括:机械传动、(液压)传动、(气)动、电机传动、机电传动等。
[2] 液压传动的传动介质是原油炼制而成的各种制品,简称(液压油)。
[3] 液压传动是通过工作介质(液体)来传递动力的;通过液体的(压力)能量来传递动力;工作介质在工作过程中始终受到控制和调节。
[4] 液压传动的基本组成部分包括:1)能源装置即提供压力油的液压(泵),它将机械能转换为(液压)能;执行装置,包括直线运动的液压(缸)或回转运动的液压(马达);控制调节装置,包括方向控制阀、(压力)控制阀、流量控制阀等;辅助装置,包括(油)箱、(滤油)器、油管等。
[5] 液压传动的优点主要有:同等体积下,相对电气装置,液压装置传递的(动力)更大;同等功率下,相对电机,体积小、重量轻、结构紧凑;液压装置工作较平稳;液压装置可在大范围内(无级)调速;液压装置易于实现自动化;液压装置易于实现(过载)保护;液压元件易于实现标准化、系列化、通用化;选用液压传动实现直线运动远远比机械传动简单等。
[6] 液压传动的缺点主要有:液压传动无法保证严格的(传动)比;液压传动在工作过程中能量损失较大,主要是摩擦、泄漏引起;液压传动对(油温)变化敏感,工作稳定性很容易受到温度影响;为减少泄漏,要求液压元件制造精度高,从而液压元件造价高昂;液压传动对油液(污染)敏感;液压传动需要独立的动力源;液压传动的(故障)不容易诊断。
第二章液压油[1] 液压油的作用是传递(动力)或功率的介质且决定着系统的工作可靠性和稳定性;(润滑)作用、冷却作用、防锈作用等。
[2] 液压油液可分为:石油型,包括(机械)油、汽轮机油、普通液压油、专用液压油等;难燃型,包括乳化油、合成油等。
[3] 液压油液的要求随工作机械、工作环境而不同,但基本要求是:(粘)度应合适;较好的(润滑)性能;杂质少、纯净的质地;对金属和密封件具有较好的相容性;对热、氧化、水解、剪切具有良好的稳定性;具有良好的抗泡沫性、抗乳化性、防锈性、抗腐蚀性;流动点、凝固点低;闪点、燃点高等;对人体无害或污染小;在轧钢机、压铸机、挤压机、飞机等场合应有耐高温、热稳定性、不腐蚀、无毒性、不挥发、防火等。
1.液压与气动的组成?除工作介质(液压油或者压缩空气外),还有以下四部分组成:动力元件(将机械能转换成流体的压力能的元件。
例如:液压泵和空气压缩机)、执行元件(将流体的压力能转换成机械能的元件。
例如作直线运动的液压缸或者气缸,作回转运动的液压马达或者气压马达)、控制调节元件(例如溢流阀、节流阀、换向阀等)以及辅助元件(例如:管道、油箱、过滤器、蓄能器、油雾器、消声器等)2.液压、气压传动的特点? 主要区别?一.液压1.优点:(1)液压传动能在较大范围内实现无级调速(调速范围可达2000)(2)在同功率下,液压装置体积小,重量轻(3)工作平稳,换向冲击小,便于实现快速气动、制动和频繁的换向(4)易于实现过载保护,安全性好,采用矿物油作为工作介质,自润滑性好(5)操作控制方便,便于设备实现自动化(6)液压元件的标准化、系列化和通用化程度高,便于设计、制造和使用维修2.缺点:(1)液压传动系统中存在的泄露和油液的可压缩性,影响了传动的准确性,故不宜用于要求具有精确传动比的场合(2)液压传动系统工作过程中往往有较大的能量损失,因此液压传动效率不高,并且不宜作距离传动(3)液压传动对油温性变化比较敏感,不宜在很高或者很低的温度条件下工作(4)液压件制造精度较高,系统过程中发生故障时不易诊断和排除二.气压1.优点:(1)以空气为工作介质,来源方便,使用后可以直接排入大气中,处理简单,不污染环境(2)空气粘度很小,在管道中压力损失较小,因此压缩空气便于集中供应和远距离输送(3)压缩空气的工作压力一般较低,因此对气动元件的材料和制造精度要求较低(4)工作环境适应性好(5)维护简单,使用安全可靠,能够实现过载保护2.缺点:(1)气动传动工作速度的稳定性较差,,易受负载变化的影响(2)工作压力较低,系统输出力较小,传动效率较低(3)排气噪声较大,在高速排气时需要安装消声器3.液压油的工作介质的物理特性1.液体的密度密度:单位体积液体的质量称为液体的密度,用ρ表示,即Vm =ρ 式中V —体积(3m ),m —质量(kg )一般液压油的密度是850~9003/m kg2.液体的可压缩性:液体在压力作用下体积减小的这种性质称为液体的可压缩性。