第五六七章 船体局部振动、主要振源、振动评价防振与减振
- 格式:ppt
- 大小:3.22 MB
- 文档页数:92
船舶结构的振动及预防措施分析摘要:本文通过对船舶结构振动的原因进行分析,结合船舶行驶的具体过程,进一步提出预防船舶结构振动的措施,提高船舶运行过程中的安全性。
关键词:船舶;振动;预防措施船舶在运行的过程中,会受到各种外在因素的影响,这些外在影响,可能直接作用在船体的外部结构上,也可能通过间接的作用在船体的表层,从而对船舶本身造成影响。
很多外力因素的对船舶的直接表现形式是引起船舶动荡,造成船舶结构的振动。
影响较小的振动可能会影响船内成员的身体不适,造成乘客的烦恼,降低乘客乘船体验感,但不会对船舶本身造成比较大的危害。
如果出现了比较大的振动,可能会使船舶在运行的过程中出现比较大的损伤,影响船舶的整体结构和各类零部件,造成零部件之间的剧烈的摩擦,使某个部位出现故障,影响船舶整体的运营情况,后期工作人员在维修的过程中,也需要投入大量的资金和人力,来对受振动影响的工作设备进行维修。
为了尽量避免这种情况的发生,我们需要对船舶结构的振动进行分析,提出相应的解决措施,减少对船舶结构造成的危害。
一、船舶结构振动产生的原因通过分析,船舶结构的振动主要原因是螺旋桨,主机,辅机以及其他的外在因素。
这些原因构成了船舶结构振动的振动源,让船舶在行使的过程中产生振动。
由于辅机所造成了振动比较小,所以这里对辅机造成的振动不进行主要的说明。
(一)螺旋桨造成的振动螺旋桨对船舶结构造成的振动有具体的不同的实现路径,通过研究调查,发现主要是以下几个方面。
第一,螺旋桨在旋转的过程中传递给船舶结构的力与力矩。
螺旋桨在运动的过程中,不可避免的会产生振动,在振动过程中,螺旋桨产生的力就会通过轴系传递出去,让船舶因螺旋桨而产生振动。
第二,船尾的压力分布不均匀。
由于船体结构尾部全部浸泡在水中,在运动过程中受到水影响的压力不均匀,造成了压力脉动的现象。
第三,螺旋桨与轴系之间产生的水弹性耦合。
(二)主机造成的振动主机在工作的过程中,除了会产生一次激励外,在某些特殊的情况下,还会产生二次激励。
船体振动学课程教学大纲课程代码:74120280课程中文名称:船体振动学课程英文名称:Ship hull vibration学分:3.0 周学时:3.0-0.0面向对象:预修要求:理论力学、材料力学、线性代数、数学物理方程、积分变换、电工学一、课程介绍(一)中文简介船体振动学是船舶与海洋工程技术专业的专业必修课。
课程内容由两部分组成。
第一部分是振动学基本理论(含单自由度振动系统、多自由度振动系统、连续体振动系统)。
第二部分是船体振动理论(含船体总振动、船体局部振动、船舶主要振源、船舶振动测试与评价)。
第一部分是核心,内容相对丰富。
数学上主要涉及二阶常系数微分方程与弦振动方程、傅里叶变换、频率响应函数等。
第二部分是基本内容,主要目的是培养学生理解从一般振动系统到船体振动的概念和现状,以及理论与实践的关系、科学计算与实验的关系。
最后,附加部分含非平稳外载荷谱估计、数据处理、分数阶振动等。
希望能激发学生对船体振动领域的兴趣。
(二)英文简介Ship hull vibration is a specialized and obligatory course for undergraduates majored in ship and ocean engineering. The course consists of two parts. The first part plays a key role in the course with contents relatively rich, including systems with single degree of freedom, multi-degree freedom systems, and vibrations of continuum systems. It relates to, in mathematics, differential equations of second order with constant coefficients, beams as a main object from a view of mechanics, and frequency transfer functions in dynamical analysis. The second part is for understanding the profile of ship vibrations globally and locally, with the focuseson the relationships between theory and practice, between scientific computations and testing, between science research and references or standards with respect to wave-induced ship hull vibrations. The additional part, finally, is for practical knowledge in ship vibrations, such as spectrum estimation of nonstationary loading, data processing in vibrations, fractional vibrations and so forth.二、教学目标(一)学习目标本课程涉及学科较多(材料力学、理论力学、船舶结构力学、高等数学、工程数学、数据处理、信号处理等)。
船体振动基础1第7章船舶振动评价、防振与减振一、船舶振动的危害二、船舶振动的标准三、船舶振动的测试四、船舶振动的具体测试方法21一、船体振动的危害P2171.对人体的危害• 振动以及由振动引起的噪声,会导致船员与乘客的不适,引起疲劳甚至损害健康。
• 长期处于振动环境中会影响神经系统的正常工作机能,导致肌肉松弛,血压升高,视觉迟钝等。
3二、船舶振动的标准•• 人体对振动的反应41一、船体振动的危害1.对人体的危害1)人体固有频率:胸腹系统固有频率4~6H z ,2030头、颈、肩固有频率20~30H z ,人体系统固有频率6~9H z ,其中许多频率是船上常见的激励频率。
216~20H z )环境振动通过接触表面使人感受到振动。
大于,人同时感觉到噪声;大于100H z ,主要是噪声。
367H 5)6~7Hz 的垂向振动会引起晕船症。
水平振动常比垂向振动影响更大,极度影响生活和工作。
一、船体振动的危害2.对船体结构的损害•或产生振动使高应力区的船体结构出现裂缝、或产生疲劳破坏,从而影响其安全性和正常使用。
①当共振时振幅及振动应力急剧放大(例:某船二节点振幅为1mm,振动应力平均为1.0~2.0N/mm2,共振时振幅为18mm,振动应力20 N/mm2)②材料或结构的内在缺陷(裂纹、疏松、气孔、夹渣等)使其在长期承受振动的过程中可能产生宏观裂纹源,最终导致构件的疲劳破坏。
6一、船体振动的危害2.对船体结构的损害振动使高应力区的船体结构出现裂缝、或产生疲劳破坏,•振动使高应力区的船体结构出现裂缝或产生疲劳破坏,从而影响其安全性和正常使用。
③当实测振动应力为10~20N/mm2时,结构就可能发生损坏。
④尤其在尾部结构、焊缝附近和应力集中的部位更易破坏。
7一、船体振动的危害3.对机器设备的危害•振动使机器仪表和设备失常寿命缩短或损坏• 振动使机器、仪表和设备失常,寿命缩短或损坏。
1)过度的振动使计算机、自动控制的仪表设备失灵或损坏,影响航行安全。
1.系统的自由度:确定振动系统运动所需的独立坐标数目即为系统的自由度数。
2.广义坐标:这种确定系统在空间位置的独立参变量称为广义坐标。
3.线性振动:在这些条件下,系统的振动可以用常系数线性微分方程来描述,称为线性振动。
4.自由振动:系统对初始激励的响应通常称为自由振动。
5.强迫振动:对外部作用力的响应称为强迫振动。
6.干摩擦阻尼力:当系统与外界的固体相接触运动时,即产生摩擦阻力,称为干摩擦阻尼力。
7.粘性阻尼力:它是系统与外界粘性流体接触时,在速度不高的情况下所产生的阻尼力。
8.流体动力阻力:当系统与外界的粘性流体接触,且速度较高,并在粘性较小的流体中运动时,即发生与速度平方成正比的阻力,称为流体动力阻力。
9.材料内阻尼力:是因为实际材料并不是完全弹性而引起的,又称材料的非弹性阻尼。
10.结构内阻尼力:是因为系统本身结构装配或连接而引起的。
11.准周期振动:这种由于振动系统受到阻尼力作用,造成能量损失而使振幅逐渐减小的振动称为衰减振动,或称为准周期振动。
12.均匀直梁弯曲自由振动的特性:(1)均匀直梁是具有分布质量及抗弯刚度的无限自由度系统(2)固有频率和固有振形是结构的固有特性,不仅与材料的性质、结构的刚度等因数有关,而且还和边界条件有关(3)当梁作任一主振动时,类似于单自由度系统的振动(4)在所讨论的线性振动范围内,均匀直梁弯曲自由振动是无限多个主振动的线性叠加,梁中任一点的运动则是各主振动所引起运动的总和。
(5)固有振形具有正交性,即各固有振形之间是相互独立的。
13.Timoshenko梁理论:一般的梁单元,是基于初等力学中的平截面变形假定,在这个假定中,实际上认为弯曲变形是主要的变形,剪切变形是次要的变形,因而可以不计,这对于高度远小于跨度的实腹梁来说,不会引起显著的误差,但对于有些空腹梁或都高跨比不是很小的梁来说,就不太精确了,所以有必要计及剪切变形,Timoshenko梁就是能考虑剪切变形的梁。
船舶设计中的抗震性能评估在广袤无垠的海洋中,船舶作为重要的交通工具和工程设施,面临着各种各样的挑战和威胁。
其中,地震作为一种不可预测的自然灾害,可能会对船舶的结构完整性和安全性造成严重影响。
因此,在船舶设计阶段进行抗震性能评估是至关重要的,这不仅关系到船舶的正常运行和人员的生命安全,也关系到海洋运输和海洋工程的可持续发展。
船舶在海上航行时,会受到海浪、风、水流等多种外力的作用。
而地震产生的地震波会通过海床传递到船舶底部,引发船体的振动和变形。
如果船舶的抗震性能不足,可能会导致船体结构的损坏、设备的故障甚至船舶的沉没。
因此,为了确保船舶在地震中的安全性,必须在设计阶段就对其抗震性能进行全面、准确的评估。
船舶抗震性能评估的第一步是对地震荷载的分析。
地震荷载是指地震作用在船舶上的力和加速度。
由于地震的复杂性和不确定性,准确地确定地震荷载是一项具有挑战性的任务。
目前,常用的方法是基于地震学和统计学的原理,结合历史地震数据和场地条件,来估计可能发生的地震强度和地震波特征。
例如,通过分析地震震级、震中距离、场地土壤类型等因素,可以计算出船舶所在位置可能受到的地震加速度和地震力。
在确定了地震荷载之后,就需要对船舶的结构进行建模和分析。
船舶结构通常是由船体、甲板、舱壁、骨架等部件组成的复杂空间结构。
为了准确地评估其抗震性能,需要采用先进的有限元分析方法或其他数值模拟技术,将船舶结构离散成大量的单元和节点,并建立相应的力学模型。
通过输入地震荷载,计算出船舶结构在地震作用下的应力、应变和位移分布。
在建模过程中,需要考虑船舶结构的几何形状、材料特性、连接方式等因素,以确保模型的准确性和可靠性。
船舶的材料特性对其抗震性能也有着重要的影响。
船舶结构常用的材料包括钢材、铝合金等。
这些材料的强度、韧性、弹性模量等力学性能直接决定了船舶在地震中的承载能力和变形能力。
因此,在抗震性能评估中,需要对材料的性能进行准确的测试和分析,并将其纳入到结构分析模型中。
1简述什么是共振现象,什么是拍振现象。
当激振力的频率与系统的固有频率相等时,振幅不断增大而趋于无穷的现象称为共振。
当激振力的频率与系统的固有频率相当接近,但并不相等,又会发生另一种现象,即系统的振幅时而增大,时而减小,该现象称为拍振现象。
2简述什么是固有振型。
在某一特定的初始条件下,系统的质量在振动时同时达到最大位移和同时通过平衡位置,或者系统的所有移动部分作同相位同频率振动时,各质量的位移存在着特定的比例关系,它表示了振动的状态,这种状态称为系统振动的固有振形。
3简述什么是主坐标,什么是主振动。
在系统的每一个固有振动中只有一个独立变量,因而表示一个固有振动只需要一个独立坐标,描述固有振动的独立变量称为主坐标。
在某一特定的初始条件下,系统的质量在振动时同时达到最大位移和同时通过平衡位置,或者系统的所有移动部分作同相位同频率振动,这种振动即为主振动。
(1)写出横梁振动的质量正交条件,及并解释其物理意义。
物理意义:由于横梁振动的所有主振动是彼此独立的,因此一个主振动的惯性力对其他主振动的挠度不做功。
(2)简述弹性体势能形式的正交条件,并解释其物理意义。
物理意义:由于横梁振动的所有主振动是彼此独立的,因此一个主振动的弹性力对其他主振动的弹性变位上不做功。
(3)简述什么是动力放大系数,并分别给出单自由度系统有,无阻尼时动力放大系数公式。
动力放大系数α是指动力所产生的最大动位移和将此动力的最大值视为静力时所产生的静位移的比值。
无阻尼时,有阻尼时。
(4)船体垂向振动附连水的计算公式为: ;-水平振动附连水的计算公式为: 。
4通常将船体振动分为总振动和局部振动。
5降低船体振动的主要原则是:低频振动时要避免共振,高频时要减小激振力。
6附连水对船体振动影响主要分为重力,阻尼,惯性。
7船体总振动的计算方法主要包括能量法,迁移矩阵法,有限元法。
较简便的方法是迁移矩阵法,较精确的方法是有限元法。
8对于船舶总体或局部结构的强迫振动,其大小除和激振力大小有关外,还和结构本身的刚度(弯曲和剪切刚度),质量和阻尼有关。
浅谈内河船舶振动及减振措施提要目前内河船舶的振动日趋严重,不仅降低了舒适性,而且还严重影响航运安全,必须予以足够重视。
本文根据大量的理论和实船资料,分析了内河船舶振动产生的原因,并对如何减振提出了具体措施,可供船舶设计、制造、航运、船检等部门参考。
随着航运事业的发展,人们逐渐要求内河船舶装载量大、吃水浅、航速快,必然促使船舶向肥大、浅水、大功率方向发展,同时为了尽量减少船舶自重,船体用板及构件相对减薄和减少,从而导致结构刚度不足,所有这些都使船体振动加剧,船体振动已成为航运界一个突出的问题。
船舶是一个自由漂浮在水中的弹性体,只要螺旋桨或主机工作,总是会引起船体不同程度的振动。
轻微的振动是允许的,也是不可避免的。
但船体振动过大会导致船体结构产生疲劳破坏,影响船上设备和仪器的正常工作,降低使用精度,缩短使用寿命,严重时还会导致船体断裂乃致沉没;同时船体振动还严重影响着船员和旅客的居住舒适性、船员的工作效率和身体健康。
船舶振动不但与其振源有关,而且与船舶总布置、尾部线型和船体结构直接有关。
而激起船体振动的主要振源(也称激励源)是螺旋浆和主机,它们在运转时将激起周期性干扰力,使船体发生稳态强迫振动,若激励幅值过大或引起了共振,就会产生剧烈的振动。
一、船舶振动产生的主要原因船体振动分总振动和局部振动,总振动较少出现,而局部振动则较为普遍。
船舶振动产生的主要原因有以下几个方面:(一) 线型:因为尾部线型对伴流的分布起决定性作用,直接影响螺旋桨来流和去流产生漩涡、伴流等方面的状况,这些都直接与船体振动有关。
(二)船体结构:如船体结构布置、构件取材不合理、刚度不足、结构不连续,这些都会使船体板格固有频率太小,或产生应力集中和惯性矩不能满足要求,特别是若机舱、尾部结构不合理或板材、构件取材太小,刚度不足;另外,甲板开口宽度超过3/4B的内河浅水大开口船,在航行中产生较大扭矩,使轴系偏移,也都会引起船体振动。
(三)螺旋桨的选择及与船体线型匹配。
自由振动——系统对初始激励的响应通常称为自由振动。
强迫振动——系统对外部作用力的响应称为强迫振动。
粘性阻尼力——系统与外界的粘性流体接触时,在速度不高的情况下所产生的阻尼力。
它与接触的材料无关,而与运动体的大小、形状及流体的粘性有关,其方向与运动方向相反,与振动体的运动速度成正比,又称线性粘性阻力。
流体动力阻尼力——系统与外界的粘性流体接触,且速度较高,并在粘性较小的流体中运动时,即发生与速度平方成正比的阻力,称为流体动力阻力或高次阻力,其方向与运动方向相反,又称为非线性粘性阻力。
材料内阻尼力——是由于实际的材料并不是完全弹性而引起的,所以又称为材料的非弹性阻尼力。
结构内阻尼力——由于系统本身结构装配或连接而引起的,比前者大得多以上两者属于内阻尼力,是由于系统内部的原因引起的均匀直梁弯曲自由振动的特性a.均匀直梁是具有分布质量及抗弯刚度的无限自由度系统b.固有频率和固有振型是结构的固有特性不仅与材料的性质、结构的刚度等因数有关而且还和边界条件有关c.当梁做任一主振动时类似于单自由度系统的振动d.在所讨论的线性振动范围内均匀直梁弯曲自由振动是无限多个主振动的线性叠加梁中任一点的运动则是各主振动所引起运动的总和。
e.固有振型具有正交性即各固有振型之间是相互独立的。
转动惯量和剪切变形对梁的横向振动的影响转动惯量使系统的有效质量增加,剪切的作用使系统的刚度下降,均使系统的固有频率降低,其中剪切变形的影响大于转动惯量的影响,对于细而长的梁或梁的高阶振动必须计及剪切和转动惯量的影响。
船体总振动及分类整个船体的振动称为总振动,这时将船体视为一根两端自由支持的变截面空心梁。
包括:1垂向振动,在船体的纵中剖面内的垂向弯曲振动;2水平振动,在船体的水线面内的弯曲振动;3扭转振动,船体横剖面绕纵向轴线的振动;4纵向振动,船体横剖面沿其纵向轴线作纵向抗压的往复振动。
计算船体总振动的力学模型一维梁模型:船体梁总振动的梁模型,是有一排船体梁单元(一般在10-20个单元)通过结点相互联接而形成的,每一单元质量和刚度性质均有船舶实际情况简化而成,船体梁的质量应包括附连水质量。
内河船舶的振动分析及减震对策作者:杜松林来源:《科学大众·教师版》2019年第08期摘要:船舶的有害振动是影响船舶安全营运的重要问题。
因此船舶防振和减振已是目前造船界和航运界极为关注的内容,对振动研究的目的是确保船舶不会产生有害的振动问题,以保证船舶安全营运。
关键词:内河船舶; 振动分析; 减震对策中图分类号:U661 文献标识码:A 文章编号:1006-3315(2019)8-196-001随着航运事业的发展和水陆空交通的竞争,人们逐渐要求内河船舶吨位载重量大、航速高,必然促使内河船舶向船型宽大和主机功率大的方向发展。
由于造船技术的进步和优化设计等因素,船体用板及构件相对减薄和减小,结构刚度不足,所有这些都使船体振动加剧,船体振动已成为一个突出的问题。
船舶振动的产生有建造和营运方面的原因,目前在内河船舶的设计阶段,对船舶振动问题还没有给予足够的重视,若建成的船舶一旦投入营运后才发现有严重的振动问题,再寻求对策,要想彻底根除一般是很困难的,且花的代价也相当大,往往是浪费人力和物力,也不易收到满意的结果。
为了防患于未然,要求在设计阶段就进行必要的振动研究,并采取有效的预防措施。
这就要求设计者在设计时应了解船舶的主要激励源和影响振动的其他因素,对船舶的快速性、动力装置、结构设计等全面考虑,选出较好的方案。
船体振动分总振动和局部振动,总振动较少出现,而局部振动则较为普遍。
主要原因及减振或避振措施如下:一、共振及减振措施船舶同其他弹性体一样,即使激励的幅值较小,但在共振时也会有大的响应。
对内河船舶来说,虽然主机的转速一般较高,在常用工况下发生低速共振的现象并不多见,但为了节能,提高推进效率,往往采用减速齿轮箱,以降低尾轴转速,加大螺旋桨直径,这就使主机在常用工况下出现船体低谐共振的可能性大大增加。
为了避开共振,就需要改变固有频率和激励频率。
改变船舶的固有频率可以从船体梁的刚度考虑,如增大船体梁剖面惯性矩、合理设计上层建筑,采用弹性接头可降低总振动的程度。