语音信号处理21
- 格式:ppt
- 大小:1.76 MB
- 文档页数:59
语音信号的处理与识别前言语音信号是日常生活中我们最常接触的信息载体之一。
它不但是人类表达思想、交流信息的主要方式,还具有实现人机交互、智能家居控制等方面的实用价值。
因此,语音信号的处理和识别一直是语音领域研究的热点之一。
本文将从语音信号起源、基本特征和语音信号处理技术方向几个方面来介绍语音信号的处理和识别。
一、语音信号起源人类语音活动的起源可以追溯到数百万年前的早期人类。
随着人类社会的发展,语音演化成为一种由音素组成的语言系统。
语音信号是指声音在空气中传播所产生的声波,其频率范围在20 Hz 至20 kHz之间。
声波在传递时会受到各种噪声的影响,如环境噪声和语言本身的多音节、口音等。
这些因素的影响会增加语音信号的复杂程度,限制语音信号的处理和识别效率和精度。
二、语音信号的基本特征1、时域特征时域特征是指语音信号在时间轴上的特征。
语音信号的基本单元是音素和音节,声学上可分为短时幅度、短时频率等特征。
这些特征反映着语音信号中的音调、音长、音量等基本要素。
2、频域特征频域特征是指语音信号在频域上的特征。
语音信号的主要频谱成分是心音频率(F0)、共振频率(嘴唇、鼻音等)和嘈杂频率。
这些特征反映了语音信号在不同频率段中的特性。
3、语音特征提取为了实现语音信号的自动处理和识别,需要先进行语音特征提取。
常见的语音特征提取方式有短时傅里叶变换(Short-time Fourier transform,STFT)、梅尔频率倒谱系数(Mel-frequency cepstral coefficients,MFCC)、线性预测编码(Linear prediction coding,LPC)等。
这些方式可以从时间或者频率维度上提取语音信号中的特征,为后续的语音处理和识别打下基础。
三、语音信号处理技术方向1、语音信号预处理语音信号预处理是指对语音信号进行去噪、增强、归一化等处理,以提高语音信号的质量和可识别性。
常用的语音信号预处理方法有谱减法、Log谱减法、没入域滤波和神经网络滤波等。
音频的数字化将音频信号数字化,实际上就是对其进行采样、量化和编码。
每秒钟需要采集多少个声音样本,即采样频率是多少?每个声音样本的位数应该是多少,也就是量化精度。
经过量化,模拟信号转换为一组离散的数值,这一组数值到底代表的是何内容,需要按照一定的规则组织起来,这就是编码。
为了做到无损数字化,采样频率必须满足采样定律,同时为了保证声音的质量,必须提高量化精度。
1采样连续时间的离散化通过采样来实现。
如果是每隔相等的一小段时间采样一次,则这种采样称为均匀采样,相邻两个采样点的时间间隔称为采样周期。
2 量化连续幅度的离散化通过量化来实现,就是把信号的强度划分成一小段一小段,在每一个小段中只取一个强度的等级值(一般用二进制整数表示),如果幅度的划分是等间隔的,就称为先行量化,否则就称为非线性量化。
3 编码经过采样和量化处理后的声音信号已经是数字形式了,但为了便于计算机的存储、处理和传输,还必须按照一定的要求进行数据压缩和编码,即选择某一种或几种方法对它进行数据压缩,以减少数据量,再按照某种规定的格式,将数据组织成为文件。
4 采样频率采样频率的高低是根据采样定律和声音信号本身的最高频率决定的。
采样定理指出,采样频率要大于等于声音最高频率的两倍,这样就能把数字表达的声音没有失真地还原成原来的模拟声音,这也叫无损数字化。
max 2s f f其中s f 为采样频率,max f 为被采样信号的最高频率。
语音录音中常采用的采样频率为:8Khz 、11.025khz 、22.050khz 和41.1khz 等。
而且人们发现高于41.1khz ,人的耳朵已经很难分辨。
一般为了达到精确,我们还会用48khz 甚至96khz 的采样精度,实际上,96khz 采样精度和48khz 采样精度的区别绝对不会像44.1khz 和22khz 那样大,我们所使用的CD 的采样标准就是44.1khz ,目前44.1khz 还是一个最通行的标准, 5 量化精度样本大小是使用每个影音样本的位数表示的,它反映了度量声音波形幅度的精度。
语音信号处理语音信号处理是对语音信号进行分析、处理和合成的一种技术。
随着和语音识别技术的快速发展,语音信号处理变得越来越重要。
本文将详细介绍语音信号处理的基本概念、常用技术和应用领域。
基本概念语音信号是指人类通过声音来交流的方式。
语音信号通常采用模拟信号的形式,通过麦克风传感器转换为数字信号,然后使用数字信号处理技术进行分析和处理。
语音信号的特点包括频率、幅度和时域特性。
常用技术预处理语音信号预处理是指在进行语音信号分析和处理之前,对原始语音信号进行预处理以提取和增强感兴趣的特征。
常用的预处理技术包括去噪、滤波、降低共振、归一化等。
特征提取特征提取是从语音信号中提取有用信息的过程,目的是将语音信号转化为可以被机器学习算法处理的形式。
常用的特征包括声谱图、梅尔倒谱系数(MFCC)、线性预测编码(LPC)等。
语音识别语音识别是将语音信号转化为文字或命令的过程。
常用的语音识别技术包括基于模板的方法、隐马尔可夫模型(HMM)、深度学习等。
语音合成语音合成是将文字转化为语音信号的过程。
常用的语音合成技术包括基于拼接的方法、隐马尔可夫模型(HMM)、深度学习等。
应用领域语音信号处理在许多领域中起着重要作用,以下是几个主要应用领域的例子:语音识别系统语音识别系统可以用于实现语音自动接听、语音搜索等应用。
这些系统通过对输入语音信号进行处理和分析,将其转化为文字或命令。
语音合成系统语音合成系统可以将文字转化为语音,实现自动语音播报、电子书朗读等功能。
这些系统通过将输入文本处理和合成为语音信号。
声纹识别系统声纹识别系统通过对语音信号进行处理和分析,将其转化为声纹特征,用于实现语音身份认证等应用。
噪声抑制噪声抑制是指对含噪声的语音信号进行处理,去除噪声以提高语音信号的质量。
语音压缩语音压缩是将语音信号进行压缩,以减小存储空间和传输带宽的需求。
语音压缩技术可以用于语音通信、语音存档等应用。
语音信号处理是一项重要的技术,它在语音识别、语音合成和其他领域中有广泛的应用。
摘要语音是人类获取信息的重要来源和利用信息的重要手段。
语音信号处理是一门发展十分迅速、应用非常广泛的前沿交叉学科,同时又是一门跨学科的综合性应用研究领域和新兴技术。
现代语音信号系统包括语音信号采集单元和语音信号处理单元,本论文确定了相应的处理芯片:TMS320C5402DSP和TLCAD50C芯片。
但语音信号处理有两个需要解决的问题,语音信号的时变性,和直接进行傅里叶变换其运算量相当大。
其解决措施是加窗函数和运用快速傅里叶变换(即FFT)。
本论文关于这部分的软件设计是在Code Composer Studio(简称CCS)环境下进行的。
本论文的结构是先介绍语音信号处理单元和语音信号采集单元,然后简单介绍语音信号处理系统的硬件电路,最后在CCS环境下进行语音信号的频谱分析。
关键词:语音信号,时变性,窗函数,FFT,DSP,CCSABSTRACTThe speech is the importance source and way of obtain information and make use of the information .The speech signal processing is a development very quick, application very extensive of front follow to cross an academics, in the meantime again is a door across an academics of comprehensive sex application study realm and newly arisen technique.The speech signal system include speech signal to collect unit and the processing unit of the speech signal, this thesis assurance correspond of processing chip:DSP and the TLCAD50 C chip of the TMS320 C5402.But speech signal processing have two problem that need to be solve, because of it hour change sex can't carry on leaf's transformation in the Fu, with direct carry on leaf's transformation in the Fu it operation quantity equal big.Its solving measure is to add window function and usage fast leaf's transformation in the Fu.(namely FFT)The software design carry on under the Studio(brief name CCS) environment of the Code Composer, the CCS is a TI company for the TMS320 series DSP software development release of integration development environment.The structure of this thesis is unit and speech signal of the signal processing of the introduction speech to collect unit first, then simple introduction speech signal processing system of hardware electric circuit, end carry on the frequency chart of speech signal analysis under the CCS environment.Keywords:The speech signal, hour change sex, window function, FFT, DSP, CCS目录1.绪论 ........................................................................................ 错误!未定义书签。
语⾳信号处理_考试参考题(修订版)(1)⼀、填空题:(每空1 分,共60分)1、语⾳信号的频率范围为(300-3400kHz),⼀般情况下采样率为(8kHz )。
书上22页2、语⾳的形成是空⽓由(肺部)排⼊(喉部),经过(声带)进⼊声道,最后由()辐射出声波,这就形成了语⾳。
书上11页。
肺中的通过(稳定)的⽓流或声道中的⽓流激励(喉头⾄嘴唇的器官的各种作⽤)⽽产⽣。
当肺中的⽓流通过声门时,声门由于其间⽓体压⼒的变化⽽开闭,使得⽓流时⽽通过,时⽽被阻断,从⽽形成⼀串周期性脉冲送⼊声道,由此产⽣的语⾳是(浊⾳)。
如果声带不振动,声门完全封闭,⽽声道在某处收缩,迫使⽓流⾼速通过这⼀收缩部位⽽发⾳,由此产⽣的语⾳是(清⾳)。
3、语⾳信号从总体上是⾮平稳信号。
但是,在短时段(10~30)ms中语⾳信号⼜可以认为是平稳的,或缓变的。
书上24页4、语⾳的四要素是⾳长,⾳强,⾳⾼和⾳质,它们可从时域波形上反映出来。
其中⾳长特性:⾳长(长),说话速度必然慢;⾳长(短),说话速度必然快。
⾳强的⼤⼩是由于声源的(震动幅度)⼤⼩来决定。
5、声⾳的响度是⼀个和(振幅)有密切联系的物理量,但并不就是⾳强。
6、⼈类发⾳过程有三类不同的激励⽅式,因⽽能产⽣三类不同的声⾳,即(浊⾳)、(清⾳)和(爆破⾳)。
7、当⽓流通过声门时声带的张⼒刚好使声带发⽣较低频率的张弛振荡,形成准周期性的空⽓脉冲,这些空⽓脉冲激励声道便产⽣浊⾳如果声道中某处⾯积很⼩,⽓流⾼速冲过此处时⽽产⽣湍流,当⽓流速度与横截⾯积之⽐⼤于某个门限时(临界速度)便产⽣摩擦⾳,即(清⾳)。
8、如果声道某处完全闭合建⽴起⽓压,然后突然释放⽽产⽣的声⾳就是(爆破⾳)。
9、在⼤多数语⾳处理⽅案中,基本的假定为语⾳信号特性随时间的变化是(平稳随机)的。
这个假定导出各种(线性时不变)处理⽅法,在这⾥语⾳信号被分隔为⼀些短段再加以处理。
10、⼀个频率为F。
的正弦形信号以Fs速率抽样,正弦波的⼀周内就有(Fs/F0)个抽样。
《语音信号处理》课程笔记第一章语音信号处理的基础知识1.1 语音信号处理的发展历程语音信号处理的研究起始于20世纪50年代,最初的研究主要集中在语音合成和语音识别上。
在早期,由于计算机技术和数字信号处理技术的限制,语音信号处理的研究进展缓慢。
随着技术的不断发展,尤其是快速傅里叶变换(FFT)的出现,使得语音信号的频域分析成为可能,从而推动了语音信号处理的发展。
到了20世纪80年代,随着全球通信技术的发展,语音信号处理在语音编码和传输等领域也得到了广泛应用。
近年来,随着人工智能技术的快速发展,语音信号处理在语音识别、语音合成、语音增强等领域取得了显著的成果。
1.2 语音信号处理的总体结构语音信号处理的总体结构可以分为以下几个部分:(1)语音信号的采集和预处理:包括语音信号的采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
(2)特征参数提取:从预处理后的语音信号中提取出能够反映语音特性的参数,如基频、共振峰、倒谱等。
(3)模型训练和识别:利用提取出的特征参数,通过机器学习算法训练出相应的模型,并进行语音识别、说话人识别等任务。
(4)后处理:对识别结果进行进一步的处理,如语法分析、语义理解等,以提高识别的准确性。
1.3 语音的发声机理和听觉机理语音的发声机理主要包括声带的振动、声道的共鸣和辐射等过程。
声带振动产生的声波通过声道时,会受到声道形状的影响,从而产生不同的音调和音质。
听觉机理是指人类听觉系统对声波的感知和处理过程,包括外耳、中耳、内耳和听觉中枢等部分。
1.4 语音的感知和信号模型语音的感知是指人类听觉系统对语音信号的识别和理解过程。
语音信号模型是用来描述语音信号特点和变化规律的数学模型,包括时域模型、频域模型和倒谱模型等。
这些模型为语音信号处理提供了理论基础和工具。
第二章语音信号的时域分析和短时傅里叶分析2.1 语音信号的预处理语音信号的预处理主要包括采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。