(完整版)一元线性回归直线拟合
- 格式:ppt
- 大小:830.05 KB
- 文档页数:43
一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。
AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。
DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。
AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。
CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。
B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。
B A i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i i ˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。
D A ()()()i i 12iX X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。
《土地利用规划学》一元线性回归分析学院:资源与环境学院班级:2013009姓名:x学号:201300926指导老师:x目录一、根据数据绘制散点图: (1)二、用最小二乘法确定回归直线方程的参数: (1)1)最小二乘法原理 (1)2)求回归直线方程的步骤 (3)三、回归模型的检验: (4)1)拟合优度检验(R2): (4)2)相关系数显著性检验: (5)3)回归方程的显著性检验(F 检验) (6)四、用excel进行回归分析 (7)五、总结 (15)一、根据数据绘制散点图:◎由上述数据,以销售额为y 轴(因变量),广告支出为X 轴(自变量)在EXCEL 可以绘制散点图如下图:◎从散点图的形态来看,广告支出与销售额之间似乎存在正的线性相关关系。
大致分布在某条直线附近。
所以假设回归方程为:x y βα+=二、用最小二乘法确定回归直线方程的参数: 1)最小二乘法原理年份 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 广告支出(万元)x 4.00 7.00 9.00 12.00 14.00 17.00 20.00 22.00 25.00 27.00销售额y7.00 12.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 40.00最小二乘法原理可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。
考虑函数y=ax+b ,其中a,b 为待定常数。
如果Pi(xi,yi)(i=1,2,...,n )在一条直线上,则可以认为变量之间的关系为y=ax+b 。
但一般说来, 这些点不可能在同一直线上. 记Ei=yi-(axi+b),它反映了用直线y=ax+b 来描述x=xi ,y=yi 时,计算值y 与实际值yi 的偏差。
当然,要求偏差越小越好,但由于Ei 可正可负,所以不能认为当∑Ei=0时,函数y=ax+b 就好好地反应了变量之间的关系,因为可能每个偏差的绝对值都很大。
回归直线方程b的两个公式一、一元线性回归公式在一元线性回归中,我们假设只有一个自变量(x)和一个因变量(y),并试图找到一个直线方程来拟合这些数据。
直线方程的一般形式为:y = mx + b其中,m是斜率,b是截距。
1.1斜率(m)的计算公式斜率(m)表示自变量x的单位变化对应因变量y的单位变化。
斜率可以通过以下公式来计算:m = (n∑xy - ∑x∑y) / (n∑x^2 - (∑x)^2)其中,n表示数据个数,∑表示求和符号,∑xy表示x和y的乘积的和,∑x表示x的和,∑y表示y的和,∑x^2表示x的平方的和。
1.2截距(b)的计算公式截距(b)表示直线与y轴的交点的y值。
截距可以通过以下公式来计算:b=(∑y-m∑x)/n其中,n表示数据个数,∑表示求和符号,∑y表示y的和,∑x表示x的和。
二、多元线性回归公式多元线性回归用于描述两个或更多个自变量(x1,x2,...,xn)与一个因变量(y)之间的关系。
多元线性回归方程的一般形式为:y = b0 + b1*x1 + b2*x2 + ... + bn*xn其中,b0是截距,b1,b2,...,bn是自变量的系数。
2.1 系数(b1,b2,...,bn)的计算公式系数表示每个自变量对因变量的影响程度。
系数可以通过最小二乘法来计算,目标是使得预测值与实际值之间的误差最小化。
具体的计算公式如下:b=(X^T*X)^(-1)*X^T*Y其中,b表示系数向量,X表示自变量矩阵(每一列代表一个自变量,每一行代表一个数据样本),Y表示因变量向量。
2.2截距(b0)的计算公式截距表示在自变量为0时的因变量值。
截距可以通过以下公式来计算:b0 = y_mean - b1*x1_mean - b2*x2_mean - ... - bn*xn_mean其中,y_mean表示因变量的平均值,x1_mean,x2_mean,...,xn_mean表示自变量的平均值。