Matlab插值实验
- 格式:doc
- 大小:124.00 KB
- 文档页数:7
佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。
二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。
5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。
6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9个点作8次多项式插值8()L x 。
(2)用三次样条(第一边界条件)程序求()S x 。
7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。
四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。
插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。
MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。
下面将详细介绍这些方法的实现原理和MATLAB代码示例。
1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。
该方法的优势在于可以快速计算多项式的系数。
以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。
2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。
一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。
以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。
3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。
实验一插值方法一. 实验目的(1)熟悉数值插值方法的基本思想,解决某些实际插值问题,加深对数值插值方法的理解。
(2)熟悉Matlab 编程环境,利用Matlab 实现具体的插值算法,并进行可视化显示。
二. 实验要求用Matlab 软件实现Lagrange 插值、分段线性插值、三次Hermite 插值、Aitken 逐步插值算法,并用实例在计算机上计算和作图。
三. 实验内容1. 实验题目 (1)已知概率积分dxe y xx ⎰-=22π的数据表构造适合该数据表的一次、二次和三次Lagrange 插值公式,输出公式及其图形,并计算x =0.472时的积分值。
答:①一次插值公式:输入下面内容就可以得到一次插值结果 >> X=[0.47,0.48];Y=[0.4937452,0.5027498]; >> x=0.472;>> (x-X(2))/(X(1)-X(2))*Y(1)+(x-X(1))/(X(2)-X(1))*Y(2)ans =0.495546120000000>>②两次插值公式为:输入下面内容就可以得到两次插值结果>> X=[0.46,0.47,0.48];Y=[0.4846555,0.4937452,0.5027498]; >> x=0.472;>>(x-X(2))*(x-X(3))/((X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(1))*(x-X(3))/((X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(2))*(x-X(1))/((X(3)-X(2))*(X(3)-X(1)))*Y(3)i 0123x 0.46 047 0.48 0.49 y0.4846555 0.4937452 0.5027498 0.5116683ans =0.495552928000000>>③三次插值公式为:输入下面内容就可以得到三次插值结果>> X=[0.46,0.47,0.48,0.49];Y=[0.4846555,0.4937452,0.5027498,0.5116683];>> x=0.472;>>(x-X(2))*(x-X(3))*(x-X(4))/((X(1)-X(4))*(X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(4))*( x-X(1))*(x-X(3))/((X(2)-X(4))*(X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(4))*(x-X(2))*( x-X(1))/((X(3)-X(4))*(X(3)-X(2))*(X(3)-X(1)))*Y(3)+(x-X(3))*(x-X(2))*(x-X(1))/(( X(4)-X(1))*(X(4)-X(2))*(X(4)-X(3)))*Y(4)ans =0.495552960000000输入下面内容,绘出三点插值的图:>> X=[0.46,0.47,0.48,0.49];Y=[0.4846555,0.4937452,0.5027498,0.5116683];>> x=linspace(0.46,0.49);>>y=(x-X(2)).*(x-X(3)).*(x-X(4))/((X(1)-X(4))*(X(1)-X(2))*(X(1)-X(3)))*Y(1)+(x-X(4) ).*(x-X(1)).*(x-X(3))/((X(2)-X(4))*(X(2)-X(1))*(X(2)-X(3)))*Y(2)+(x-X(4)).*(x-X(2) ).*(x-X(1))/((X(3)-X(4))*(X(3)-X(2))*(X(3)-X(1)))*Y(3)+(x-X(3)).*(x-X(2)).*(x-X(1) )/((X(4)-X(1))*(X(4)-X(2))*(X(4)-X(3)))*Y(4);>>plot(x,y)(注意上面的“.*”不能用“*”替代);(2)将区间[-5,5]分为10等份,求作211)(x x f +=的分段线性插值函数,输出函数表达式及其图形,并计算x =3.3152时的函数值。
程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。
实验内容:运用Matlab进行简单的程序设计。
实验方法:基于Matlab环境下的简单程序设计。
实验结果:成功掌握简单的程序设计和Matlab基本编程语法。
实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。
实验内容:在Matlab环境下进行多项式拟合和插值的计算。
实验方法:结合Matlab的插值工具箱,进行相关的计算。
实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。
实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。
实验内容:利用Matlab进行最小二乘法计算。
实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。
实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。
实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。
实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。
实验方法:基于Matlab的ODE工具箱,进行ODE求解。
实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。
总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。
通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。
这些知识和技能对我未来的学习和工作都将有着重要的帮助。
实验四用MATLAB实现拉格朗日插值、分段线性插值一、实验目的:1)学会使用MATLAB软件;2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法;二、实验内容:1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析:(1).y=sinx;( 0≤x≤2π)(2).y=(1-x^2)(-1≤x≤1)三、实验方法与步骤:问题一用拉格朗日插值法1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下:function y = f1(x)y = 1./(x.^2+1);2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x)m = length(x); /区间长度/n = length(x0);for i = 1:nl(i) = 1;endfor i = 1:mfor j = 1:nfor k = 1:nif j == kcontinue;endl(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); endendendy = 0;for i = 1:ny = y0(i) * l(i) + y;end3)建立测试程序,保存在text.m文件中,实现画图:x=-1:0.001:1;y = 1./(x.^2+1);p=polyfit(x,y,n);py=vpa(poly2sym(p),10)plot_x=-5:0.001:5;f1=polyval(p,plot_x);figureplot(x,y,‘r',plot_x,f1)二分段线性插值:建立div_linear.m文件。
matlab插值实验报告Matlab插值实验报告引言:在数学和工程领域中,插值是一种常见的数据处理方法。
它通过已知数据点之间的推断来填补数据的空缺部分,从而获得连续的函数或曲线。
Matlab是一种功能强大的数值计算软件,具备丰富的插值函数和工具包。
本实验旨在通过使用Matlab进行插值实验,探索插值方法的原理和应用。
实验步骤:1. 数据准备首先,我们需要准备一组实验数据。
以一个简单的二维函数为例,我们选择f(x) = sin(x),并在区间[0, 2π]上取若干个等间隔的点作为已知数据点。
2. 线性插值线性插值是插值方法中最简单的一种。
它假设函数在两个已知数据点之间是线性变化的。
在Matlab中,可以使用interp1函数进行线性插值。
我们将已知数据点和插值结果绘制在同一张图上,以比较它们之间的差异。
3. 多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近原始函数。
在Matlab中,polyfit函数可以用来拟合多项式。
我们可以选择不同的多项式次数进行插值,并观察插值结果与原始函数之间的差异。
4. 样条插值样条插值是一种更为精确的插值方法,它通过在每个小区间内构造局部多项式函数来逼近原始函数。
在Matlab中,可以使用spline函数进行样条插值。
我们可以选择不同的插值节点数目,并比较插值结果的平滑程度和逼近效果。
5. 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法,它通过构造插值多项式来逼近原始函数。
在Matlab中,可以使用polyval函数进行拉格朗日插值。
我们可以选择不同的插值节点数目,并观察插值结果与原始函数之间的差异。
实验结果:通过实验,我们得到了不同插值方法的结果,并将其与原始函数进行了比较。
在线性插值中,我们观察到插值结果与原始函数之间存在一定的误差,特别是在函数变化较快的区域。
而多项式插值和样条插值在逼近原始函数方面表现更好,特别是在插值节点数目较多的情况下。
北京理工大学珠海学院实验报告
ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY
班级2012电气2班学号xxxxxxxxx姓名陈冲指导教师张凯成绩
实验题目(实验一)拉格朗日插值实验地点及时间JD501 2013/12/26(6-7节)
一、实验目的
1.掌握用程序语言来编辑函数。
2.学会用MATLAB编写Lagrange.m函数。
二、实验环境
Matlab软件
三、实验内容
1、以书中第55页题目13为例编辑程序来实现计算结果。
2、使用MATLAB进行编写:
第一步:编写Lagrange.m函数,代码如下
第二步:利用这个函数来编辑命令:(可见实验结果中的截图)
x=[0.32,0.34,0.36];
y=[sin(0.32),sin(0.34),sin(0.36)];
x0=0.3367;
yt=Lagrange(x,y,x0)
得出抛物线插值为:0.3304
以及
x=[0.32,0.34];
y=[sin(0.32),sin(0.34)];
x0=0.3367;
yt=Lagrange(x,y,x0)
得出线性插值为:0.3304
的近似值并估计误差。
五、实验结果。
六、总结
通过这次实验我学会用MATLAB软件编辑口令进行计算,实验结果是正确的,我相信在以后的实验中,我可以做好每一步,练习好每一次的上机。
实验难度不是很大,主要要注意标点符号的正确性。
………。
实验6 数据拟合&插值一.实验目的学会MATLAB软件中软件拟合与插值运算的方法。
二.实验内容与要求在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1)测量值是准确的,没有误差,一般用插值。
(2)测量值与真实值有误差,一般用曲线拟合。
MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合>> x=[0.5,1.0,1.5,2.0,2.5,3.0];>> y=[1.75,2.45,3.81,4.80,7.00,8.60];>> p=polyfit (x,y,2);>> x1=0.5:0.05:3.0;>> y1=polyval(p,x1 );>> plot(x,y,'*r',x1,y1,'-b')2.一维插值>> year=[1900,1910,1920,1930,1940,1990,2000,2010];>> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005)p2005 =262.1185>> y= interp1(year,product,x, 'cubic');>> plot(year,product,'o',x,y)3.二维插值>> years=1950:10:1990;>> service=10:10:30;>>wage=[150.697,199.592,187.625;179.323,195.072,250.287;203.212,179.092,322.767;226.505,15 3.706,426.730;249.636,120.281,598.243];>> w=interp2(service,years,wage,15,1975)w =190.6288[例1.98]x=1:6;y=1:4;t=[12,10,11,11,13,15;16,22,28,35,27,20;18,21,26,32,28,25;20,25,30,33,32,30];subplot(1,2,1)mesh(x,y,t)x1=1:0.1:6;y1=1:0.1:4;[x2,y2]=meshgrid(x1,y1);t1=interp2(x,y,t,x2,y2,'cubic');subplot(1,2,2)mesh(x1,y1,t1)三,练习与思考1)已知x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3],y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5],求对x和y进行6阶多项式拟合的系数.x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3];y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5];>> p=polyfit(x,y,6)p =-2.0107 29.0005 -170.6763 523.2180 -878.3092 763.9307 -263.4667x1=0.5:0.05:3.0;>> y1=polyval(p,x1);>> plot(x,y,'*r',x1,y1,'-b')2)分别用2,3,4,5阶多项式来逼近[0,3]上的正弦函数sin x,并做出拟合曲线及sin x函数曲线图,了解多项式的逼近程度和有效拟合区间随多项式的阶数有何变化.(2)2阶:>> x=0:0.01:3;>> y=sin(x);>> p=polyfit(x,y,2);>> x1=0:0.01:3;>> y1=polyval(p,x1);>> plot(x,y,'*r',x1,y1,'-b')>>3阶:>> p=polyfit(x,y,3); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>4阶:>> p=polyfit(x,y,4); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>5阶:>> p=polyfit(x,y,5); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>3)已知x=[0.1,0.8,1.3,1.9,2.5,3.1],y=[1.2,1.6,2.7,2.0,1.3,0.5],用不同的方法求x=2点的插值,并分析所得结果有何不同.>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];>> p=interp1(x,y,2)p =1.8833>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];>> z=interp1(x,y,2,'cubic')z =1.8844四,提高内容1.三维数据插值[x,y,z,v]=flow(20);[xx,yy,zz]=meshgrid(0.1:0.25:10,-3:0.25:3,-3:0.25:3); vv=interp3(x,y,z,v,xx,yy,zz);slice(xx,yy,zz,vv,[6,9.5],[1,2],[-2,0.2]);shading interpcolormap cool3.三次样条数据插值x=[0 2 4 5 6 12 12.8 17.2 19.9 20];y=exp(x).*sin(x);xx=0:.25:20;yy=spline(x,y,xx);plot(x,y,'o',xx,yy)。
数值分析matlab实验报告数值分析 Matlab 实验报告一、实验目的数值分析是研究各种数学问题数值解法的学科,Matlab 则是一款功能强大的科学计算软件。
本次实验旨在通过使用 Matlab 解决一系列数值分析问题,加深对数值分析方法的理解和应用能力,掌握数值计算中的误差分析、数值逼近、数值积分与数值微分等基本概念和方法,并培养运用计算机解决实际数学问题的能力。
二、实验内容(一)误差分析在数值计算中,误差是不可避免的。
通过对给定函数进行计算,分析截断误差和舍入误差的影响。
例如,计算函数$f(x) =\sin(x)$在$x = 05$ 附近的值,比较不同精度下的结果差异。
(二)数值逼近1、多项式插值使用拉格朗日插值法和牛顿插值法对给定的数据点进行插值,得到拟合多项式,并分析其误差。
2、曲线拟合采用最小二乘法对给定的数据进行线性和非线性曲线拟合,如多项式曲线拟合和指数曲线拟合。
(三)数值积分1、牛顿柯特斯公式实现梯形公式、辛普森公式和柯特斯公式,计算给定函数在特定区间上的积分值,并分析误差。
2、高斯求积公式使用高斯勒让德求积公式计算积分,比较其精度与牛顿柯特斯公式的差异。
(四)数值微分利用差商公式计算函数的数值导数,分析步长对结果的影响,探讨如何选择合适的步长以提高精度。
三、实验步骤(一)误差分析1、定义函数`compute_sin_error` 来计算不同精度下的正弦函数值和误差。
```matlabfunction value, error = compute_sin_error(x, precision)true_value = sin(x);computed_value = vpa(sin(x), precision);error = abs(true_value computed_value);end```2、在主程序中调用该函数,分别设置不同的精度进行计算和分析。
(二)数值逼近1、拉格朗日插值法```matlabfunction L = lagrange_interpolation(x, y, xi)n = length(x);L = 0;for i = 1:nli = 1;for j = 1:nif j ~= ili = li (xi x(j))/(x(i) x(j));endendL = L + y(i) li;endend```2、牛顿插值法```matlabfunction N = newton_interpolation(x, y, xi)n = length(x);%计算差商表D = zeros(n, n);D(:, 1) = y';for j = 2:nfor i = j:nD(i, j) =(D(i, j 1) D(i 1, j 1))/(x(i) x(i j + 1));endend%计算插值结果N = D(1, 1);term = 1;for i = 2:nterm = term (xi x(i 1));N = N + D(i, i) term;endend```3、曲线拟合```matlab%线性最小二乘拟合p = polyfit(x, y, 1);y_fit_linear = polyval(p, x);%多项式曲线拟合p = polyfit(x, y, n);% n 为多项式的次数y_fit_poly = polyval(p, x);%指数曲线拟合p = fit(x, y, 'exp1');y_fit_exp = p(x);```(三)数值积分1、梯形公式```matlabfunction T = trapezoidal_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);T = h ((y(1) + y(end))/ 2 + sum(y(2:end 1)));end```2、辛普森公式```matlabfunction S = simpson_rule(f, a, b, n)if mod(n, 2) ~= 0error('n 必须为偶数');endh =(b a) / n;x = a:h:b;y = f(x);S = h / 3 (y(1) + 4 sum(y(2:2:end 1))+ 2 sum(y(3:2:end 2))+ y(end));end```3、柯特斯公式```matlabfunction C = cotes_rule(f, a, b, n)h =(b a) / n;x = a:h:b;y = f(x);w = 7, 32, 12, 32, 7 / 90;C = h sum(w y);end```4、高斯勒让德求积公式```matlabfunction G = gauss_legendre_integration(f, a, b)x, w = gauss_legendre(5);%选择适当的节点数t =(b a) / 2 x +(a + b) / 2;G =(b a) / 2 sum(w f(t));end```(四)数值微分```matlabfunction dydx = numerical_derivative(f, x, h)dydx =(f(x + h) f(x h))/(2 h);end```四、实验结果与分析(一)误差分析通过不同精度的计算,发现随着精度的提高,误差逐渐减小,但计算时间也相应增加。
MATLAB插值法引言MATLAB是一种高级编程语言和环境,特别适用于数值计算和数据可视化。
插值法是一种在给定有限的数据点的情况下,通过构造插值函数来估计其他数据点的方法。
在MATLAB中,有多种插值方法可供选择,例如拉格朗日插值、牛顿插值和样条插值等。
本文将详细介绍MATLAB中常用的插值方法及其应用。
一、拉格朗日插值法拉格朗日插值法是一种多项式插值方法,通过构造一个满足给定数据点要求的多项式函数,来估计其他数据点的函数值。
其基本思想是通过一个多项式函数对已知数据点进行拟合,以实现函数值的估计。
以下是使用MATLAB实现拉格朗日插值法的步骤:1.确定待插值的数据点集合,假设有n个数据点。
2.构造拉格朗日插值多项式。
拉格朗日插值多项式的表达式为:其中,为拉格朗日基函数,其表达式为:3.利用构造的拉格朗日插值多项式求解其他点的函数值。
二、牛顿插值法牛顿插值法是一种基于差商的插值方法,通过构造一个n次多项式函数来拟合已知数据点,并利用差商的性质来求解其他点的函数值。
使用MATLAB实现牛顿插值法的步骤如下:1.确定待插值的数据点集合,假设有n个数据点。
2.计算差商表。
差商表的计算公式为:3.构造牛顿插值多项式。
牛顿插值多项式的表达式为:4.利用构造的牛顿插值多项式求解其他点的函数值。
三、样条插值法样条插值法是一种通过多段低次多项式来逼近原始数据,以实现光滑插值的方法。
它在相邻数据点处保持一定的连续性,并通过边界条件来确定插值函数的特性。
以下是使用MATLAB实现样条插值法的步骤:1.确定待插值的数据点集合,假设有n个数据点。
2.根据数据点的个数确定样条插值的次数。
一般情况下,插值多项式的次数小于或等于n-1。
3.利用边界条件构造样条插值函数。
常用的边界条件有:自然边界、固定边界和周期边界。
4.利用MATLAB中的插值函数csape或interp1等进行样条插值。
5.利用样条插值函数求解其他点的函数值。
实验报告实验名称:二次插值法院(系):机电学院专业班级:机械制造及其自动化姓名:学号:2013年5 月13 日实验一:二次插值法实验日期:2013年5 月13 日一、实验目的了解MATLAB的基本运用了解MATLB在优化中的使用二、实验原理利用目标函数飞f(x)上极小点附近若干点的函数值构造一个与原函数相近的插函数平p(x),以插值函数的最优解作为目标函数的最优解的近似解。
以插值函数平p(x)的极小点作为新的中间插入点,多次迭代,逐步缩小区间。
三、实验内容二次插值法程序:function [xmin,fmin]= erf(f,a0,b0,epsilon)%二分法一维割搜索计算%a0,b0初始区间%fx2 测试函数a=a0; %初始化b=b0;x1=a;f1=f(x1);x3=b;f3=f(x3);x2=0.5*(x1+x3);f2=f(x2);c1=(f3-f1)/(x3-x1);c2=((f2-f1)/(x2-x1)-c1)/(x2-x3);xp=0.5*(x1+x3-c1/c2);fp=f(xp);while (abs(xp-x2)>=epsilon) %迭代求解if x2<xpif f2>fpf1=f2;x1=x2;x2=xp;f2=fp;elsef3=fp;x3=xp;endelseif f2>fpf3=f2;x3=x2;f2=fp;x2=xp;elsef1=fp;x2=xp;endendc1=(f3-f1)/(x3-x1);c2=((f2-f1)/(x2-x1)-c1)/(x2-x3); xp=0.5*(x1+x3-c1/c2);fp=f(xp);endif f2>fp %输出xmin=xp;fmin=f(xp);elsexmin=x2;fmin=f(x2);endend函数程序:function [zhi]= fx3(x) %3²âÊÔº¯Êýzhi=exp(x)-2*x;end调用执行程序:[xmin3,fmin3]=erf(@fx3,0,2,0.1) 执行结果:xmin3 =0.6621fmin3 =0.6147四、实验小结通过本实验了解了了matlab的基本操作方法,了解二次插值法的原理与基本运用。
matlab曲线插值方法
在MATLAB中,有多种方法可以进行曲线插值。
以下是一些
常用的方法:
1. 线性插值:使用线性函数将给定数据点之间的空白区域填充。
在MATLAB中,可以使用`interp1`函数实现线性插值。
2. 多项式插值:使用一个多项式函数来逼近数据点。
在MATLAB中,可以使用`polyfit`函数拟合数据点,并使用
`polyval`函数计算插值点。
3. 样条插值:使用分段多项式来逼近数据点,形成平滑的曲线。
在MATLAB中,可以使用`interp1`函数的`'spline'`选项进行样
条插值。
4. Lagrange插值:使用Lagrange插值多项式逼近数据点。
在MATLAB中,可以使用`polyfit`函数的第三个参数指定插值多
项式的次数。
5. 三次样条插值:使用三次多项式来逼近数据点,并确保曲线在数据点之间是连续且光滑的。
在MATLAB中,可以使用
`csape`函数进行三次样条插值。
这些方法在MATLAB中都有相应的函数可以直接调用,并提
供了灵活的参数选项来满足不同的插值需求。
1、当2,1,1-=x 时,4,3,0)(-=x f ,求x =0时的值。
2、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
3、4()31f x x x =++,已知x =0,1,2处的值,计算x =0.11的近似值。
4.求i =3和5时的值。
5. 给定数据表,采用牛顿插值方法求i =3和5时的值。
6. 已知函数y =在4, 6.25,9x x x ===的近似值。
7. 已知函数y =在4,9,16x x x ===的近似值。
8. 已知函数y =在0,1,4,9x x x x ==== 9. 给定数据表:构造出函数()f x 的差商表,并计算x =0.5时的值.10. 已知函数y =在8,27,64x x x ===的近似值。
11. 已知函数sin()y x =在0,/4,/2x x x ππ===处的函数值,试通过一个二次插值函数求sin(/5)π的近似值。
12. 已知函数cos()y x =在0,/4,/2x x x ππ===处的函数值,试通过一个二次插值函数求cos(/5)π的近似值。
13. 已知函数tan()y x =在0,/4,/3x x x ππ===处的函数值,试通过一个二次插值函数求tan(/5)π的近似值。
14. 已知函数4y x =在1,2,3x x x ===处的函数值,试通过一个二次插值函数求 1.111x =的近似值。
15. 已知函数sin()y x =在0,/4,/2x x x ππ===处函数值,通过一个二次插值函数求1sin(2/5)π-的近似值。
16. 已知函数cos()y x =在0,/4,/2x x x ππ===处函数值,通过一个二次插值函数求1+cos(/5)π的近似值。
17. 已知函数5y x =在1,2,3x x x ===处的函数值,试通过一个二次插值函数求 1.121x =的近似值。
18. 已知函数41/y x =在1,2,3x x x ===处的函数值,试通过一个二次插值函数求 1.211x =的近似值。
matlab拟合函数并插值在MATLAB中进行拟合函数并插值可以通过以下步骤实现:1. 准备数据:首先,您需要准备要进行拟合和插值的数据。
这可以是一组x和y值,其中x是输入数据,y是对应的目标输出数据。
2. 拟合函数:使用MATLAB中的拟合函数来对数据进行拟合。
例如,您可以使用`fit`函数来拟合一组数据。
以下是一个简单的例子:```matlabx = [1, 2, 3, 4, 5]; % 输入数据y = [2, 3, 5, 7, 11]; % 输出数据fitresult = fit(x', y', 'poly1'); % 拟合一个一次多项式函数```在这个例子中,我们使用了`fit`函数来拟合一组输入数据`x`和输出数据`y`,并指定了要拟合的函数类型为一次多项式。
`fit`函数将返回拟合的结果,其中包含了拟合的函数表达式和拟合参数等信息。
3. 进行插值:一旦您完成了拟合,您可以使用插值方法来预测新的输入数据对应的输出值。
在MATLAB中,插值可以通过使用`interp1`函数来实现。
以下是一个简单的例子:```matlabxnew = [1.5, 2.5, 3.5, 4.5]; % 新的输入数据ynew = interp1(fitresult, xnew); % 使用拟合结果进行插值```在这个例子中,我们使用了`interp1`函数来对新的输入数据进行插值,并使用了之前拟合的结果作为插值函数的参数。
`interp1`函数将返回对应于新的输入数据`xnew`的插值结果`ynew`。
在MATLAB中进行拟合函数并插值需要准备数据、使用拟合函数进行拟合、使用插值函数进行插值。
这些步骤可以帮助您在MATLAB中实现拟合和插值的功能。
Matlab插值实验
一、实验目的
1.熟悉MATLAB的运行环境.
2.学会使用MATLAB作图.
3.学会使用MATLAB编程.
二、实验内容
实验一:几何物理中的插值问题
1. 轮船的甲板成近似半椭圆面形,为了得到甲板的面积。
首先测量得到横向最大相间8.534米;然后等间距地测得纵向高度,自左向右分别为:
0.914, 5.060, 7.772, 8.717, 9.083, 9.144, 9.083, 8.992, 8.687, 7.376, 2.073,
计算甲板的面积。
2. 物体受水平方向外力作用,在水平直线上运动。
测得位移与受力如下表
求 (1) 物体从位移为0到0.4所做的功;(2) 位移为0.4时的速度是多少?
3.火车行驶的距离(路程)﹑速度数据如下,计算从静止开始20 分钟内走过的路程。
4. 确定地球与金星之间的距离
天文学家在1914年8月份的7次观测中,测得地球与金星之间距离(单位:米),并取其常用对数值,与日期的一组历史数据如下表:
由此推断何时金星与地球的距离(米)的对数值为9.9351799?
实验二
1.山区地貌图
在某山区(平面区域(0,2800) (0,2400)内,单位:米)测得一些地点的高程(单位:米)如表4.12所示,试作出该山区的地貌图和等高线图。
三、实验环境
Windows 操作系统; MATLAB 7.0.
四、实验过程 实验一:
1. 因为插值点越多,划分越细则,又因为等间距则,当0x ∆→时,我们视插值点的矩形面积为i y x ⨯∆,则总面积为1n
i i S y x ==∆∑,8.534
x n
∆=
,则 x=linspace(0,8.534,11);
y=[0.914 5.060 7.772 8.717 9.083 9.144 9.083 8.992 8.687 7.376 2.073]; plot(x,y)
1
2
3
4
5
6
7
8
9
012345678910
cx=linspace(0,8.534,100); s=0;
cy=interp1(x,y,cx, 'spline'); for i=1:100
s=s+8.534./100.*cy(i);
end
z =s
z =
64.7476
2.x=linspace(0,0.4,5);
y=[20 21 21 20 19];
plot(x,y)
cx=linspace(0,0.4,20);
s=0;
for i=1:20
cy(i)=interp1(x,y,cx(i));
s=s+0.4.*cy(i)./20;
end
z=s
z =
8.1316
(2)假设初始速度为0,则0.4时刻的速度为
v=(2*z/m).^(1./2)(其中m为物体的质量)。
3.t=linspace(2,20,10);
v=[10 18 25 29 32 20 11 5 2 0];
plot(t,v)
ct=linspace(2,20,100);
s=0;
for i=1:100
cv(i)=interp1(t,v,ct(i), 'spline');
s=s+20.*cv(i)./60./100;
end
z=s
z =
5.4351
4.t=linspace(0,13,7);
s=[9.9617724 9.9543645 9.9468069 9.9390950 9.9312245 9.9231915 9.9149925];
plot(t,s)
ct=linspace(0,13,100);
cs=interp1(t,s,ct)
观察计算结果知
T=59*13/100+18
T =
25.6700
实验二:
程序如下:
x=[0 0 0 0 0 0 0 400 400 400 400 400 400 400 800 800 800 800 800 800 800 1200 1200 1200 1200 1200 1200 1200 1600 1600 1600 1600 1600 1600 1600 2000 2000 2000 2000 2000 2000 2000 2400 2400 2400 2400 2400 2400 2400 2800 2800 2800 2800 2800 2800 2800];
y=[0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400 0 400 800 1200 1600 2000 2400];
z=[1180 1230 1270 1370 1460 1450 1430 1320 1390 1500 1500 1500 1480 1450 1450 1500 1200 1200 1550 1500 1470 1420 1500 1100 1100 1600 1550 1320 1400 1400 1350 1550 1550 1510 1280 1300 900 1450 1600 1600 1430 1200 700 1100 1200 1550 1600 1300 1080 900 1060 1150 1380 1600 1200 940];
[cx,cy]=meshgrid(0:100:2800,0:100:2400);cz=griddata(x,y,z,cx,cy, 'cubic');
meshz(cx,cy,cz),title('山区地貌图')
figure(2),contour(cx,cy,cz),title('等高线图')
山区地貌图
等高线图
05001000150020002500
500
1000
1500
2000
五、实验总结
1.遇到的问题及解决过程
在计算等高线和山区地貌图时取得的值过密,插值后结果计算较难。
因此引起了电脑死机,多次实验后知道了问题所在,改进成功。
2.产生的错误及原因分析
对于取值的选取不熟悉,导致取值过多,计算时计算机死机。
在插值选取方面不理想。
3.体会和收获
通过这次实验,熟悉了插值的基本方法,以及插值的实际运用和实际意义。
明白了如何正确运用插值方法求解问题。
六、参考文献
[1]数学实验,重庆大学数学系傅鹂、龚劬、刘琼荪、何中市编著,科学出版社,2000年9月.
七、教师评语。