列车运行控制系统 - 4.4 列控地面设备CBTC地面设备
- 格式:pptx
- 大小:427.06 KB
- 文档页数:39
CBTC系统概述第一篇:CBTC系统概述CBTC系统概述基于通信的列车控制系统(CBTC)这一思想的萌芽出现在20世纪60年代,20世纪80年代初,国外开始系统地展开研究并进行阶段性测试,90年代开始进入试验段测试阶段。
1999年9月,IEEE将CBTC定义为:“利用高精度的列车定位(不依赖于轨道电路),双向连续、大容量的车-地数据通信,车载、地面的安全功能处理器实现的一种连续自动列车控制系统”。
定义中指出CBTC中的通信必须是连续的,这样才能够实现连续自动列车控制,利用轨间电缆、漏泄电缆和空间无线都可以实现车、地双向信息的连续传输。
借助先进的列车定位技术、安全处理器技术和无线通信技术,使得CBTC与传统基于轨道电路的列车控制系统相比,具有以下优点:(1)、通过整个系统提供可靠的检查与平衡手段,通过车-地间双向信息传输,实现对列车的闭环控制,从而大大降低认为错误的影响,系统的可靠性更高。
(2)、各级调度都可以随时了解区段内任意列车的位置、速度、机车工程及其他各种参数,利用上述信息,各级调度可以规范、协调地直接指挥行车。
(3)、车站控制中心依据列车状态及前车状态,结合智能技术调整列车运行,获得最佳区间通过能力,减少列车在区段内运行时不需要的加速、制动,增加旅客乘坐的舒适度。
(4)、区段内所有运行列车的各种参数(如:列车号、机车号、位置速度、工况、始发站、终点站、车辆数、载重量等自动的发给各种管理系统,如:TMIS、DMIS,不需要人工键入,从而可以避免对参数的漏键、错键、迟键和其他认为的错误,将以上控制和管理紧密结合,实现铁路信息化。
(5)、减少沿线设备,设备组要集中在车站及机车上,减轻设备维护和管理的劳动强度,受环境影响小(如:可减少雷击等现象的干扰和损伤在遭受自然灾害或战争破坏后,易恢复运行。
(6)、可以实现移动闭塞。
第二篇:计算机系统概述习题计算机系统概述习题一、填空题1、__1946_____年,美国宾夕法尼亚大学研制成功了世界上第一台电子计算机__ENIAC_____,标志着电子计算机时代的到来。
《列控地面设备(TCC)》出版
佚名
【期刊名称】《铁道通信信号》
【年(卷),期】2023(59)1
【摘要】本书为“高速铁路列车运行控制系统应用与技术创新丛书”之一,全面、翔实地介绍了列控地面设备——列控中心(TCC)。
全书共分9章,包括列控中心原理、列控中心系统功能与构成、列控中心外部接口、列控中心使用与维护、列控中心仿真测试、LEU与应答器、安全数据网,以及技术创新。
本书可作为我国铁路列控设备维护、管理人员的培训教材,由中国国家铁路集团有限公司莫志松主编。
书号:978-7-113-29739-8。
【总页数】1页(P94-94)
【正文语种】中文
【中图分类】F42
【相关文献】
1.面向西部铁路的列控系统地面设备研究
2.关于铁路列控系统地面设备维修系统的研究
3.和利时签订青荣城际铁路列控系统地面设备采购合同
4.浅谈CTCS-2列控系统地面设备故障及应急处理
5.列控地面设备集成测试仿真系统设计与实现
因版权原因,仅展示原文概要,查看原文内容请购买。
列车运行控制系统(CBTC)- 列控地面设备简介列车运行控制系统(CBTC)是一种先进的铁路列车控制系统,用于实现高度自动化和精确的列车运行。
CBTC系统通过地面设备,如无线通信系统、轨道电路和传感器等,与列车上的控制单元相互配合,实现列车位置、速度和通信的实时监控和调度。
本文档将重点介绍CBTC地面设备的功能和应用。
功能CBTC地面设备主要负责与列车进行通信并监控列车位置、速度和运行状态等信息。
下面是CBTC地面设备的主要功能:1. 无线通信系统CBTC地面设备使用无线通信系统与列车进行双向通信。
通过无线通信系统,地面设备可以向列车发送控制指令,如改变速度、停止或启动等。
同时,地面设备还可以接收列车发送的状态和监测数据,以实时监控列车的运行状态。
2. 轨道电路CBTC地面设备还包括轨道电路,用于监测列车的位置和速度。
轨道电路通过电路激活器和传感器来检测列车经过的位置,并将数据发送到地面设备。
地面设备可以根据轨道电路提供的数据计算列车的精确位置,从而实现精确的列车控制和运行管理。
3. 运行管理系统CBTC地面设备通常还配备运行管理系统,用于实时监控和调度列车的运行。
运行管理系统可以通过与地面设备和列车控制单元的通信,获取列车位置、速度和通信状态等信息,综合判断并做出相应的调度决策。
例如,当有多列列车接近同一区段时,运行管理系统可以通过地面设备向列车发送指令,使它们保持安全的间隔和运行速度。
应用场景CBTC地面设备广泛应用于城市轨道交通系统和高速铁路等领域。
以下是CBTC 地面设备的一些典型应用场景:1. 地铁系统CBTC地面设备在地铁系统中发挥着关键作用。
通过与列车的无线通信和轨道电路等设备配合,CBTC地面设备可以实时监控和调度地铁列车的运行。
地面设备可以根据列车位置和速度等数据,调整信号灯的状态,控制列车的运行速度和安全间隔,确保地铁系统的安全和高效运行。
2. 高速铁路系统CBTC地面设备也被广泛应用于高速铁路系统中。
基于通信的列车控制系统(CBTC)摘要:基于通信的列车控制系统CBTC是一种采用先进的通信、计算机、控制技术相结合的列车控制系统。
本文介绍了该系统的结构、特点及功能。
关键词:基于通信列车控制城市轨道交通中,基于通信的列车控制系统CBTC(Communication Based Train Contrl)是一种采用先进的通信、计算机、控制技术相结合的列车控制系统。
典型的基于通信的列车控制系统(CBTC)的结构框图如图所示。
由图可见,整个CBTC系统包括CBTC地面设备(含联锁)和CBTC车载设备,地面和车载设备通过“数据通信网络”连接起来,构成系统的核心。
CBTC设备和ATS设备共同构成了基于通信的移动闭塞ATC系统。
列车控制系统(CBTC)的结构框图一、系统结构西门子的CBTC系统由VICOS、SICAS、TRAINGUARD MT三个子系统组成。
它们分为中央层、轨旁层、通信层、车载层四个层级,分级实现ATC功能。
中央层分为中央级和车站级。
在中央级,实现集中的线路运行控制;在车站级,为车站控制和后备模式的功能,提供给车站操作员工作站(LOW)和列车进路计算机(TRC)。
轨旁层沿着线路分布,由SICAS计算机联锁、TRAINGUARD MT系统、信号机、计轴器和应答器等组成,共同执行所有的联锁和轨旁ATP功能。
通信层在轨旁和车载设备之间提供连续式或点式通信。
车载层完成TRAINGUARD MT的车载ATP和ATO功能。
二、系统功能系统的功能包括ATS功能、联锁功能、ATP/ATO功能、列车检测功能、试车线功能、培训和模拟功能。
1.ATS功能ATS除了自动进路排列(ARS)功能、自动列车调整(ATR)功能、列车监督和追踪(TMT)、时刻表(TIT)、控制中心人机接口(HMI)和报告、报警与文档等主要功能外,还改进和增加了以下功能:在CTC通信级使用双向通信通道;在ATS后备模式下车站级可以输入车次号;适应移动闭塞的控制要求;TRC(列车进路计算机)取代RTU的自动进路排列功能;提供独立的冗余局域网段;在ATS显示列车状态信息;与MCS(主控系统)的接口;与车辆段联锁的接口;提供操作日志(含故障信息)的归档功能;设两个控制中心;车辆段调度员ATS工作站进行出库列车自动预先通知,在规定时间无列车在车辆段转换轨时自动报警。
126交通科技与管理智慧交通与信息技术CBTC 系统介绍蔡晓思,陈惠婷,周慧琴(浙江师范大学工学院,浙江 金华 321000)摘 要:面对密度、速度以及大客流的快速增长而带来的压力,CBTC 系统作为当前主流信号系统的应用模式,无疑成为提高地铁线路运营效率的最佳措施。
本文主要介绍了CBTC 系统的结构和特点。
关键词:CBTC 系统;特点;应用中图分类号:U231.7 文献标识码:A0 引言 CBTC 系统是一个安全的、具有高可靠性、高稳定性的基于无线通信的列车自动控制系统,广泛应用于城市轨道交通运输中。
它的特点是用无线通信媒体来实现列车和地面设备的双向通信,用以代替轨道电路作为媒体来实现列车运行控制。
1 BiTRACON 型CBTC 信号系统 (1)系统介绍。
BiTRAC0N 信号系统由列车自动监控(ATS)、计算机联锁(CBI)、车载控制器(CC)、区域控制器(ZC)、维护支持(MMS)、数据通信(DCS)6个子系统组成,实现列车自动监督、列车自动防护、列车自动驾驶等功能,BiTRAC0N 系统支持三种控制等级:CBTC 控制、点式控制和联锁级控制,还具备全自动无人驾驶(UTO)功能[1]。
(2)系统特点。
BiTRAC0N 系统支持地铁、轻轨、有轨电车、城际铁路、电气化铁路等多领域的细分市场商用,可满足国内外持续增长的高安全、高可靠、高效率的轨道交通业务需要[2] 。
(3)系统应用。
现已应用于沈阳地铁1和2号线、成都地铁1和10号线、深圳地铁3号线、西安地铁2号线、杭州地铁1和4号线、成都地铁2号线、郑州地铁1号线、成都地铁3号线和10号线、天津5号线、沈阳地铁10号线、重庆地铁4号线。
2 MTC-I 型CBTC 系统 (1)系统介绍。
MTC-I 型CBTC 系统由六个子系统构成:由中心和车站本地控制设备组成的FZy 型ATS 子系统;TYJL-Ⅲ型二乘二取二安全冗余结构的计算机联锁子系统,包括计轴设备和国产欧标应答器设备;基于CPCI 工业计算机平台开发的ATO 列车自动运行子系统;包括二乘二取二冗余架构的车载VOBC 和轨旁ZC 设备组成的ATP 列车控制子系统;基于SDH 同步数字系列骨干通信网和车—地无线通信网构建的DCS 子系统;进行系统设备维修信息收集、管理的TJWX 型微机监测子系统。
CBTC系统资料一.移动闭塞系统工作原理和特点上面我们介绍的是以轨道电路为传输信道,以传输“目标速度”为主要内容的ATC系统,这是当前我国列车自动控制系统的主要模式,从闭塞的概念分析,它们都可以归属于“准移动闭塞”的范畴,后续列车与先行列车之间的行车间隔都与闭塞分区的划分有关,也就是说,后续列车与先行列车不可能运行在在同一个闭塞分区,后续列车必须保证在先行列车所占用的闭塞分区的分界点前停车。
如图33所示。
图33. 不同闭塞制式的列车运行间隔示意图图中所示速度码制式的图例,可以对应于音频无绝缘轨道电路的ATC系统;准移动闭塞的图例可以对应于目标速度制式的ATC系统,这些制式下为了缩短行车间隔,必须缩小轨道区段的长度,当然要增加轨道电路的硬件设备;对于不同列车编组的运行线路,更是难以实现。
移动闭塞(Moving block)是缩小行车间隔,提高行车效率的有效途径,其列车运行的安全保证,不再依赖轨道电路的划分,而基于列车与地面的双向通信,如图33所示,使后续列车与先行列车之间始终保持制动距离,加上动态安全保护距离。
移动闭塞系统相比现有的ATC系统主要有以下特点:1、可以缩小列车之间的行车间隔;2、车-地之间的信息交换,不再依赖于轨道电路;3、车辆控制中心掌握在线运行各次列车的精确位置和速度;4、列车与控制中心之间保持不间断地双向通信;5、不同编组(不同长度)的列车,可以以最高的密度,运行于同一线路;6、ATC系统,从一个以硬件为基础的系统,向以软件为基础的系统演变。
基于通信的列车运行控制系统(Communication - Based Train Control—简称CBTC 系统), 便是支持移动闭塞的列车运行控制系统,它不仅适用于新建的各种城市轨道交通,也适用于旧线改造、不同编组运行以及不同线路的跨线运行。
近年来,随着通信技术的发展,尤其是无线通信、计算机网络技术和数字信号处理技术的迅速发展,信号系统的冗余、容错技术完善,在信号这个传统领域为CBTC的发展奠定了基础, CBTC系统已逐渐被信号界所认可,基于感应环线通信的移动闭塞CBTC系统,在我国也已运用于城市轨道交通;而基于无线(Radio)通信虚拟闭塞的CBTC系统,已经在国外多个城市轨道交通中被采纳,我国某些大城市的城市轨道交通也已经决定选用这种制式。
浅谈CBTC和CTCS列车运行控制系统摘要:随着我国城市轨道交通和客运专线及高速铁路的飞速发展,两种列成运行控制系统应运而生,即CBTC(Communications-based Train Control)和CTCS(Chinese Train Control System)列车运行控制系统。
CBTC技术发源于欧洲连续式列车控制系统,经多年的发展,取得了长足的进步。
CTCS是铁道部立项自主研发的适合我国国情的新一代列车运行控制系统。
关键词:列车控制系统;CBTC;CTCS;联锁;轨道电路1 CBTC列控系统基于通信的列车控制(CBTC)系统独立于轨道电路,采用高精度的列车定位和连续、高速、双向的数据通信,通过车载和地面安全实现对列车的控制。
如今包括阿尔卡特、西门子、阿尔斯通等多家列车控制系统设备提供商均开发了自己的CBTC系统,并在温哥华、伦敦、巴黎、香港、武汉等多个城市的轨道交通线上运行。
1.1 CBTC系统的结构:整个无线CBTC系统包括的子系统有列车制动监控(ATS)系统、数据通信系统(DSC)、区域控制器(ZC)、车载控制器(VOBC)及司机显示(TOD)等,子系统之间的通信基于开放的、标准的数据通信系统。
地面与移动的列车之间都基于无线通信进行信息交换。
1.2 CBTC系统的基础CBTC系统引入了无线通信子系统,建立车地之间连续、双向、高速的通信,列车的命令和状态可以在车辆和地面设备之间可靠交换,使系统的主体CBTC 地面设备和受控对象列车紧密的连接在一起。
所以,“车地通信”是CBTC系统的基础,CBTC系统的另外一个基础则是“列车定位”。
只有确定了列车的准确位置,才能计算出列车间的相对距离,保证列车的安全间隔;也只有确定了列车的准确位置,才能保证根据线路条件,对列车进行限速或者与地面设备发生联锁。
1.2.1 车地通信原理CBTC采用无线通信系统进行车地通信。
无线通信系统包括轨旁无线单元(WRU)和车载无线单元(OBRU)两个部分。
CBTC系统地面设备组成与原理培训1. 引言CBTC(Communication-based Train Control)是一种基于通信的列车控制系统,它使用现代化的通信技术来交换信息以实现列车的运行控制。
CBTC系统包括地面设备和车载设备两个部分,其中地面设备是实现列车控制和信息交换的关键组成部分。
本文将介绍CBTC系统地面设备的组成和原理,帮助读者理解CBTC系统的基本工作原理。
2. CBTC系统地面设备的组成CBTC系统地面设备主要由下面几个组成部分构成:2.1 控制中心控制中心是CBTC系统的核心,负责监控和控制整个列车运行过程。
它通过与车载设备进行通信,提供列车运行的相关指令和信息。
控制中心通常由计算机硬件和软件构成,具有强大的运算和处理能力。
2.2 调度台调度台是控制中心的一部分,用于操作员与CBTC系统进行交互。
调度台通常包括显示屏、键盘、鼠标等设备,以及操作界面和相关的控制软件。
操作员通过调度台可以监控列车的运行情况,并进行列车调度和指挥。
2.3 信号设备信号设备主要用于向列车发送各种指令和信息,以控制列车的运行。
信号设备通常由信号机、信号灯、道岔等组成,用于指示列车的行进方向、速度限制等信息。
这些设备通过与控制中心和车载设备进行通信,实现列车的精确控制。
2.4 通信设备通信设备用于控制中心、车载设备和地面设备之间的通信。
通信设备通常包括无线电设备、光纤通信设备等,用于传输控制信息和运行数据。
通过可靠的通信系统,控制中心能够实时监控列车的位置和状态,并下达相应的指令。
3. CBTC系统地面设备的工作原理CBTC系统地面设备的工作原理可以总结为以下几个步骤:1.数据采集:地面设备通过传感器和检测装置对列车和轨道的状态进行监测和采集。
这些数据包括列车位置、速度、加速度等信息,以及轨道的状态和故障信息。
2.数据处理:采集到的数据经过地面设备的处理和分析,得到列车的当前状态和运行情况。
地面设备根据控制策略和算法,生成相应的指令和信息。
试论现代城市轨道交通信号的控制方式摘要:城市轨道交通的发展是我国城市建设的重要内容,轨道交通的发展将给人们出行带来极大的便利,加快了我国城市化建设的进程。
现阶段,我国在城市轨道交通系统建设中主要采用信号控制方式,信号控制是铁路信号系统中非常重要的组成部分。
因此,对于现代城市轨道交通信号控制方式进行研究,能够进一步提高城市轨道交通系统运行的安全性与稳定性。
在现代城市轨道交通信号控制系统中,主要有计算机联锁、列车自动防护、半自动闭塞和自动站间闭塞等方式,其中以计算机联锁控制方式应用最为广泛,其在信号控制系统中占据着重要地位。
计算机联锁方式和半自动闭塞方式的应用能够实现对列车运行速度的限制,进而实现列车运行安全性与稳定性的提高。
关键词:现代城市;轨道交通信号;控制方式引言城市轨道交通信号系统通过计算机控制系统来实现,它通过计算机将列车运行速度、行车间隔、速度调整、联锁关系等数据进行自动处理和分配,形成对列车运行状态和位置进行监控的一种自动控制系统。
它包括自动闭塞、自动进站与出站、自动运行、安全防护等一系列功能。
其中最重要也是最关键的是通过计算机进行列车运行控制和列车状态监控。
1现代城市轨道交通信号重要性在我国城市轨道交通建设事业迅速发展的同时,信号系统作为轨道交通行车的核心设备,其性能直接影响到列车运行的安全。
随着轨道交通列车运行速度的提高和行车密度的增加,信号系统必须不断提高其可靠性,以适应现代城市轨道交通高速、安全、高效运行的要求。
城市轨道交通信号系统控制方式主要分为三种:集中式、区域式和混合式。
集中式是将城市轨道交通所有列车的运行控制集中在一个列车监控中心进行管理和控制;区域式是将城市轨道交通各车站的信号集中控制在一个车站内,并采用自动化的方式来进行管理;混合式是将区域式和集中式结合起来,即采用分散控制的方式来实现信号系统的智能化管理[1]。
2现代城市轨道交通信号的控制方式2.1联锁控制联锁控制是保证列车安全运行的关键环节,它是将同一轨道电路上的两个或多个信号机(进路信号机、出站信号机)以及一组道岔,通过一定的联锁关系联结在一起,从而实现一个车站或区间范围内两个信号机之间的相互监视和相互控制,防止错误操作和列车违章行驶。
列车运行控制系统(CBTC)列控地面设备简介列车运行控制系统(CBTC,Communication-Based Train Control System)是一种现代化的列车运行控制系统,它利用通信技术实现对列车的实时监控和控制。
CBTC系统主要由列控地面设备和列控车载设备两部分组成,其中列控地面设备是CBTC系统的重要组成部分之一。
列控地面设备的功能列控地面设备是CBTC系统的一个重要组成部分,它主要负责以下功能:1.列车监控:列控地面设备通过与列控车载设备的通信,实时监控列车的位置、速度、运行状态等信息,以确保列车的安全运行。
2.列车调度:列控地面设备根据列车的位置和运行状态,通过分配和调整列车的运行计划,实现列车的高效运行和调度。
3.信号控制:列控地面设备负责控制信号系统,根据列车运行的需要,通过控制信号灯的状态,引导列车的运行和停车。
4.道岔控制:列控地面设备通过控制道岔的转向和锁闭,实现列车的换线和调度。
5.通信管理:列控地面设备通过与列控车载设备的通信,以及与其他列控地面设备的通信,实现系统内各个设备之间的信息交换和管理。
列控地面设备的组成列控地面设备由多个子系统组成,包括:1.中央控制器(CC):中央控制器是列控地面设备的核心部分,负责对整个CBTC系统进行控制和管理。
它接收和处理来自列控车载设备和其他子系统的数据,根据系统的运行状态做出相应的决策和调度。
2.列车监控系统(TMS):列车监控系统负责监控列车的位置、速度、运行状态等信息,并将这些信息传输给中央控制器。
中央控制器根据这些信息,对列车进行调度和管理。
3.信号控制系统(SCS):信号控制系统负责控制和管理列车的信号系统。
它根据列车的位置和运行状态,通过控制信号灯的状态,引导列车的运行和停车。
4.道岔控制系统(ICS):道岔控制系统负责控制和管理列车的道岔系统。
它根据列车的运行需求,控制道岔的转向和锁闭,实现列车的换线和调度。
CBTC系统目录1. 概述 (2)2. CBTC系统组成 (3)3. CBTC各子系统介绍 (4)3.1. ATS系统 (4)3.1.1. 调度中心系统 (4)3.1.2. 车站系统 (5)3.1.3. 基于CBTC的A TS子系统主要功能特点 (6)3.2. 计算机联锁系统(SICAS) (9)3.3. 列车自动防护系统(ATP) (19)3.3.1. 轨旁子系统 (19)3.3.2. 车载子系统 (20)3.3.3. 子系统功能 (23)4. ATO子系统 (28)4.1. 主要组件 (29)4.1.1. ATO功能 (29)4.1.2. 轨旁设备 (30)4.1.3. 车载设备 (30)4.1.4. 列车运行控制原理 (31)4.1.5. 站停控制 (31)4.1.6. 跳停 (32)4.1.7. 扣车 (32)5. 4. 无线 (32)5.1. 数据通信系统的设计与实现 (33)5.1.1. DCS整体结构 (33)5.1.2. 车地无线通信系统 (34)5.1.3. 车载通信单元 (35)5.1.4. 空间无线通道 (35)6. 系统特点 (36)1.概述概述:CBTC(Communication Based Train Control)系统是一个安全的,具有高可靠性、高稳定性的基于无线的列车自动控制系统,现较广泛的应用于城市轨道交通运输中。
它最大的特点是可以无线通信,由列车-地面间周期传递列车位置信息和地面-列车间传递移动授权来实现功能。
基于通信的列车控制系统(CBTC)包含两种类型一种是基于感应环线的型CBTC,一种是基于无线的CBTC。
基于无线通信的CBTC 系统是指通过无线通信方式(而不是轨道电路),来确定列车位置和实现车-地双向实时通信。
列车通过轨道上的应答器,确定列车绝对位置,轨旁 CBTC 设备,根据各列车的当前位置、运行方向、速度等要素,向所管辖的列车发送“移动授权条件”,即向列车传送运行的距离、最高的运行速度,从而保证列车间的安全间隔距离。