第四章 核酸操作基本技术
- 格式:ppt
- 大小:1016.50 KB
- 文档页数:82
核酸技术的知识点总结一、核酸的结构和功能1. 核酸的结构核酸是生物体内储存遗传信息的重要化学物质,它主要分为DNA(脱氧核糖核酸)和RNA(核糖核酸)两种类型。
DNA是双螺旋结构,由磷酸、脱氧核糖和四种碱基(腺嘌呤、鸟嘌呤、胞嘌呤和胸腺嘧啶)组成;RNA是单链结构,由磷酸、核糖和四种碱基(腺嘌呤、鸟嘌呤、胞嘌呤和尿嘧啶)组成。
2. 核酸的功能(1) 存储遗传信息:DNA是细胞内存储遗传信息的主要分子,它携带了生物体遗传信息的全部内容。
(2) 遗传信息的复制:DNA在细胞分裂过程中能够通过复制和分裂,使得每个细胞都包含完整的遗传信息。
(3) 蛋白质的合成:RNA在蛋白质合成中起着重要作用,mRNA用来携带遗传信息,tRNA和rRNA参与蛋白质的合成过程。
二、核酸提取与纯化技术核酸提取是核酸技术的第一步,它是将细胞内的核酸从其他生物大分子(如蛋白质、多糖等)中分离出来的过程。
核酸提取技术的选择直接影响了后续核酸扩增和检测的结果。
常见的核酸提取与纯化技术包括酚氯仿法、硅胶柱纯化法、磁珠分离法等。
1. 酚氯仿法酚氯仿法是一种常见的核酸提取方法,它主要利用酚和氯仿的不同溶解度,将细胞内的核酸分离出来。
具体操作步骤包括:①细胞破碎:细胞颗粒蛋白破碎后,核酸被释放出来;②核酸的分离:将酚和氯仿混合液与细胞溶液混合,形成两相体系,核酸会在两相的交界面上沉淀下来。
2. 硅胶柱纯化法硅胶柱纯化法主要是利用硅胶柱上的硅氧基团与DNA分子之间的亲和性,将DNA固定在硅胶柱上,其他杂质则通过洗涤剂等去除。
操作步骤包括:①向硅胶柱中加入样品,DNA 被吸附在硅胶上;②洗涤过程:用洗涤液去除杂质;③最后用高温的TE缓冲液或水溶解DNA,使其从硅胶上释放出来。
3. 磁珠分离法磁珠分离法是近年来发展起来的一种核酸提取技术,它通过特制的磁珠与核酸上的亲和结合,来对核酸进行分离和纯化。
操作步骤包括:①向样本中加入磁珠,使其与核酸结合;②利用磁场将磁珠与核酸一起沉淀,然后去除上清液;③通过洗涤等步骤对核酸进行纯化。
核酸试剂操作方法核酸试剂是用于提取、纯化和测定核酸分子的化学试剂。
核酸试剂的操作方法可以大致分为以下几个步骤:样品处理、溶解、纯化、测定等。
下面我将详细介绍每个步骤的操作方法。
1. 样品处理:在进行核酸提取前,首先需要对样品进行处理。
根据实验的目的和样品的性质,可以选择不同的样品处理方法。
比较常见的样品处理方法包括:细胞裂解、血浆或血清的凝固、骨髓抽提等。
在样品处理过程中要注意采用无菌操作,避免污染。
2. 溶解:将处理后的样品或沉淀加入适当的溶解液中,使核酸完全溶解。
常用的核酸溶解液包括:TE缓冲液、含EDTA的去离子水等。
在样品溶解时,需轻轻摇晃或轻轻慢搅拌,避免生成气泡。
3. 核酸纯化:核酸溶解后,需要进行纯化以去除与核酸有关的杂质,如蛋白质、盐类和酶等。
常用的核酸纯化方法有酚-氯仿法、硅胶柱法、离心柱法等。
不同的纯化方法适用于不同的样品类型和实验需求。
在纯化过程中,需要根据试剂的使用说明进行操作,以保证纯化效果。
4. 核酸测定:核酸纯化后,可以通过一系列测定手段来确定核酸的浓度和纯度。
测定核酸浓度和纯度的方法有:比色法、荧光法、紫外吸收法等。
在进行核酸测定时,需要根据试剂的使用说明和仪器的操作步骤进行操作,确保结果的准确性。
除了上述操作步骤外,核酸试剂的操作还需要注意以下几点:1. 实验室条件:进行核酸实验需要在洁净、无菌的实验环境下进行,避免外源性DNA和RNA的污染。
2. 消毒处理:实验前需要将操作台面、试剂瓶盖、离心管等实验器材进行消毒处理,以避免细菌、病毒的污染。
3. 无菌操作:在进行核酸提取和纯化操作时,需采用无菌技术,包括用纯化的试剂和器皿、带手套、使用滤芯枪头等。
4. 试剂保存:核酸试剂的保存条件需根据试剂的要求进行,常见的存储条件包括-20保存、避光保存等。
5. 操作技巧:在进行核酸试剂操作时,需熟悉试剂的用途和使用方法,并掌握相关实验技巧,以保证试剂的有效使用。
总之,核酸试剂的操作方法涉及样品处理、溶解、纯化和测定等步骤。
第六章第一节分子生物学基本知识一、DNA和RNADNA是脱氧核糖核酸的英文缩写。
DNA以核苷酸排列顺序形式储存遗传信息。
DNA分子由4种核苷酸组成,由碱基互补维持DNA双螺旋结构。
在动植物、细菌和真菌中都含有DNA,但在病毒中不一定含DNA。
DNA为长丝状分子相互纠缠,其溶液十分黏稠。
它对紫外线有最强的吸收,通常用260nm波长测DNA溶液浓度,它在近中性环境中带负电荷,DNA变性后OD值会升高。
因DNA不溶于乙醇,常用二倍量乙醇沉淀DNA。
在变性温度时,它的黏性突然降低。
淬火是为了保持DNA单恋状态。
DNA变性后溶液慢慢冷却,DNA会自动回复双螺旋结构。
RNA是核糖核酸的英文缩写,在大多数生物类型中,RNA起遗传信息传递作用并指导合成蛋白质,但在一部分病毒中,RNA也是遗传信息的保存者。
RNA分子中除了含有核糖而不是脱氧核糖外,凡DNA中出现胸腺嘧啶的地方都代之以尿嘧啶。
二、DNA的复制和修复细胞分裂一次,染色体DNA就合成一次。
DNA分子拆开成两条链,每一条单链按照碱基配对的原则合成另一条新的单链,成为半保留复制。
在合成DNA时限制性核酸内切酶不是合成DNA的必要条件。
DNA多聚酶只能结合在一长段DNA单链的一小段局部双链结构上,才能顺利开始DNA合成。
在DNA合成中单核苷酸分子必须顺序以共价链连接在已形成核酸链3?末端的羟基上。
在合成大声错误时,DNA多聚酶会切除错误核苷酸,在那个位置上重新加一个正确核苷酸。
在人工合成DNA时,至加一种或两种三磷酸单核苷酸,那么和成就会停止在缺失的核苷酸位置上。
在大肠菌DNA损伤修复时填补缺口最重要的酶是DNA聚合酶Ⅰ,而复制最主要的DNA聚合酶是DNA聚合酶Ⅱ。
该酶的核心聚合酶中,具有3?-5?外切酶活性。
DNA修复过程中尿嘧啶糖基酶系统不包括SⅠ核酸酶。
逆转录酶的RNAaseH活性是一般DNA聚合酶所不具备的。
三、转录在生物体内,DNA知道的RNA合成过程称为转录。
核酸检测的原理操作及应用1. 前言核酸检测是一种常见的生物学技术,用于检测和分析生物体中的核酸序列。
在医学领域中,核酸检测被广泛应用于疾病的诊断、基因突变分析和病毒检测等方面。
本文将介绍核酸检测的原理、操作步骤和一些常见的应用。
2. 原理核酸检测的原理主要基于DNA或RNA的特定序列的亲和性配对。
一般情况下,核酸检测的步骤包括样品处理、核酸提取、PCR扩增、电泳分析和数据解读等。
下面将详细介绍这些步骤。
2.1 样品处理在进行核酸检测之前,需要对样品进行处理。
这可以包括样品的采集、保存和预处理等步骤。
不同类型的样品可能需要不同的处理方法,例如血液、组织或体液等。
2.2 核酸提取核酸提取是核酸检测的关键步骤,它的目的是从样品中纯化出核酸。
常用的核酸提取方法包括酚-氯仿法、磁珠法和基质固相分离法等。
这些方法可以有效地去除样品中的蛋白质、RNA酶和其他杂质,得到纯净的核酸。
2.3 PCR扩增PCR扩增是核酸检测的核心步骤之一,它可以将目标核酸序列扩增成大量可检测的片段。
PCR扩增使用引物(primer)与目标序列互补结合,经过一系列的循环反应,产生大量的目标序列。
PCR扩增可以在短时间内实现目标序列的富集,从而提高检测的灵敏度。
2.4 电泳分析电泳分析是常用的核酸检测方法之一,它利用核酸在电场中的迁移速率差异来分离和测量核酸片段。
电泳分析可以根据核酸片段的大小和电荷量差异,将其分离成不同的带状图案。
这些图案可以通过染色或者标记物的荧光来可视化和定量分析。
2.5 数据解读数据解读是核酸检测的最后一步,它包括对电泳图像或荧光信号的分析和解释。
根据特定的核酸序列和信号强度,可以确定是否存在目标序列,并进一步分析核酸的数量和变异情况。
3. 应用核酸检测在医学和生物学领域具有广泛的应用。
以下列举了核酸检测的一些常见应用:•疾病诊断:核酸检测可以用于疾病的早期诊断,例如新型冠状病毒检测、艾滋病毒检测和乳腺癌基因突变检测等。
第一章基因工程概述一、名词解释基因、基因操作、基因工程、重组DNA技术二、思考题1、简述基因工程操作的基本步骤。
2、简述基因工程操作的理论依据。
3、简述基因工程诞生理论上的三大发现和技术上的三大发明。
第二章基因工程的工具酶一、名词解释限制性内切酶、同裂酶、同尾酶、DNA连接酶、DNA聚合酶、逆转录酶二、思考题1、简述限制性内切酶命名的基本原则。
2、影响限制性内切酶活性的因素主要有哪些?3、影响连接反应效率的因素主要有哪些?4、大肠杆菌DNA聚合酶有哪些活性?分别简要说明其主要用途。
5、简述切口平移法标记DNA的原理。
答:首先,在Mg2+存在下利用低限量的DNase I处理双链DNA,随机产生少量切口;然后,利用大肠杆菌DNA聚合酶I的5'→3'外切酶活性在切口处向3'端平移去除核苷酸,同时,其5'→3'聚合酶活性则将切口作为引物沿5'→3'方向催化DNA合成;随着反应的进行,5'端核苷酸不断去除,3'端核苷酸不断掺入,导致切口沿着DNA合成方向移动,即切口平移。
如果在反应体系中加入标记dNTP,则这些标记dNTP将取代原有的核苷酸残基,产生带标记的DNA分子。
6、简述交换(置换)法标记DNA的原理。
答:反应体系中只有一种标记的dNTP存在时,可利用大肠杆菌DNA聚合酶I或T4/T7 DNA 聚合酶的3’→5’外切酶活性从3’端降解DNA,当露出与该标记dNTP互补的碱基时,上述酶的5'→3'聚合酶活性则催化该位置发生合成反应,用标记的dNTP置换原来的核苷酸残基,产生3’端标记的DNA。
第三章基因工程的载体一、名词解释载体、质粒、噬菌体、噬菌体溶菌周期、噬菌体溶原周期、克隆载体、表达载体、穿梭载体、整合载体、表达标签二、思考题1、简述克隆载体具备的基本条件。
2、以大肠杆菌为例,解释利用α互补筛选重组质粒的原理。
生物化学第四章核酸化学核酸是生物体内的重要生物大分子;核酸不仅与正常的生命活动如生长繁殖等有着密切关系,而且与生命的异常活动如人体肿瘤发生、辐射损伤等也息息相关。
核酸的研究是分子生物学的重要领域。
一、核酸的概述二、核酸的化学组成目录三、核酸的分子结构四、核酸及核苷酸的性质五、核酸的分离提取和纯化一、核酸的发展史二、核酸的分类和分布三、核酸的生物学功能概述I一、核酸的发展史●1869 年,瑞士生物学家Miescher首先从外科手术绷带上脓细胞的细胞核中分离出白色微酸性的含磷有机物质-称为核质(nuclein)。
Miescher ●1889年,Altmann 制备了不含蛋白的核酸制品,提出核酸(nucleic acid);了肺炎双球菌的转化现象肺炎双球菌肺炎双球菌(Diplococcus pneumoniae)是一种病原菌,存在着光滑型(Smooth简称S型)和粗糙型(Rough简称R型)两种不同类型。
肺炎双球菌的种类S型肺炎双球菌R型肺炎双球菌菌落(肉眼观察)菌落光滑菌落粗糙菌体(显微镜观察)有多糖类荚膜无多糖类荚膜毒性(动物实验)有毒无毒致病情况使人患肺炎,使老鼠患败血症死亡不使人和老鼠患病实验证实:SⅢ型死菌体内有转化因子能引起RⅡ型活菌转化产生SⅢ型活菌,这种转化因子是遗传物质。
1944年,美国的O.Avery、C. Macleod及M.Mccarty等人在Griffith工作的基础上,利用体外转化实验对肺炎双球菌的转化本质进行了深入的研究。
实验:从SⅢ型活菌体内提取DNA、蛋白质和荚膜多糖,将它们分别和RⅡ型活菌混合均匀后,注射入小白鼠体内。
结果:只有注射SⅢ型菌DNA和RⅡ型活菌的混合液的小白鼠才死亡O.Avery实验证实:DNA是遗传物质光滑型细胞(有毒)粗糙型细胞(无毒)破碎细胞DNAase降解后的DNA 粗糙型细胞接受光滑型DNA只有粗糙型SS R RR DNA +1952年,Hershey和Chase的T2噬菌体的感染实验。
第四章RNA的提取和cDNA合成第一节概述从真核生物的组织或细胞中提取mRNA,通过酶促反应逆转录合成cDNA的第一链和第二链,将双链cD NA和载体连接,然后转化扩增, 即可获得cDNA文库,构建的cDNA文库可用于真核生物基因的结构、表达和调控的分析;比较cDNA和相应基因组DNA序列差异可确定内含子存在和了解转录后加工等一系列问题。
总之cDNA的合成和克隆已成为当今真核分子生物学的基本手段。
自70年代中叶首例cDNA克隆问世以来,已发展了许多种提高cDNA合成效率的方法,并大大改进了载体系统,目前cDNA合成试剂已商品化。
c DNA合成及克隆的基本步骤包括用反转录酶合成cDNA第一链,聚合酶合成cDNA第二链,加入合成接头以及将双链DNA克隆到于适当载体(噬菌体或质粒)。
一、RNA制备模板mRNA的质量直接影响到cDNA合成的效率。
由于mRNA分子的结构特点,容易受RNA酶的攻击反应而降解,加上RNA酶极为稳定且广泛存在,因而在提取过程中要严格防止RNA酶的污染,并设法抑制其活性,这是本实验成败的关键。
所有的组织中均存在RNA酶,人的皮肤、手指、试剂、容器等均可能被污染,因此全部实验过程中均需戴手套操作并经常更换(使用一次性手套)。
所用的玻璃器皿需置于干燥烘箱中200℃烘烤2小时以上。
凡是不能用高温烘烤的材料如塑料容器等皆可用0.1%的焦碳酸二乙酯(DEPC)水溶液处理,再用蒸馏水冲净。
DEPC是RNA酶的化学修饰剂,它和RNA酶的活性基团组氨酸的咪唑环反应而抑制酶活性。
DEPC与氨水溶液混合会产生致癌物,因而使用时需小心。
试验所用试剂也可用DEPC处理,加入DEPC至0.1%浓度,然后剧烈振荡10分钟,再煮沸15分钟或高压灭菌以消除残存的DEPC,否则DEPC 也能和腺嘌呤作用而破坏mRNA活性。
但DEPC能与胺和巯基反应,因而含Tris和DTT的试剂不能用DEP C处理。
Tris溶液可用DEPC处理的水配制然后高压灭菌。
第4章基因操作的主要技术原理基因操作的方法包括:大分子DNA的提取、DNA分子的切割和连接、核酸分子杂交、凝胶电泳、细胞转化、DNA序列分析、基因的人工合成、基因定点突变、PCR扩增等。
DNA分子的切割和连接是基因操作的核心技术。
一、核酸的分离和纯化技术核酸包括DNA、RNA两种分子,在细胞中它们都是以与蛋白质结合的状态存在。
DNA:真核生物染色体DNA——双链线性;真核生物的细胞器DNA——双链环状;原核生物的核区DNA、质粒——双链环状。
RNA:RNA分子在大多数生物体内均是单链线性分子。
一般生物体基因组DNA大小为107-8bp。
DNA提取的目的(1)可用PCR从基因组中扩增基因;(2)作RAPD分析,区别两种物种之间的亲缘关系;(3)作Southern分析,检测是否转入基因;探测同源的基因;(4)作酶切图谱,用于DNA测序。
(一)总DNA的提取DNA在低浓度盐溶液中,几乎不溶解,如在0。
14 mol/L的氯化钠溶解度最低,仅为在水中溶解度的1%,随着盐浓度的增加溶解度也增加,至1mol/L氯化钠中的溶解度很大,比纯水高2倍。
总DNA:一般来说是指基因组DNA ,即细胞核内的染色体DNA分子。
核DNA分子呈极不对称的线性结构,一条染色体为一个DNA分子。
其长度与直径的比例极不对称性,使其对极械力十分敏感。
分离纯化中DNA分子的断裂是很难避免的。
尽可能保持DNA分子的完整性是DNA分离技术的关键。
(1)有效制备大分子DNA的方法主要考虑两个原则:①防止和抑制内源DNase对DNA的降解;DNase 以Mg2+、Mn2+为辅助因子,只要加入一定的螯合剂,如EDTA(乙二胺四乙酸钠)、柠檬酸便可。
②尽量减少对溶液中DNA的机械剪切力。
动作轻柔、减少涡旋、使用大口吸管。
(2)DNA提取的主要操作过程(3)DNA提取的主要问题及解决方法:①DNA沉淀呈棕色,很难酶切或扩增;多酚、单宁、色素等氧化所致。