开关电源设计案例
- 格式:doc
- 大小:223.00 KB
- 文档页数:5
开关电源电路设计实例分析开关电源电路是一种常用的电源供电方式,其优点包括高效能、体积小、重量轻等特点,因此在电子设备中得到广泛应用。
本文将介绍开关电源电路设计的一般流程,并以设计一个12VDC输出的开关电源电路为例进行分析。
1.确定需求和规格在设计开关电源电路之前,首先要确定需求和规格。
例如,我们要设计一个12VDC输出电源,输出电流为1A,并且需要输入电压范围为220VAC。
此外,我们还需要确定开关电源的效率、功率因数等要求。
2.选取开关电源拓扑结构根据需求和规格,选择适合的开关电源拓扑结构。
常见的开关电源拓扑包括反激式、半桥或全桥式等。
根据需求,我们选择反激式开关电源。
3.选择主要元件根据选取的拓扑结构,选择适当的主要元件,包括主变压器、开关管、输出电容和滤波电感等。
选取主变压器时需要考虑输入输出电压比例、功率等因素;选择开关管时需要考虑导通电阻、开通速度等因素。
4.电路图设计根据所选的开关电源拓扑结构和主要元件,设计电路图。
包括输入滤波电路、整流电路、开关电路和输出滤波电路。
同时,需要设计开关电源的保护电路,如过流保护、过压保护等。
5.计算关键参数根据设计的电路图,计算关键参数。
例如,计算输入电流、输出电流、开关频率等。
这些参数可以通过电路图中的公式和关系计算得出。
6.仿真和优化通过电路仿真软件,对设计的电路进行仿真和优化。
可以通过调整元件参数和拓扑结构来优化电路性能,如提高效率或降低成本。
7.PCB布局设计在完成电路图设计和仿真优化后,需要进行PCB布局设计。
将电路图转化为实际的PCB布局,并考虑元件之间的布置、走线、散热等因素。
8.元件选型和采购根据PCB布局设计,选择合适的元件,并进行采购。
需要考虑元件的性能、价格、可靠性等因素。
9.确定元件焊接方式根据元件选型和PCB布局,确定元件的焊接方式。
根据焊接方式,可以选择手工焊接或波峰焊接等。
10.制作和调试样机根据设计和选型的元件,制作和调试样机。
用uc3845b 设计开关电源实例Switching power supplies are widely used in various applications due to their high efficiency and compact design. One of the most common and popular control ICs used for designing switching power supplies is the UC3845B. This IC is known for its versatility and ease of use in various topologies such as flyback, forward, and boost.开关电源由于高效率和紧凑的设计而被广泛应用于各种领域。
在设计开关电源时常用的一个控制IC是UC3845B。
这个IC以其在飞行、正转和升压等各种拓扑结构中的通用性和易用性而闻名。
The UC3845B is a current mode PWM controller that operates at a fixed frequency and has a voltage feedforward design for improved transient response. It also has built-in soft start and frequency jitter features for reduced EMI emissions. These advanced features make the UC3845B a popular choice for designing efficient and reliable switch mode power supplies.UC3845B是一个固定频率工作的电流模式PWM控制器,具有电压前馈设计以提高瞬态响应。
芯片公司反激开关电源设计案例反激开关电源是一种常用的电源设计方案,它采用了开关元件的控制来实现高效率的能量转换。
对于芯片公司来说,设计一个稳定可靠的反激开关电源是至关重要的。
下面以一个具体案例来介绍芯片公司如何设计反激开关电源。
案例背景:芯片公司计划设计一款用于智能手表的反激开关电源。
该电源需要满足以下要求:输出电压为3.3V,最大输出电流为200mA,输入电压范围为3V到5V。
同时,该电源需要具备稳定可靠、高效率等特点。
设计步骤:1.电源需求分析:首先,需要对电源的工作条件进行分析。
智能手表作为一种可佩戴设备,体积小巧、功耗低是重要的特点。
因此,反激开关电源是一种理想的选择。
在电源需求分析中,需要确定输出电压和电流的要求,并考虑输入电压的范围。
2.开关电源拓扑选择:根据电源需求分析,可以选择反激开关电源作为设计方案。
反激开关电源可以提供相对较高的转换效率,并且适用于较宽的输入电压范围。
3.电源拓扑设计:在选择了反激开关电源后,需要设计电源的拓扑结构。
该案例中可以选择基于反激变换器的设计方案,使用变压器实现能量的传输。
通过选择合适的变压器匹配,可以实现输入电压到输出电压的转换。
4.元件选择:根据设计要求,选择合适的元件来搭建反激开关电源。
包括开关管、二极管、电感、电容等。
在选择元件时,需要考虑其参数和性能,并保证其可靠性和稳定性。
5.控制电路设计:反激开关电源需要一个控制电路来实现对开关管的控制。
控制电路可以采用传统的PWM或者脉冲频率调制(PFM)的控制方法。
通过控制开关管的导通与断开,实现对输出电压和电流的调节。
6.稳压电路设计:为了保证输出电压的稳定性,需要设计稳压电路。
可以采用负反馈稳压电路,通过对输出电压进行采样和比较,控制开关管的工作状态,使得输出电压能够稳定在设定值。
7.效率优化:为了提高转换效率,需要优化设计。
可以采用切换频率较高的开关管、合理选择电感和电容等方法。
通过优化设计,使能量转换更为高效。
开关电源典型设计实例精选
开关电源是一种常见的电源设计,它能够将输入电压转换为稳定的输出电压,常用于各种电子设备中。
以下是一些典型的开关电源设计实例:
1. Buck转换器,Buck转换器是一种常见的开关电源设计,它能够将高电压降低为稳定的较低电压。
这种设计常用于需要较低输出电压的应用,例如移动设备充电器和电源适配器。
2. Boost转换器,Boost转换器则是将输入电压升高为稳定的输出电压,常用于需要较高输出电压的场合,比如LED驱动器和太阳能电池充电器。
3. Buck-Boost转换器,Buck-Boost转换器能够实现输入电压的升压和降压,因此在需要输出电压高低变化范围较大的场合下应用广泛,比如电动汽车充电器和太阳能储能系统。
4. Flyback转换器,Flyback转换器是一种常见的离线开关电源设计,适用于输出功率较低的应用,例如家用电子设备和通信设备。
5. LLC谐振转换器,LLC谐振转换器结构简单,具有高效率和低电磁干扰等优点,适用于中高功率的电源设计,例如工业设备和服务器电源。
以上是一些典型的开关电源设计实例,每种设计都有其适用的场合和特点,工程师在实际设计中需要根据具体要求选择合适的设计方案。
希望以上信息能够对你有所帮助。
开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。
开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。
二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。
2. 整流桥:将输入交流电转换为直流电信号。
3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。
4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。
5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。
三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。
2. 选择合适的变压器。
3. 设计整流桥和直流滤波器。
4. 设计开关变换器,包括选择合适的开关管和控制电路。
5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。
6. 进行整个电路的仿真和优化。
7. 进行实际电路的搭建和调试。
四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。
1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。
2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。
通过计算得到变压比为1:2。
3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。
4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。
控制信号通过脉冲宽度调制(PWM)技术进行控制。
同时,在输入端加入输入滤波器进行滤波处理。
5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。
同时,加入输出滤波电容进行滤波处理。
6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
摘要开关电源是应用于广泛领域的一种电力电子装置。
它具有电能转换效率高、体积小、重量轻、控制精度高和快速性好等优点,在小功率范围内基本取代了线性电源,并迅速想大功率范围推进,在很大程度上取代了晶闸管相控整流电源。
可以说,开关电源技术是目前中小功率直流电能变换装置的主流技术。
本文首先描述了开关电源的发展,对目前出现的几种典型的开关电源技术作了归纳总结和分析比较,在此基础上指出了开关电源技术的发展状况和开关电源产品的发展趋势。
并且对开关电源的发展史、应用范围、主电路的选择、控制方法作了简要的介绍。
在设计中主要采用了脉宽调制(PWM)、全桥整流、自锁保护等技术,应用了控制芯片UC3842做为PWM控制芯片,对变压器次级线圈采用堆叠式绕法,改进光耦反馈电路的选择,使电路能达到所需基本要求同时,力求稳定、高效。
关键字:开关电源,拓扑结构,变压器,正激式AbstractThe switch power supply is a kind of electric power electronics which applies in the extensive realm to be used.It has an electric power conversion's efficiency high, the physical volume is small, the weight is light, the control accuracy is high with fast etc. advantage, within the scope of small power replaced line power supply, and in high-power scope propulsion quickly, to a large extent,it replaced the thyristor phase - controlled rectifying power supply.We can say, the switch power supply technique is the essential technique which wins small electric power transformation of the power direct current to equip currently.This text described the development of switch power supply first, to a few kinds which appear currently typical model of the switch power supply technique made to induce summary and analysis comparison, pointing out the development trend of the technical development condition of the switch power supply and switch power supply product on this foundation.And introduce the switch power supply’s phylogeny,application, main electric circuit of power supply and controled a method. The design adopted PWM, the whole bridgeses commutated, lock protection etc. technique, applied control the chip UC3842 to be used as PWM control chip, the transformer adoprt adopt pile circle, improve the choice of the electric circuit, make the electric circuit be able to attain need basic request in the meantime, try hard for stability, efficiently.Key words:Switch power supply,topology,transform,Forward目录摘要 (I)Abstract ............................................................................................................................................ I I 目录 .. (III)1 绪论 (1)1.1 引言 (1)1.2 开关电源的发展历史 (1)1.2.1 国外发展历史 (1)1.2.2 国内发展状况 (2)1.3 目前需要克服的困难 (2)1.4 开关电源的发展趋势 (3)1.5 本文的设计要求 (4)2 开关电源的工作原理 (6)2.1 开关电源的基本构成 (6)2.2 开关电源常用的拓扑结构分析 (6)2.2.1 降压型 (6)2.2.2 升压型 (7)2.2.3 升降压型 (8)2.2.4 反激式 (9)2.2.5 正激式 (11)2.2.6 推挽式 (12)2.3 拓扑结构的确定 (13)3. 基于UC3842的开关电源的设计与实现 (14)3.1 开关电源电路的设计 (14)3.1.1 开关电源电路的总体简介 (14)3.1.2 基于UC3842的基本结构 (14)3.1.3 各部分功能简介 (14)3.2 UC3842芯片简介 (15)3.2.1 UC3842的特点 (15)3.2.2内部结构和引脚图 (16)3.2.3 引脚功能 (16)3.2.4 芯片工作原理 (17)3.3 各部分回路设计 (18)3.3.1 主回路的设计 (18)3.3.2 控制保护回路的设计 (21)3.3.3 反馈电路的设计 (23)3.4 外围主要器件的选取 (23)4. 开关电源变压器的设计 (28)4.1 与变压器相关的一些基本概念 (28)4.2 变压器用料介绍 (30)4.3 高频变压器的设计 (32)4.4 变压器的绕制方法 (35)结论 (38)致谢 (39)参考文献 (40)附录总原理图 (41)1 绪论1.1 引言电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入 90 年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电力检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
单管开关电源的实例制作和设计要点-设计应用本文向大家分享单管开关电源的实例制作和设计要点。
一、单管开关电源简述单管开关电源由于构成元件简单,成本低廉,在很多小家电中得到广泛的应用,如LED灯、充电器、遥控器、门铃等。
下面就是这种单管开关电源的电路。
图1. 单管开关电源电路图二、单管开关电源的元件组成和电路原理1、主要元件a. 开关管。
图2 MJE13005开关管可以使用双极型晶体管和场效应管,本电路使用的是双极型晶体管,型号为MJE13005,该型号的三极管属于高反压高速开关三极管,主要用于大功率节能灯、开关电源、功率变换器等,其具有耐高压、开关速度快、安全工作区宽等优点。
其主要参数如下:集电极-基极反向耐压达到700V集电极-发射机反向耐压达到400V集电极允许电流达到5A集电极耗散功率达到75WMJE系列从13001到13009,在实际产品中,可以根据实际要求选择合适参数的型号。
b. 开关电源变压器。
开关电源变压器的作用是为负载电路提供能量,同时为前后级电路提供隔离。
开关电源变压器有EE、EC型,本电路采用EE型。
开关电源变压器有初级绕组和次级绕组,本电路中的变压器初级绕组包含储能绕组和正反馈绕组,匝数比为210:9;次级绕组中心抽头,匝数比为13:13,这个匝数比可以根据具体需要进行调整。
2、电路原理a. 整流滤波电路。
200V交流电经过整流桥B1(可采用1N4007 x 4组成)和电容器C1整流滤波后输出300V直流电压,进入单管自激振荡电路。
图3 整流滤波电路b. 开关自激振荡电路。
300V直流电压一路经过变压器T1的初级绕组加到开关管的集电极,另一路通过R4给开关管提供基极电压。
由于正反馈绕组感应的电压经过R5、C3加到开关管的基极,开关管很快进入饱和导通状态。
由于开关管导通,则正反馈停止,开关管进入放大状态,集电极电流减小,从而在正反馈绕组上产生反向电流加到开关管的基极,使开关管进入截止状态。
六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。
输出电压需要稳压。
输出电流可以达到500mA.有效功率8W、效率87%。
其他没有要求就可以正常工作。
简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。
通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
毕业综合实践课题名称: 12V/5A开关电源设计作者:学号: 09034224系别:电气电子工程系专业:电子工程信息技术指导老师:专业技术职务教授毕业综合实践开题报告姓名:学号: 09034224 专业:电子信息工程技术课题名称: 12V/5A开关电源设计指导教师:2011 年 12 月 19 日目录1 诸论 (1)1.1 开关电源的基本概念 (1)1.2 开关电源的发展 (1)1.2.1 开关电源的发展史 (2)2 电路的比较方案 (3)2.1 方案一、反激式变换器 (3)2.2 方案二、半桥变换器 (3)2.3 方案三、正激式变换器 (4)3 各部分电路工作原理 (6)3.1 单相桥式整流电路 (6)3.1.2 参数计算 (7)3.2 功率变换电路 (8)3.2.1 MOS管工作原理 (8)3.3.1肖特基二极管 (12)3.4 高频变压器的设计 (13)3.4.1 变压器的设计 (13)3.4.2 控制电路工作原理 (16)3.5 L431的功能 (16)3.6 短路保护电路 (18)3.6.1 输入保护器件 (18)3.6.2输入瞬间电压保护 (18)4、电路的总结构 (20)结论 (22)致谢 (23)参考文献 (24)附录 (25)附录一 (25)附录二 (26)1 诸论电是工业的动力,是人类生活的源泉。
电源是生产电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。
我们用的电,一般都需经过转换才能适合使用的需要,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。
按照电子理论,所谓AC/DC就是交流转化为直流;AC/AC称为交流变交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变为直流。
为了达到转换的目的,电源变换的方法是多样的。
自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。
开关电源PCB设计实例开关电源是一种将交流电转换为直流电的电源装置,广泛应用于电子设备中。
在开关电源的设计中,PCB(Printed Circuit Board,印刷电路板)的设计起着至关重要的作用。
本文将介绍一种开关电源PCB的设计实例,并详细讨论该设计的关键要素。
首先,我们将关注PCB的布局设计。
在开关电源中,布局设计非常重要,可以影响到整个PCB电路的性能和可靠性。
一般来说,PCB的布局应该遵循以下几个原则:1.分离高压和低压部分:为了确保电路的安全性,应将高压和低压部分分开布局,避免高压的干扰对低压部分产生不良影响。
2.降低元件间的干扰:在布局时,应尽量减少导线和元件之间的交叉和交叉相邻,以降低干扰的可能性。
3.确保散热效果:开关电源通常会产生较大的热量,因此在布局时应留出足够的空间来散热,可以添加散热片或设置散热孔。
接下来,我们将讨论PCB的元件安置。
在开关电源的设计中,有几个关键的元件需要特别关注:1.开关管:开关管是开关电源中最重要的元件之一,其位置的选择会影响到整个电路的效率和可靠性。
一般来说,开关管应尽量靠近输入和输出端口,并尽量避免与其他元件的干扰。
2.整流器和滤波器:整流器和滤波器用于将交流电转换为直流电,并滤除杂波和噪声。
这些元件应尽量靠近开关管,以减少导线的长度和电阻,提高效率。
3.控制芯片:在开关电源中,控制芯片是整个电路的大脑,负责实现开关管的控制和保护功能。
控制芯片应尽量靠近开关管,并放置在一个相对较为稳定和干净的区域,避免受到干扰。
最后,我们将讨论PCB的走线设计。
在开关电源的走线设计中,有几个关键要点需要注意:1.短导线和大导线:为了降低线路的电阻和电感,应尽量使用短导线和大导线,减少线路的损耗。
2.地线的布线:在开关电源中,地线的布线非常重要,可以有效降低干扰。
地线可以铺设在整个PCB的底层,并尽量减短地线的回路,提高信号的稳定性。
3.防止串扰:在布线时,要注意防止不同信号之间的串扰。
单端反激式开关电源(毕业设计).二、单端反激式开关电源的工作原理单端反激式开关电源的工作原理依靠开关管的开关动作来实现交流电到直流电的转换。
其基本原理如下:1、输入电压滤波单端反激式开关电源在工作之前,必须对输入电压进行滤波,以保证输入电压的平稳、稳定。
2、交流电输入输入电压通过电容滤波后,在交流电路中形成一定的电压波形,交流电通过变压器的原、次绕组的磁耦合作用,将输入电压变换成所需要的电压等级。
本设计选择220V交流电输入,变压器原、次绕组变比为1:26。
3、整流滤波变压器将220V交流电转换成24V直流电,然后通过扁平电容进行电压滤波,使直流电平滑化,得到更加稳定的直流电。
4、开关转换在直流电经过扁平电容滤波后,进入开关电路,在开关电路中,开关管CD4049B作为单向触发器,通过555定时器形成一定的工作周期,改变开关管的通断状态,使得直流电在开关管通断状态变化的控制下,进行输出电流的调整。
5、输出变压器通过输出变压器,将捕获后的直流电变压,以输出需要的电压级别。
三、单端反激式开关电源的电路设计本电路设计基于CD4049B和555定时器,整体电路如下所示。
(注:图中VCC为12V直流电源)1、输入电压滤波电路输入电压滤波电路通过电容电感联合滤波,能够有效抑制交流电中杂波的干扰,提高了直流电的稳定性和可靠性。
本设计采用C1、L1、C2的电容电感联合滤波电路。
2、交流电输入电路交流电输入电路采用变压器进行变压,将220V交流电输入变成24V交流电。
3、整流滤波电路整流滤波电路主要由二极管D1、扁平电容C3组成,二极管和扁平电容组合起来,实现对变压器的24V直流电进行滤波工作。
四、单端反激式开关电源的实验结果本设计所设计并实验验证的单端反激式开关电源,输出电压稳定在12V左右,基本符合设计要求,并成功实现正常工作。
实验中,对于开关管的选择,采用MOS管比较理想,名称为FDPF33N25B。
五、结论本文基于CD4049B和555定时器,设计了一种单端反激式开关电源方案,并在实验中验证了该设计方案的可行性,证明该方案具有开发简单、可靠的特点,可以用于一些小功率电子设备的电源供应。
开关电源设计举例电源是各类产品中很重要的一部分,可以算是最基础的部分,任何电子器件缺少了电源都无法工作。
本人从事电路设计相关工作(不涉及电源设计),但需要了解电源的设计原理、性能、测试等信息。
通过收集资料整理出一份AC-DC开关电源的设计过程。
仙童半导体官网提供了较为详细的开关电源设计方案,本文以仙童的FSL1x6xRN系列芯片为例,介绍采用FPS的反激式隔离AC-DC开关电源的设计开发流程。
开关模式电源(SMPS)设计本质上就是一项费时的工作,需要作出许多权衡取舍并采用大量的设计变量进行迭代运算。
本文所描述的步进式设计程序能够帮助工程师完成SMPS的设计。
为了使设计效率更高,还提供了一个包含本文所述全部公式的软件设计工具—FPS设计助手(FPS design assistant)。
该设计助手是用电子表格将全部变量、公式集于一个工作表,通过参数的改变实现相关参数的更新,提高设计开发的进度。
图1 采用FPS的基本反激式隔离AC-DC转换器一、引言图1示出了采用FPS的基本反激式隔离AC-DC转换器的原理图,它同时也是本文所描述的设计程序的参考电路。
由于MOSFET和PWM控制器以及各附加电路都被集成在了一个封装中,因此,SMPS的设计比分立型的MOSFET和PWM控制器解决方案要容易得多。
本文提供了针对基于FPS的反激式隔离AC-DC转换器的进步式设计程序,也包括变压器设计、输出滤波器设计、元件选择和反馈闭合环路设计。
这里描述的设计程序具有足够的通用性,可适用于不同的应用。
本文介绍的设计程序还可以由一个软件设计工具(FPS设计助手)来实现,从而使得设计师能够在一个很短的时间内完成SMPS设计。
本文的附录给出了一个采用软件工具的步进式设计实例。
二、步进式设计程序在这一节中,我们以图1所示的原理为参考来介绍设计程序。
一般而言,如图1所示,大多数FPS 引脚1到引脚4的配置都是相同的。
(1)第一步:确定系统规格输入电压范围(V line min 和V line max )。
高效率开关电源设计实例--10W同步整流B u c k变换器以下设计实例中,包含了各种技巧来提高开关电源的总体效率;有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍;采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用;在将这些电源引入生产前,请注意这个问题;10W同步整流Buck变换器应用此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器;在设计同步整流开关电源时,必须仔细选择控制IC;为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好;很多运行性能的微妙之处不能确定,除非认真读过数据手册;例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃;这是因为买来的芯片功能或工作模式往往无法改变;更不用说,当发现现成方案不能满足需求时,是令人沮丧的见图20的电路图;设计指标输入电压范围: DC+10~+14V输出电压: DC+额定输出电流:过电流限制:输出纹波电压: +30mV峰峰值输出调整:±1%最大工作温度: +40℃“黑箱”预估值输出功率: +2A=最大输入功率: Pout/估计效率=/=功率开关损耗 0.5=续流二极管损耗: =输入平均电流低输入电压时/10V=高输入电压时:/14V=0.8A估计峰值电流: 1.4Ioutrated=1.4×2.0A=2.8A设计工作频率为300kHz;电感设计参见最恶劣的工作情况是在高输入电压时;式中 Vinmax ——可能的最大输入电压;Vout——输出电压;Ioutmin——最小负载时的电流;f sw ——工作频率;电感是个环形表面封装元件,市场上有多种标准表面封装的电感,这里选择的是Coileraft公司的D03340P-33333μH;功率开关和同步整流器MOSFET的选择功率开关:功率开关要用一个变压器耦合的N沟道功率MOSFET;这里打算使用一个S0-8封装的双N沟道MOSFET,以节省PCB空间;最大输入电压是DCl4V;因此,可以选用V DSS不低于DC+30V、峰值电流是2.8A的MOSFET;选择过程的第一步是确定所用MOSFET的最大R DSon,通过热模型可以确定这个值,最大的R DSon可由下式得到:同时希望器件的耗散功率小于1W,所以估计的R DSon应小于所以选FDS6912A双N沟道MOSFET,它是S0-8封装,10V栅极电压时的导通电阻为28mΩ;同步二极管:要用一个大约是同步MOSFET连续额定容量的30%的肖特基二极管与MOSFET内部二极管并联,30V时约为0.66A;这里使用MBRSl30,该二极管在流过0.66A时有0.35V的正向压降;可替换的元件:在写本书时,仙童半导体公司出品了一个集成的肖特基二极管和MOSFET,肖特基二极管直接并在MOSFET的硅片上syncFET;SyncFET有一个40mΩN沟道MOSFET,与一个28mΩSyncFET一起封装,型号为FDS6982S;输出电容参见输出电容值由下列公式确定:输入和输出滤波电容主要考虑的是流入电容的纹波电流;在这个实例中,纹波电流和电感交流电流是相同的,电感电流最大值限定在2.8A,纹波电流峰峰值为1.8A,有效值大约为O.6A约为峰峰值的1/3;采用表面安装钽电容,因为它的ESR只有电解电容的10%~20%;在环境温度+85;C=时,电容将降额30%使用;最佳的电容是来自AVX公司的,它的ESR非常低,因此可以适应很高的纹波电流,但这是很特殊的电容;在输出端可将下列两种电容并在一起;AVX:TPSEl07M01R0150 1OOμF20%,10V,150mΩ,O.894A有效值TPSE107M01R0125 100/μF20%,10V,125mΩ,0.980A有效值Nichicon:F750A107MD 100μF20%,10V,120mΩ,0.92A有效值输入滤波电容见这个电容要流过与功率开关相同的电流,电流波形是梯形的,从最初的lA很快上升到;它的工作条件比输出滤波电容恶劣得多;可把梯形电流看成两个波形的叠加来估计有效值:峰值1A的矩形波和峰值1.8A的三角波,产生大约1.1A的有效值;电容值由下式计算:电压越高,电容值越低;电容由两个1OOμF电容并联而成,它们是:AVX每个系统需两个:TPSl07M020R0085 1OOμF20%,20V,85mΩ,1.534A有效值TPSl07M020R0200 100μF20%,10V,200mΩ,1.0A有效值选择控制IC芯片U1期望的buck控制IC芯片的特性是:1.直接从输入电压即可启动的能力;2.逐周电流限制;3.图腾柱MOSFET驱动器;4.功率开关和同步整流器MOSFET之间延时的控制;市场上绝大部分同步buck控制器都是用于+5~+1.8V微处理器调整电源的如,+12V的V dd和+5V 的V in;也有很多IC芯片可以提供足够的功能,使用者可以根据应用来选择这些功能;在选择时,初选了两家加利福尼亚公司的产品,发现只有一种IC适合这种要求,就是Unitrode/TI的UC3580-3;电压误差放大器的内部基准是2.51±2.5%V;设定工作频率R7、R8和C8R8给定时电容C8充电,而R7给定时电容放电;首先,要确定变换器最大占空比;因为输出电压大约是最低输入电压的50%,所以选择最大占空比为60%;从数据手册得充电时间最大值是0.6/300kHz或2μs;参数表上定时电容值lOOpF略偏小不会耗散太多能量;这里采用这个值,因此R8的值是伏-秒限制器R4和C5这个IC芯片有前馈最大脉宽限制功能;当输入电压增加时,Buck变换器工作脉宽会减少;RC振荡器直接与输入电压相接,并且它的定时值与输入电压成反比;它的定时时间设成比工作脉宽长30%;如果伏.秒振荡器定时时间到了,而调整单元仍旧导通,则调整单元会被关断;C5也取lOOpF,因为它的定时和振荡器一样,所以R4大约是47kΩ;设定调整单元和同步整流器MOSFET之间的死区时间根据MOSFET功率开关节可以进行开通和关断延时的计算,但仍需要在最初调试时调整R6死区设定电阻的值;开始设成lOOns比较好,典型的MOSFET开通延时是60ns,100ns可以保证不会有短路电流;IC所产生的死区延时是不对称的;从数据手册的图表上看,100kΩ电阻产生开通延时大约为1lOns,关断延时为180ns;在最初调试阶段就要设法减少这些延时;延时使得二极管导通的时间太长,损耗就高,但还是工作在安全区;栅极驱动变压器的设计T1栅极驱动变压器是一个简单的1:1正激式变压器;对变压器没有特别的要求,因为它是小功率、交流耦合双向磁通的300kHz变压器;用10mm的铁氧体磁环就足够了,如TDK公司的K5TIO×2.5×5B sat是3300G,或Philips公司的266T125-3D3B sat是3800G;从磁性元件的设计可知,产生1000G0.1T或0.3B sat的匝数是栅极驱动变压器用两根相同导线约30AWG并绕;为了方便,变压器绕在一个四引脚“鸥翅型”gull wing表面安装骨架上;电流检测电阻R15和电压检测电阻分压器R11和R13芯片只提供了一个最小O.4V阈值的关断引脚;这里打算采用一个备用的过电流保护模式;为了尽可能减小电流检测电阻的尺寸,将采用电流反馈检测电路的一种变型;此处,0.35V是电压检测电阻分压器R14上的压降;那么R15为R15 =3A=Ω取20mΩ戴尔Dale电阻是WSL-2010-02-05;设定流过电压检测电阻分压器的电流约为1.0mA;这样R13和R14的总电阻是R sum ==ΩR14 为R14 =0;35V/ =350Ω取360Ω则R13 为R13 =Ω-360Ω=Ω取Ω,1%精度则R11 为R11 =/1mA =Ω取Ω,1%精度电压反馈环补偿见这是一个电压型正激式变换器;为了得到最好的瞬态响应,将采用双极点、双零点补偿法;确定控制到输出特性:输出滤波器极点由滤波电感和电容决定,且以-40dB/dec穿越OdB线;它的自然转折频率是输出滤波电容引起的零点ESR是两个150mΩ并联是功率电路直流绝对增益是计算误差放大器补偿极点和零点选择15kHz穿越频率能满足大部分的应用场合,这使得瞬态响应时间约为200μs;f xo=15kHz首先,假定最终闭合回路补偿网络以-20dB/dec下降,为获得15kHz穿越频率,放大器必须提高输入信号增益,即提高博德图中的增益曲线;G xo=20lgf xo/f fp-G DC=20lg15kHz/1959HzG xo=G2=+ dBA xo=A2= dB绝对增益这是中频段G2所需的增益,以获得期望的穿越频率;补偿零点处的增益是:=A1 =绝对增益为补偿两个滤波器极点,在滤波器极点频率的一半处放置两个零点:第一个补偿极点置于电容的ESR频率处4020Hz:第二个补偿极点用于抑制高频增益,以维持高频稳定性:现在可以开始计算误差放大器内部的元件值,见图19;最终所设计的电路见图20;。
开关电源PCB设计实例印制电路板的制作所有开关电源设计的最后一步就是印制电路板(PCB)的线路设计。
如果这部分设计不当,PCB也会使电源工作不稳定,发射出过量的电磁干扰(EMI)。
设计者的作用就是在理解电路工作过程的基础上,保证PCB设计合理。
开关电源中,有些信号包含丰富的高频分量,因而任何一条PCB引线都可能成为天线。
引线的长和宽影响它的电阻和电感量,进而关系到它们的频率响应。
即使是传送直流信号的引线,也会从邻近的引线上引入RF(射频)信号,使电路发生故障,或者把这干扰信号再次辐射出去。
所有传送交流信号的引线要尽可能短且宽。
这意味着任何与多条功率线相连的功率器件要尽可能紧挨在一起,以减短连线长度。
引线的长度直接与它的电感量和电阻量成比例,它的宽度则与电感量和电阻量成反比。
引线长度就决定了其响应信号的波长,引线越长,它能接收和传送的干扰信号频率就越低,它所接收到的RF(射频)能量也越大。
主要电流环路每一个开关电源内部都有四个电流环路,每个环路要与其他环路分开。
由于它们对PCB布局的重要性,下面把它们列出来:1.功率开关管交流电流环路。
2.输出整流器交流电流环路。
3.输入电源电流环路。
4.输出负载电流环路。
图1 a、b、c画出了三种主要开关电源拓扑的环路。
通常输入电源和负载电流环路并没有什么问题。
这两个环路上主要是在直流电流上叠加了一些小的交流电流分量。
它们一般有专门的滤波器来阻止交流噪声进入周围的电路。
输入和输出电流环路连接的位置只能是相应的输入输出电容的接线端。
输入环路通过近似直流的电流对输入电容充电,但它无法提供开关电源所需的脉冲电流。
输入电容主要是起到高频能量存储器的作用。
类似地,输出滤波电容存储来自输出整流器的高频能量,使输出负载环能以直流方式汲取能量。
因此,输入和输出滤波电容接线端的放置很重要。
如果输入或输出环与功率开关或整流环的连接没有直接接到电容的两端,交流能量就会从输入或输出滤波电容上流进流出,并通过输入和输出电流环“逃逸”到外面环境中。
六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。
输出电压需要稳压。
输出电流可以达到500mA.有效功率8W、效率87%。
其他没有要求就可以正常工作。
简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。
通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
Power IntegrationsDesign Example ReportTitle10W Compact Power Supply using TOP245RSpecification Input: 90 – 300 VAC Output: 6V / 1.67A Application Water PurifierAuthor Power Integrations Applications Department Document Number DER-107 Date October 26, 2005 Revision1.0Summary and Features• 66kHz operation to reduce switching losses in TOPSwitch-GX , reduce standbypower consumption and reduce burden on input EMI Filter • Low profile EFD20 ESHEILD transformer construction • Simple input π-filter • No Y-cap No X-cap• 450 VDC input capacitors for increased reliability for continuous 300 V RMSoperation• No heat sink design - D 2PAK TOPSwitch-GX and D-PAK output rectifier • 10 W (continuous) / 18 W (peak) in 1.6 X 2.5 X 1”The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at .Table Of Contents1Introduction (3)2Power Supply Specification (4)3Schematic (5)4Circuit Description (6)4.1Input EMI Filtering (6)4.2TOPSwitch Primary (6)4.3Output Rectification (6)4.4Output Feedback (6)5PCB Layout (7)6Bill Of Materials (8)7Transformer Specification (9)7.1Electrical Diagram (9)7.2Electrical Specifications (9)7.3Materials (9)7.4Transformer Build Diagram (10)7.5Transformer Construction (10)8PIXL Transformer Spreadsheet (11)9Performance Data (15)9.1Efficiency (15)9.2No-load Input Power (15)9.3Regulation (16)9.3.1Load (16)9.3.2Line (16)10Waveforms (17)10.1Drain Voltage and Current, Normal Operation (17)10.2Output Voltage Start-up Profile at Full Load (17)10.3Drain Voltage and Current Start-up Profile (18)10.4Load Transient Response (Load Step) (19)10.5Output Ripple Measurements (20)10.5.1Ripple Measurement Technique (20)10.5.2Measurement Results (21)11Control Loop Measurements (22)11.1120 VAC Maximum and 3A Load (22)11.2240 VAC Maximum and 3A Load (23)12Conducted EMI (24)13Revision History (25)Important Notes:Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolated source to provide power to the prototype board.Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.1 IntroductionThis document is an engineering report describing a universal input 6 V / 10 W power supply utilizing a TOP245R. This power supply is intended to be used in a compact adapter for a water purification application. This supply has been design to operate at 300 VAC input continuously as well as provide a peak output current of 3 A for two minutes.The document contains the power supply specification, schematic, bill-of-materials, transformer documentation, printed circuit layout, and performance data.TopBottomFigure 1 – Populated Circuit Board Photograph2 Power Supply SpecificationDescriptionSymbolMinTypMaxUnitsCommentInputVoltageV IN 90 300 VAC 2 Wire – no P.E.Frequencyf LINE 47 50/60 64 HzNo-load Input Power (240 VAC) 0.5 WOutputOutput Voltage 1V OUT1 6 V± 5% Output Ripple Voltage 1V RIPPLE1 100 mV 20 MHz bandwidthOutput Current 1I OUT1 1.67 ATotal Output PowerContinuous Output PowerP OUT 10 WPeak Output PowerP OUT_PEAK 18 W 2 minute durationEfficiency η 75 % Measured at P OUT (10 W), 25o C EnvironmentalConducted EMIMeets CISPR22B / EN55022BSafety Designed to meet IEC950, UL1950Class IISurge 4 kV 1.2/50 µs surge, IEC 1000-4-5,Series Impedance:Differential Mode: 2 ΩCommon Mode: 12 ΩSurge 4 kV100 kHz ring wave, 500 A short circuit current, differential and common modeAmbient Temperature T AMB 0 40 oCFree convection, sea level3 SchematicFigure 2 – Schematic4 Circuit DescriptionThe schematic in Figure 2 shows an off-line Flyback converter using the TOP245R. The circuit is designed for 90 VAC to 300 VAC input and 6 V, 1.67 A output, with a transient load requirement of 3 A for 2 minutes in duration.4.1 Input EMI FilteringCapacitor C1, C2 and L1 form in input p-filter for differential-mode conducted EMI. Common-mode conducted EMI is reduced with the ESHIELD winding technique employed in the transformer construction. A input X-capacitor and a Y-capacitor to bridge the isolation barrier are not required, due to the ESHIELD transformer construction and frequency dithering of the TOPSwitch-GX.4.2 TOPSwitch PrimaryRectifier bridge BR1 and C1, C2 provide a high voltage DC BUS for the primary circuitry. The DC rail is applied to the primary winding of T2. The other side of the transformer primary is driven by the integrated MOSFET in U1. Diode D4, R7, R3 and C6 clamp leakage spikes generated when the MOSFET in U1 switches off. Resistor R8 sets the low-line turn-on threshold to approximately 69 VAC, and also sets the over-voltage shutdown level to approximately 320 VAC. R2 sets the U1 current limit to approximately 75% of its nominal value. This limits the output power delivered during fault conditions. C5 bypasses the U1 CONTROL pin. C4 has 3 functions. It provides the energy required by U1 during startup, sets the auto-restart frequency during fault conditions, and also acts to roll off the gain of U1 as a function of frequency. R1 adds a zero to stabilize the power supply control loop. Diode D3 and C12 provide rectified and filtered bias power for U3 and U1. The Frequency pin (F-pin) of U1 is tied to the Control pin (C-pin) to set the operating frequency of the U1 to 66kHz.4.3 Output RectificationThe output of T2 is rectified and filtered by D6, C9, and C10. Inductor L2 and C11 provide additional high frequency filtering.4.4 Output FeedbackResistors R9 and R10 divide down the supply output voltage and apply it to the reference pin of error amplifier U2. Shunt regulator U2 drives optocoupler U3 through resistor R12 to provide feedback information to the U1 CONTROL pin. The optocoupler output also provides power to U1 during normal operating conditions.Components C4, C13, R1, R11, and R12 all play a role in compensating the power supply control loop. Capacitor C4 rolls off the gain of U1 at relatively low frequency. Resistor R1 provides a zero to cancel the phase shift of C4. Resistor R12 sets the gain of the direct signal path from the supply output through U2 and U3. Components C13 and R11 roll off the gain of U2.5 PCB LayoutFigure 3 – Printed Circuit Layout6 Bill Of Materials7 Transformer Specification7.1 Electrical DiagramFigure 4 – Transformer Electrical Diagram7.2 Electrical SpecificationsElectrical Strength 1 second, 60 Hz, from Pins 1-4 to Pins 5-8 3000VACPrimary Inductance Pins 3-4, all other windings open, measured at100 kHz, 0.4 VRMS 606 µH, -7/+7%Resonant Frequency Pins 3-4, all other windings open 800 kHz (Min.)Primary Leakage Inductance Pins 3-4, with Pins 5-8 shorted, measured at100kHz, 0.4 VRMS100 µH (Max.)7.3 MaterialsItem Description[1] Core: EFD20/3F3 AL = 104nH/T2[2] Bobbin: 8-pin[3] Magnet Wire: #35 AWG Heavy Build[4] Magnet Wire: #27 AWG Heavy Build[5] Tape: 3M 3mm wide[6] Tape, 3M[7] Tape, 3M[8] Copper tape 1.5 mil thick X 8mm wide[9] Varnish7.4 Transformer Build DiagramFigure 5 – Transformer Build Diagram 7.5 Transformer ConstructionBobbin Preparation Align bobbin to have pins 1-4 facing the mandrillPrimary Margin Apply 3 mm wide margin on either side of bobbin with item [5]. Match height of primary and bias windings.Primary Start at Pin 3. Wind 76 turns of item [3] in approximately 2 layers, finish on Pin 4.Basic Insulation Use one layer of item [6] for basic insulation.Bias Winding Starting at Pin 2, wind 14 turns of item [3] uniformly across bobbin width in a single layer. Finish at Pin 1.Basic Insulation Use one layer of item [6] for basic insulation.Primary Margin Apply 3 mm wide margin on either side of bobbin with item [5]. Match height of balanced shield winding.Balanced Shield Winding Start temporarily on pin 6. Wind 4 turns of quadrifilar item [4] uniformly across the bobbin width in a single layer. Finish on pin 4. Cut start of winding at 90-degree bend to center of bobbin window.ReinforcedInsulationUse three layers of item [7] for reinforced insulation.Secondary Margin Apply 3 mm wide margin on either side of bobbin with item [5]. Match height of secondary winding.Secondary Winding Start at Pin 5. Wind 6 trifilar turns of item [4]. Spread turns evenly across bobbin in a single layer. Finish on Pin 8.Outer Wrap Wrap windings with 3 layers of tape (item [7]). Core Preparation Affix cores (item [1]) with tape [5].Outer Belly band Wrap one turn of copper tape [8] around outer core. Ensure copper tape makes contact with core halves. Solder wire from pin 2 of bobbin to copper bellyband.Final Assembly Wrap three layers of tape [7]. Varnish impregnate (item [9]).8 PIXL Transformer SpreadsheetACDC_TOPSwitchGX_113004;Rev.2.2; Copyright PowerIntegrations Inc. 2004 INPUT INFO OUTPUT UNIT TOP_GX_FX_113004.xls:TOPSwitch-GX/FXContinuous/DiscontinuousFlyback Transformer DesignSpreadsheetENTER APPLICATION VARIABLESVACMIN 85 VoltsVACMAX 300 Volts Maximum AC Input VoltagefL 50 Hertz AC Mains FrequencyVO 6 Volts Output VoltagePO 18 Watts Output Powern 0.73 Efficiency EstimateZ 0.5 Loss Allocation FactorVB 15 Volts Bias VoltagetC 3 mSeconds Bridge Rectifier Conduction TimeEstimateCIN 44 uFarads Input Filter CapacitorENTER TOPSWITCH-GX VARIABLESTOP-GX TOP245 Universal 115 Doubled/230VChosen Device TOP245 PowerOut60W 85WKI 0.8 External Ilimit reduction factor(KI=1.0 for default ILIMIT, KI<1.0 for lower ILIMIT) ILIMITMIN 1.296 Amps Use 1% resistor in settingexternal ILIMITILIMITMAX 1.584 Amps Use 1% resistor in settingexternal ILIMITFrequency (F)=132kHz, (H)=66kHz h Half (H) frequency option -66kHzfS 66000 Hertz TOPSwitch-GX SwitchingFrequency: Choose between132 kHz and 66 kHzfSmin 61500 Hertz TOPSwitch-GX MinimumSwitching FrequencyfSmax 70500 Hertz TOPSwitch-GX MaximumSwitching FrequencyVOR 82 Volts Reflected Output VoltageVDS 10 Volts TOPSwitch on-state Drain toSource VoltageVD 0.5 Volts Output Winding Diode ForwardVoltage DropVDB 0.7 Volts Bias Winding Diode ForwardVoltage DropKP 0.9415 Ripple to Peak Current Ratio(0.4 < KRP < 1.0 : 1.0<KDP<6.0)ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLESCore Type efd20Core EFD20 P/N: EFD20-3F3Bobbin EFD20_BOBBIN P/N: CSH-EFD20-1S-8PAE 0.58 0.58 cm^2 Core Effective Cross SectionalAreaLE 5.7 5.7 cm Core Effective Path LengthAL 1800 1800 nH/T^2 Ungapped Core EffectiveInductanceBW 16.4 16.4 mm Bobbin Physical Winding Width M 3 mm Safety Margin Width (Half thePrimary to Secondary CreepageDistance)L 2 Number of Primary LayersNS 6 Number of Secondary Turns DC INPUT VOLTAGE PARAMETERSVMIN 81 Volts Minimum DC Input Voltage VMAX 424 Volts Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERSDMAX 0.54 Maximum Duty CycleIAVG 0.30 Amps Average Primary CurrentIP 1.07 Amps Peak Primary CurrentIR 1.01 Amps Primary Ripple CurrentIRMS 0.47 Amps Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERSLP 606 uHenries Primary InductanceNP 76 Primary Winding Number ofTurnsNB 14 Bias Winding Number of Turns ALG 106 nH/T^2 Gapped Core EffectiveInductanceBM 1480 Gauss Maximum Flux Density at PO,VMIN (BM<3000)BP 2187 Gauss Peak Flux Density (BP<4200) BAC 696 Gauss AC Flux Density for Core LossCurves (0.5 X Peak to Peak)ur 1408 Relative Permeability ofUngapped CoreLG 0.65 mm Gap Length (Lg > 0.1 mm) BWE 20.8 mm Effective Bobbin WidthOD 0.27 mm Maximum Primary WireDiameter including insulation INS 0.05 mm Estimated Total InsulationThickness (= 2 * film thickness) DIA 0.22 mm Bare conductor diameterAWG 32 AWG Primary Wire Gauge (Roundedto next smaller standard AWGvalue)CM 64 Cmils Bare conductor effective area incircular milsCMA Warning 137 Cmils/Amp !!!!!!!!!! INCREASE CMA>200(increase L(primary layers),decreaseNS, larger Core) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT EQUIVALENT)Lumped parametersISP 13.52 Amps Peak Secondary CurrentISRMS 5.48 Amps Secondary RMS CurrentIO 3.00 Amps Power Supply Output Current IRIPPLE 4.59 Amps Output Capacitor RMS RippleCurrentCMS 1097 Cmils Secondary Bare Conductorminimum circular milsAWGS 19 AWG Secondary Wire Gauge(Rounded up to next largerstandard AWG value)DIAS 0.91 mm Secondary Minimum BareConductor DiameterODS 1.73 mm Secondary Maximum OutsideDiameter for Triple InsulatedWireINSS 0.41 mm Maximum Secondary InsulationWall ThicknessVOLTAGE STRESS PARAMETERSVDRAIN 616 Volts Maximum Drain VoltageEstimate (Includes Effect ofLeakage Inductance)PIVS 40 Volts Output Rectifier Maximum PeakInverse VoltagePIVB 96 Volts Bias Rectifier Maximum PeakInverse Voltage TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)1st outputVO1 6.0 6 Volts Output VoltageIO1 3.000 3 Amps Output DC CurrentPO1 18.00 Watts Output PowerVD1 0.5 0.5 Volts Output Diode Forward VoltageDropNS1 6.00 Output Winding Number of Turns ISRMS1 5.484 Amps Output Winding RMS Current IRIPPLE1 4.59 Amps Output Capacitor RMS RippleCurrentPIVS1 40 Volts Output Rectifier Maximum PeakInverse VoltageCMS1 1097 Cmils Output Winding Bare Conductorminimum circular milsAWGS1 19 AWG Wire Gauge (Rounded up to nextlarger standard AWG value) DIAS1 0.91 mm Minimum Bare ConductorDiameterODS1 1.73 mm Maximum Outside Diameter forTriple Insulated Wire2nd outputVO2 6.0 Volts Output VoltageIO2 1.670 Amps Output DC CurrentPO2 10.02 Watts Output PowerVD2 0.5 Volts Output Diode Forward VoltageDropNS2 6.00 Output Winding Number of TurnsISRMS2 3.053 Amps Output Winding RMS Current IRIPPLE2 2.56 Amps Output Capacitor RMS RippleCurrentPIVS2 40 Volts Output Rectifier Maximum PeakInverse VoltageCMS2 611 Cmils Output Winding Bare Conductorminimum circular milsAWGS2 22 AWG Wire Gauge (Rounded up to nextlarger standard AWG value) DIAS2 0.65 mm Minimum Bare ConductorDiameterODS2 1.73 mm Maximum Outside Diameter forTriple Insulated Wire9 Performance DataAll measurements performed at room temperature, 60 Hz input frequency. 9.1 EfficiencyFigure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.9.2 No-load Input PowerFigure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz9.3 Regulation 9.3.1 LoadFigure 8 – Load Regulation, Room Temperature9.3.2 LineFigure 9 – Line Regulation, Room Temperature, Full Load10 Waveforms10.1 Drain Voltage and Current, Normal OperationFigure 10 – 90 VAC, Full Load.Upper: I DRAIN , 0.5 A / divLower: V DRAIN , 100 V, 2 µs / divFigure 11– 265 VAC, Full LoadUpper: I DRAIN , 0.5 A / div Lower: V DRAIN , 200 V / div10.2 Output Voltage Start-up Profile at Full LoadFigure 12 – Start-up Profile, 120VAC1 V,2 ms / div.Figure 13 – Start-up Profile, 240 VAC1 V,2 ms / div.10.3 Drain Voltage and Current Start-up ProfileFigure 14 – 90 VAC Input and Maximum Load.Upper: I DRAIN, 0.5 A / div.Lower: V DRAIN, 100 V & 1 ms / div.Figure 15 – 265 VAC Input and Maximum Load.Upper: I DRAIN, 0.5 A / div.Lower: V DRAIN, 200 V & 1 ms / div.10.4 Load Transient Response (Load Step)In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.Figure 16 – Transient Response, 120VAC, 75-100-75% Load Step.Bottom: Load Current, 1 A/div.Top: Output Voltage2000 mV, 5V offset, 1ms / div.Figure 17 – Transient Response, 120VAC, 100-180-100% Load StepBottom: Load Current, 1 A/ div.Top: Output Voltage200 mV 5V offset, 1 ms / div.10.5 Output Ripple Measurements10.5.1 Ripple Measurement TechniqueFor DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 18and Figure 19.The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probetip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0µF/50 Valuminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).Figure 18 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)Figure 19 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)Probe Tip10.5.2 Measurement ResultsFigure 20 – Ripple, 120VAC, Full Load.2 ms, 20 mV / div Figure 21 – Ripple, 240VAC, Full Load.2 ms, 20 mV / div11 Control Loop Measurements11.1 120 VAC Maximum and 3A LoadFigure 22 – Gain-Phase Plot, 120 VAC, Maximum Steady State LoadVertical Scale: Gain = 8 dB/div, Phase = 40 °/div.Crossover Frequency = 2.66 kHz Phase Margin = 88.11°Figure 23 – Gain-Phase Plot, 120 VAC, 3A LoadVertical Scale: Gain = 12 dB/div, Phase = 40 °/div.Crossover Frequency = 1.32 kHz Phase Margin = 84.02°11.2240 VAC Maximum and 3A LoadFigure 24 – Gain-Phase Plot, 240 VAC, Maximum Steady State LoadVertical Scale: Gain = 8 dB/div, Phase = 40 °/div.Crossover Frequency = 11.11 kHz Phase Margin = 57.14°Figure 25 – Gain-Phase Plot, 240 VAC, 3A LoadVertical Scale: Gain = 12 dB/div, Phase = 40 °/div.Crossover Frequency = 7.26 kHz Phase Margin = 71.65°12 Conducted EMIFigure 26 – Maximum Steady State Load, 120 VAC/60 Hz, and EN55022 B Limits (LINE)Figure 27 –Maximum Steady State Load, 120VAC/60Hz, and EN55022 B Limits (Neutral)Figure 28 –Maximum Steady State Load, 240VAC/ 60 Hz, and EN55022 B Limits (LINE)Figure 29 –Maximum Steady State Load, 240VAC/60Hz, and EN55022 B Limits (Neutral)13 Revision HistoryDate Author Revision Description & changes ReviewedRelease KM/JC/VC 10-26-05 RSP 1.0 InitialFor the latest updates, visit our website:Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.PATENT INFORMATIONThe products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations.A complete list of Power Integrations’ patents may be found at . Power Integrations grants its customers a license under certain patent rights as set forth at /ip.htm.The PI Logo, TOPSwitch, TinySwitch,LinkSwitch,DPA-Switch,EcoSmart, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005 Power Integrations, Inc.Power Integrations Worldwide Sales Support LocationsWORLD HEADQUARTERS 5245 Hellyer AvenueSan Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service:Phone: +1-408-414-9665 Fax: +1-408-414-9765e-mail: usasales@ GERMANYRueckertstrasse 3D-80336, MunichGermanyPhone: +49-89-5527-3910Fax: +49-89-5527-3920e-mail: eurosales@JAPANKeihin Tatemono 1st Bldg2-12-20Shin-Yokohama, Kohoku-ku,Yokohama-shi, Kanagawa ken,Japan 222-0033Phone: +81-45-471-1021Fax: +81-45-471-3717e-mail:japansales@TAIWAN5F, No. 318, Nei Hu Rd., Sec. 1Nei Hu Dist.Taipei, Taiwan 114, R.O.C.Phone: +886-2-2659-4570Fax: +886-2-2659-4550e-mail:taiwansales@CHINA (SHANGHAI)Rm 807-808A,Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468e-mail: chinasales@ INDIA261/A, Ground Floor7th Main, 17th Cross,SadashivanagarBangalore, India 560080Phone: +91-80-5113-8020Fax: +91-80-5113-8023e-mail: indiasales@KOREARM 602, 6FLKorea City Air Terminal B/D,159-6Samsung-Dong, Kangnam-Gu,Seoul, 135-728, KoreaPhone: +82-2-2016-6610Fax: +82-2-2016-6630e-mail:koreasales@EUROPE HQ1st Floor, St. James’s HouseEast Street, FarnhamSurrey, GU9 7TJUnited KingdomPhone: +44 (0) 1252-730-140Fax: +44 (0) 1252-727-689e-mail: eurosales@CHINA (SHENZHEN)Room 2206-2207, Block A, Elec. Sci. Tech. Bldg.2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: chinasales@ ITALYVia Vittorio Veneto 1220091 Bresso MIItalyPhone: +39-028-928-6000Fax: +39-028-928-6009e-mail: eurosales@SINGAPORE51 Newton Road,#15-08/10 Goldhill Plaza,Singapore, 308900Phone: +65-6358-2160Fax: +65-6358-2015e-mail:singaporesales@APPLICATIONS HOTLINEWorld Wide +1-408-414-9660APPLICATIONS FAXWorld Wide +1-408-414-9760。
技术要求:输入电压Vin:90-253Vac
输出电压Vo:27.6V
输出电流Io:6A
输出功率Po:166W
效率η:0.85
输入功率Pin:195W
一、输入滤波电容计算过程:
上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压Vdc为115V,则从上图可以得到:
Vpk=90*1.414=127V
Vmin=Vdc-(Vpk-Vdc)=103V
将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放电,电容电压降低(Vpk-Vmin)V。
Idc*T3=C*△V
其中:
△V=Vpk-Vmin=127-103=24V
关键部分在T3的计算,T3=t1+t2,t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为
Vx=Vpksinθx,根据已知条件,Vx=103V,Vpk=127V,可以得到θx=54度,所以t2=54*10ms/180=3mS,T3=t1+t2=8mS。
C=1.7*8/24=0.57mF=570uF
二、变压器的设计过程
变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。
对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。
磁芯的参数如下:AE=190mm2,AL=4300nH,Bmax≥0.32T
1)DCM变压器设计过程:
开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压Vdc下,占
空比最大,电路工作在BCM 状态,根据伏秒平衡,可以得到以下公式,
Vdc*Dmax=Vor*(1-Dmax),
从而计算反射电压为Vor=95V
匝比 n=Vor/(Vo+Vf)=3.32 Vf 为整流二极管压降
计算初级匝数
计算副边匝数 Ns=Np/n=6.32,选择7匝,
则原边匝数调整为 Np=3.32*7=23匝
计算辅助绕组匝数,输出电压变化范围按照20-27.6V 设计,要求在20V 输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。
初级电感量 Po=0.5L*I*I*F/η I=Vinmin*Dmax/(L*F)
,
将各个参数代入,得到L 值 L=78uH 初级电流峰值:
A F L D Vdc Ipk L 9.81080107848.0115max 36=****=**=
-
初级电流有效值:A D Ipk I L L RMS 6.33max =*=
次级电流有效值:A D n Ipk Irms L
3.123max 1=-**= 根据电流有效值,可以选择变压器线径,根据匝数绕电感后,调整气息使电感量满足要求,即可得到合适的变压器。
以下黄色字体部分,是根据batteryli 提到,对于DCM ,变压器的△B 值可以适当选的大一些,从而降低匝数减小漏感,可以减小尖峰。
因此按照△B=0.2设计的变压器。
开关频率选择80K ,最大占空比选择0.48,全范围DCM ,则在最低输入电压Vdc 下,占空比最大,电路工作在BCM 状态,根据伏秒平衡,可以得到以下公式,
Vdc*Dmax=Vor*(1-Dmax),
从而计算反射电压为Vor=95V
匝比 n=Vor/(Vo+Vf)=3.32 Vf 为整流二极管压降
计算初级匝数
计算副边匝数 Ns=Np/n=4.8,选择5匝,
则原边匝数调整为 Np=3.32*5=17匝
计算辅助绕组匝数,输出电压变化范围按照20-27.6V 设计,要求在20V 输出下辅助绕组能正常供电,所以,辅助绕组选择3匝。
初级电感量 Po=0.5L*I*I*F/η I=Vinmin*Dmax/(L*F)
,
将各个参数代入,得到L 值 L=78uH
初级电流峰值:
A F L D Vdc Ipk L 9.81080107848.0115max 36=****=**=
-
初级电流有效值:A D Ipk I L L RMS 6.33max =*=
次级电流有效值:A D n Ipk Irms L
3.123max 1=-**= 根据电流有效值,可以选择变压器线径,根据匝数绕电感后,调整气息使电感量满足要求,即可得到合适的变压器。
2)CCM 变压器设计过程:
CCM 变压器的设计,必须首先确定一个负载点,在该状态下,变压器工作在BCM 状态下,如果负载继续增加则进入CCM ,如果负载减小,则进入DCM ,一般情况下,我会选择最低输入电压下额定负载的70%为BCM 状态。
70%负载情况下,输出功率为P 0.7=27.6*6*0.7=116W ,因此峰值电流为
A D V P I dc PK 94.485
.0*48.0*11511622max 7.07.0=*=***=η, 从这个时刻,如果继续增加负载电流,变压器进入CCM 状态,占空比不变,所以,峰峰值电流也就是这个值,因此ΔI=4.94A
满载情况下,输入平均电流
A V p I dc in in 7.1115
195=== 设峰值电流为I PK 则 (I PK +I PK -4.94)×D/2=in I
I PK =6A
根据△I 占Ipk 的比例,确定△Bmax ,△Bmax/Bmax=△I/Ipk 得到△Bmax=4.94*0.32/6=0.26T ,选择△B 为0.18T ,计算变压器原边匝数
根据伏秒平衡,可以得到以下公式,
Vdc*Dmax=Vor*(1-Dmax),
从而计算反射电压为Vor=95V
匝比 n=Vor/(Vo+Vf)=3.32 Vf 为整流二极管压降
副边匝数 Ns=18/3.32=5.4,选择6匝,
原边匝数调整为 Np=3.32*6=20
计算辅助绕组匝数,输出电压变化范围按照20-27.6V 设计,要求在20V 输出下辅助绕组能正常供电,所以,辅助绕组选择4匝。
根据△I=Vdc*Dmax/Lp*F ,可以得到变压器原边电感值
uH F I D V L dc p 14010*80*94.448.0*1153
max ==*∆*= 3)QR 模式变压器的设计过程
最低输入电压103V ,最大占空比Dmax 选择0.48,在最低输入电压情况下,变压器工作在临界模式,则根据伏秒平衡
Vdc*Dmax=Vor*(1-Dmax),
Vor= Vdc*Dmax/(1-Dmax)
=103*0.48/(1-0.48)
=95V
匝比 n=Vor/(Vo+Vf)=95/(27.6+1)=3.32
采用0B2203,如果全范围内都工作在QR 状态下,则在同一负载条件下,工作频率只跟随输入电压变化,频率变化比如下:
2
)(1)(1⎪⎪⎪⎪⎭⎫ ⎝⎛+*++*+=H L L
H
Vdc Vf Vo n Vdc Vf Vo n Fs Fs , 将Vo=27.6V 、Vf=1V 、VdcL=115V 、n=3.32、VdcH=360V 代入,可以得到FsH=2.25FsL,如果将低压满载工作频率设置在50k ,则高压满载工作频率则工作在2.25*50=112.5 k 。
变压器工作在QR 模式时,MOS 管开通时,变压器原边储存能量,在MOS 关关闭时刻完全传递到副边,每个周期变压器原边储存的能量为
25.0I L P *= 变压器传递到副边的总能量等于每个周期传递的能量与频率的乘积,所以
F I L p o ***=η25.0
原边峰值电流可以通过下式得到
F
L D Vdc I **=max 将 Po=166W 、η=0.85、Vdc=115V 、Dmax=0.48、F=50K 带入上式可以得到变压器原边电感 L=156uH
在最低输入电压情况下,初级峰值电流最大,初级电流峰值最大值
A F L D V Ipk L 34.610501015648.0103max min 3
6=****=**=- 初级电流波形为三角波,所以有效值为
A D Ipk I L L RMS 54.23max =*
= 次级电流有效值
A D n Ipk Irms L 81.83
max 1=-*
*= 则初级绕组匝数 2620
.01019034.61015666=****=**=--m e L p B A Ipk Lp N 匝
次级绕组匝数Ns=26/3.32=8匝,选择8匝,则原边调整为27匝
由于负载为两串铅酸蓄电池,最低充电电压按照20V 计算,辅助绕组选择4匝。
MOS 管的选择
初级峰值电流6.34A,按照1.5倍余量选择,MOS 管电流选择6.34*1.5=9.5A
输入电压最高值360V ,反射电压95V ,考虑尖峰电压100V ,MOS 管耐压按照0.85的余量选择,则MOS 管耐压应不低于
V Vpk Vor Vin V 65385
.0max =++= 库存MOS 管中,满足电压电流条件的型号为FQA13N80,所以选择该型号MOS 管。
输出二极管的选择
变压器变比27:8,当输入电压最高时,折算到副边的电压为
360*8/27=107V
因此二极管承受的反向电压为107+27.6=135V ,考虑尖峰电压50V ,二极管耐压按照0.85的容量选择,则
V=(135+50)/0.85=218V
副边峰值电流为6.34*27/8=21A
库存最接近的二极管是STTH3003,耐压300V ,两个15A 二极管并联。