【2019年整理】广州地铁盾构机选型参考
- 格式:docx
- 大小:41.73 KB
- 文档页数:5
一、工程概况宁和城际轨道交通NH-TA06标包含一站一区间,分别为华新路站、春江新城站~华新路站区间。
隧道长度:春江新城站~华新路站区间左右线总长度为3262.842m(左线长1635.5m,右线长1627.342m);左右线间距: 13m~14.6m;隧道覆土厚度最小约11.1m,最大约49.61m;平面最小曲线半径为450m,区间最大坡度为22‰。
两区间隧道内净空:φ5.5m,管片外径φ6.2m.管片采用强度等级C50,抗渗等级P12。
宽度1.2m,厚度为350mm。
错缝连接,28个M30螺栓,强度等级为5.8级,螺母强度等级8.0级。
二、本段工程施工的难点1、本标段区间隧道主要穿越强风化凝灰岩、中风化凝灰岩、中风化安山岩。
2、盾构机在上软下硬地段掘进,由于下断面岩石强度大、上端面土层强度低,易发生开挖面失稳、隧道抬头、超挖量过大引起地层沉降等现象;3、沿线下伏J3l层全~中风化凝灰岩、安山岩,均具有强度高、低压缩性的特性。
天然状态下强度高,最高强度可达94MPa,对盾构刀具的磨损大,强度要求高,隧道穿越该岩层时应选择适宜强度的刀具,并及时检查、更换。
4、区间地层系上统龙王山组凝灰岩、安山岩,裂隙发育,局部岩体呈碎裂状,构造裂隙处有地下水分布,其透水性及赋水性受裂隙发育情况影响分布不均,局部水量较大。
三、对盾构机的设计要求基本功能要求⑴要求盾构具有开挖系统、开挖面稳定辅助支撑装置、出碴系统、碴土改良系统、人闸气压装置、管片安装系统、注浆系统、动力系统、控制系统、自动测量导向系统、超前钻探和注浆(自动计量)等基本功能。
⑵对地层的适应性及开挖能力的要求区间隧道主要穿越强风化凝灰岩、中风化凝灰岩、中风化安山岩。
盾构设计时应重点考虑以下问题:①具有土压平衡和气压平衡掘进功能;②具有足够的破岩能力;③足够的刀盘驱动扭矩和推力;④合理的刀盘及刀具设计,恰当的刀盘开口率和合理的开口位置;⑤具有高水压状态下的防水密封能力;⑥能够对较大的岩土进行破碎,有效防止堵管;⑦刀盘、刀具、盾壳、等具有足够的耐磨性;⑧具有盾体防扭转能力;⑨足够能力的同步注浆系统;⑩碴土改良系统;⑪盾构的防喷涌功能;⑫防止刀盘中心结泥饼;⑬合理的人舱设计;⑭超前钻探和注浆。
设计依据:1.《广州市轨道交通五号线工程区庄至动物园南门区间详细勘察阶段岩土勘察报告》2.《广州市轨道交通五号线工程动物园南门至杨箕区间详细勘察阶段岩土工程勘察报告》3.《广州市轨道交通五号线首期工程(滘口至文冲段)设计技术要求》4.广州市轨道交通五号线首期工程(滘口至文冲段)区庄站至动物园站区间招标设计及投标设计文件5. 广州市轨道交通五号线首期工程(滘口至文冲段)动物园站到杨箕站区间招标设计及投标设计文件6.《广州市轨道交通五号线首期工程(滘口至文冲段)施工图设计结构防水工程技术要求》7.《广州市轨道交通五号线[区庄站~动物园站~杨箕站区间]盾构工程设计合同》8.广州市地铁五号线总包总体部下发的工作联系单9.采用规范:1)《人民防空工程设计规范》(GB50225-1995)2)《盾构法隧道施工与验收规范》(GB50446-2008)3)《建筑结构荷载规范》(GB50009-2001)4)《地铁设计规范》(GB50157-2003)5)《混凝土结构设计规范》(GB50010-2002)6)《地下工程防水技术规范》(GB50108-2001)7)《铁路隧道设计规范》(TB10003-2005)8)《建筑抗震设计规范》(GB50011-2001)9)《锚杆喷射混凝土支护技术规范》(GB50007-2002)10)《建筑地基基础设计规范》(GB50007-2002)11)《铁路桥涵设计基本规范》(TB10002.1—2005)12)《地下铁道工程施工及验收规范》(GB50299—1999)2003年版13)其他相关规范、规程工程概况本工程含区庄站~动物园站及动物园站到杨箕站两个盾构区间,盾构始发井设于杨箕站,盾构机于动物园站过站,盾构吊出井设于区庄站东侧。
两区间均属珠江三角洲平原,沿线路面交通繁忙,为密集的建筑物、高架桥桩基区,地下管线密布。
动物园站~杨箕站区间隧道下穿内环放射线黄埔大道A2标以及内环—梅东—中山—立交桩基,同时距东风广场会所及环风变电桩基较近。
砂浆设备的选型【工程概述】 广州市轨道交通三号线北延段土建11标〖矮岗~新机场南盾构区间〗,土建工程从矮岗站始发井始发,最后到达机场南盾构吊出井,工程总长3536.735m 。
隧道为双线,其中明挖为296.246m ,盾构区间为3240.489m 。
单线盾构区间长度1620.350m 。
线路水平最小曲线半径为1000m ,隧道埋深4~13m ,最大纵坡为25‰。
隧道主要在〈3-1〉、〈3-2〉、〈3-1〉、〈4-1〉、〈7〉、〈8C-2〉层中穿过。
盾构区间施工,采用德国海瑞克公司EPB-Sheild φ6250mm 土压平衡盾构机进行盾构施工。
一、砂浆设备的选型:A 、盾构机同步注浆需用量的确定盾构机开挖面直径为:φ盾构机外经=6280mm ,φ管片外经=6000mm ,每环管片宽B =1.5m ,注浆扩散系数K 取1.5。
则Q 同步注浆=K L Q Q ⨯⨯⎪⎪⎭⎫ ⎝⎛-422管片外经盾构机外π =6.07(m 3)考虑部分消耗,所以取每环的Q同步注浆=6.5m 3。
B 、搅拌机按施工能力选型双线掘进,每小时按两环考虑,则需砂浆搅拌能力为2×6.5=13m3/h。
保险系数取2(理论与实际操作相差较大),则需搅拌站能力为13×2=24 m3/h;可按30 m3/h考虑设计能力。
初步选用HZS35搅拌站,其中搅拌机为JS750强制性搅拌机,配料斗为HPJ1200A(砂石称最大称量值2000kg、配料精度±2%;粉料称最大称量值360kg、配料精度±1%;水称最大称量值300kg、配料精度±1%)。
C、水泥罐的选型良好地质,双线可掘进30环,则需要砂浆量为30×6.5=195m3。
而每m3中约含水泥300kg,则每天需要水泥量为58.5T。
需用80-100T水泥罐。
80T,直径为2.8m。
即100T水泥罐,可持续隧道掘进51.3环同步注浆用量。
盾构管片选型和安装林建平在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。
本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。
一、工程概况客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。
管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。
依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。
二、管片的特征1、管片的拼装点位本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、9、10、11。
管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。
拼环时点位尽量要求ABA(1点、11点)形式。
在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。
管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。
同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。
在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。
(竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)2、隧道管片排序鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。
在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。
盾构始发时的负环是6环,1环零环。
从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。
管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽度800mm(各地洞门的最小宽度要求不同)时,就取余数的一半为洞门长度。
地铁盾构的选型及现场管理和使用一、概述1、概念盾构是一种用于隧道暗挖施工,具有金属外壳,壳内装有主机和辅助设备,既能支承地层的压力,又能在地层中整体掘进,进行土体开挖,碴土排运和管片安装等作业,使隧道一次成形的机械。
盾构是相对复杂的集机、电、液、传感、信息技术于一体的隧道施工专用工程机械,主要用于地铁、铁路、公路、市政、水电等工程。
盾构的工作原理就是一个钢结构组件依靠外壳支承,沿隧道轴线一边对土壤进行切削一边向前推进,在盾壳的保护下完成掘进、排碴、衬砌工作,最终贯通隧道。
盾构施工主要由稳定开挖面、掘进及排土、管片衬砌和壁后注浆三大要素组成。
盾构是根据工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等具体特征来“量身定做”的一种非标设备。
盾构不同于常规设备,其核心技术不仅仅是设备本身的机电工业设计,还在于设备通过不同的设计如何满足工程地质施工的需求。
因此,盾构的选型正确与否决定着盾构施工的成败。
2、盾构的类型盾构的类型是指与特定的施工环境、基础地质、工程地质和水文地质特征相匹配的盾构种类。
一般掘进机的类型分为软土盾构、硬岩掘进机(TBM)、复合盾构三种。
软土盾构的特点是仅安装切削软土用的切刀和括刀,无需开岩的滚刀。
TBM主要用于山岭隧道。
复合盾构是指既适用于软土,又适应于硬岩的一类盾构,主要用于复杂地层的施工。
地铁盾构就是一种复合盾构。
主要特点是刀盘既安装用于软土切削的切刀和括刀,又安装破碎岩石的滚刀,或安装破碎砂卵石和漂石的撕裂刀。
复合盾构分为土压平衡盾构和泥水加压平衡盾构。
3、盾构的组成地铁施工可供选择的复合盾构机机型只有两种,即土压平衡盾构机或泥水平衡盾构机。
一台盾构按外观结构形式分为刀盘部分、前盾、中盾、尾盾、后配套部分和辅助设备(管片和砂浆运输设备、泥水站等)。
土压平衡盾构由以下十一部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷膨润土添加系统和泡沫系统,⑸螺旋输送机,⑹皮带输送机,⑺同步注浆系统,⑻盾尾密封系统,⑼管片安装机,⑽数据采集系统,⑾导向系统。
第1章.第2章.第3章.第4章.第5章.第6章.第7章.第8章.第9章.第10章.盾构、配套设备与管模10.1.盾构机选型10.1.1.选型原则盾构机的性能及其对地质条件的适应性是盾构隧道施工成败的关键。
本合同段盾构区间工程的盾构机选型按照性能可靠、技术先进、经济适用相统一的原则,依据招标文件、颐和园站-圆明园站和圆明园站-成府路站区间岩土工程勘察报告等资料,并参考国内外已有盾构工程实例及相关的技术规范进行。
10.1.2.选型依据盾构机选型具体依据如下:(1)本合同段盾构工程施工条件隧道长度:3032+2044.286单线延米;线路间距:8~19m;隧道覆土厚度最小:6m,最大:15.4m;平面最小曲线半径:350m;最大坡度:20.801‰;隧道衬砌管片内径:5400mm 外径:6000mm(2)工程施工环境特点本工程施工环境具有如下特点对盾构机施工有一定的影响:本合同段区间隧道沿线地下管线、建(构)筑物密集。
颐和园-圆明园区间线路下穿颐和园、圆明园,与万泉河高架桥相交;圆明园~成府路站区间线路通过成府小学、化工研究院,下穿万泉河。
区间线路与万泉河高架桥相交时,隧道外轮廓与桩基距离最小为5m,下穿圆明园一座池塘时覆土厚度仅6m,万泉河底部区域隧道覆土厚度为9m。
本合同段区间线路主要沿颐和园路、清华西路布置,与中关村北大街相交,所经道路尤其是中关村北大街交通繁忙、车流量大。
(3)区间地质特点本合同段区间隧道穿越地层主要有粉质粘土、粉土层,局部夹有砂层、卵石圆砾等。
具体的地质统计表见表10-1-1和图10-1-1。
10.1.3. 本工程地质特点对盾构机功能的要求针对以上工程地质条件及特点,盾构应具备以下功能: (1)盾构机对地层条件的适应性要求本合同段隧道地层主要由粉质粘土、粉土层、卵石圆砾层组成,局部夹有砂层,所以盾构对软土地层的适应性应是重点考虑的问题。
盾构在软土地段的施工时应重点考虑以下功能:具备土压平衡掘进功能; 足够的推力和刀盘驱动扭矩; 良好的加泥、加泡沫等碴土改良能力; 合理的刀盘及刀具设计; 具有完善的防喷涌功能; 能够有效防止中心泥饼的生成; 较好的人员仓条件;圆明园-成府路站区间颐和园-圆明园站区间图10-1-1 盾构区间隧道洞身主要地质比例图超前地质钻探及管片壁后同步注浆功能。
盾构法施工盾构机选型(一)盾构机选型原则采用盾构法施工的工程,首先要根据多方面的条件来统筹考虑盾构及配套设施的选型,一旦机型选定,工程开工后,想要对施工方法作出调整就相当困难。
盾构机的性能及其与地质条件的适应性是盾构隧道施工成败的关键。
本工程的盾构选型主要依据轨道交通一号线一期工程招标文件、设计图纸及地勘资料,参考国内已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。
1、适合于本工程隧道所穿越土层条件及工程的重难点;2、适合于施工长度、工期要求、设计线路要求;3、后配设备、始发设施等施工设备必须要满足盾构开挖能力;4、充分考虑施工环境。
(二)盾构机选型要点在仔细分析区间勘查设计资料的基础上,结合我司既有盾构施工经验,及轨道交通1~3号线盾构机选型及施工经验,本工程盾构机选型分析如下:1、盾构机的可靠性盾构机的生产厂商必须为国内知名厂商,中铁装备品牌盾构机有较大的用户群,其企业信誉及设备性能已得到充分验证,能够满足地铁施工的需要。
我部对1号线盾构机使用情况进行了调查,主要采用铁建重工品牌的盾构机。
盾构机使用寿命应满足本工程区间施工需求,已施工长度加本工程区间设计长度不得超过盾构机的设计推进里程,以不超过10km为宜。
2、对隧道结构的适应性本工程盾构区间隧道衬砌采用钢筋混凝土预制管片,外径6000mm,内径5400mm,环宽1500mm。
盾构机的尺寸需能够满足管片安装需求。
3、对区间地质的适应性本工程盾构区间穿越地层主要为:从南至北主要地层为:全风化砾岩及圆砾卵石以及强风化板岩,均属于软弱地层,自稳性较差。
盾构机刀盘应具备足够的开口率,利于切削后的土体进入土仓,刀盘刀具配置以滚压为主,切削为辅,刀盘刀具均应有相应的耐磨设计。
根据轨道交通1号线经验多数采用辐条+面板式的复合刀盘,开口率>30%。
软硬岩刀具刀座相同,根据不同的地质条件可以合理配置刀具,所有刀具均可由刀盘背面进行更换。
盾构工程方案及技术措施1 盾构机选型1.1 盾构机提供方式经过多方调查及全面比选,我公司在本标段拟投入两台新购海瑞克复合式土压平衡盾构机(设备编号S-813、S-814)进行施工,其中右线采用S-813盾构机,左线采用S-814盾构机。
我单位已与海瑞克公司签订了盾构设备购置意向书,如我单位中标,立即与海瑞克公司签订设备购置合同,即刻开始盾构机制造,盾构机生产周期为7-9个月,完全能够满足广州市轨道交通二十一号线工程【施工15标】土建工程盾构施工工期要求。
所选盾构机详细情况详见“附件——盾构性能和参数”。
1.2 盾构机选型依据1.2.1 盾构机选型原则盾构机的选型就是针对工程地质和环境的特点,选择经济合理的盾构机型式,使之既能适应于工程的地质条件、环境要求和技术要求,又能在复杂困难的地段中具有应变能力。
在复合地层中施工,盾构机选型主要考虑三大系统:刀盘、添加剂和人闸。
1.2.2 盾构机选型流程图盾构机选型流程图见图1.2-1 盾构机选型流程图1.2.3 区间隧道设计特点①区间线路平面最小曲线半径600m;②最大纵坡度25‰;③隧道外径6.0m;④隧道内径5.4m;⑤环宽1.5m;⑥埋深67~57.5m;⑦掘进方向误差不超过±50mm;⑧盾构掘进施工地表面允许隆陷值为+10/-30mm。
1.2.4 区间工程地质、水文地质特点区间隧道主要穿越地层<3-2>中粗砂层、<4-2B>淤泥质粉质粘土、<5Z-2>砂质黏性土、<6Z>全风化花岗片麻岩、<7Z>强风化花岗片麻岩、<9Z>微风化花岗片麻岩、<F>断层破碎带。
地下水稳定水位埋藏深度 1.50~23.40m,标高28.31~64.34m。
地下水按赋存方式分为第四系松散层孔隙水,块状基岩裂隙水。
其中松散层孔隙水多为潜水,局部具微承压性;块状基岩裂隙水为承压水。
1.2.5 本工程特点、难点对盾构机的选型要求根据以往土压平衡盾构机的使用情况,结合广州地铁地质条件的特点,施工中有以下一些特点、重点、难点以及遇到时所相应需要采取的措施。
管片选型培训讲义结合广州地铁四号线和南京地铁盾构三标的实际情况,详细介绍管片选型的原则、方法以及影响管片选型的其他因素,并根据实际的施工情况,介绍了一些管片选型的实例,供从事盾构施工的技术人员参考。
管片选型标准环转弯环盾尾间隙油缸行程差在国内城市地铁隧道工程中,目前已越来越多地开始使用盾构机来掘进区间隧道,用预制混凝土管片作为永久衬砌。
管片通常由专业的厂家提前制作,按其功能又通常分为两种,即标准环和转弯环。
顾名思义,标准环是用于直线段,转弯环是用于曲线段。
标准环与转弯环配合使用就可以拼装各种线性的隧道。
管片选型直接关系到隧道线路、隧道质量等一系列隧道的关键指标,所以管片选型是否正确,将决定盾构工程的成败。
以下就管片选型的问题,结合广州地铁四号线琶大区间的实际情况谈一谈笔者的体会。
1、管片选型的原则管片选型的原则有两个,第一:管片选型要适合隧道设计线路;第二:管片选型要适应盾构机的姿态。
这两者相辅相成。
1.1 管片选型要适合隧道设计线路当一个盾构工程开工之前,就要根据设计线路对管片作一个统筹安排,通常把这一步骤叫管片排版。
通过管片排版,就基本了解了这段线路需要多少转弯环(包括左转弯、右转弯),多少标准环,曲线段上标准环与转弯环的布置方式。
现根据广州地铁四号线琶大区间的情况简要介绍一下管片排版。
琶大区间管片技术参数表广州地铁四号线琶大区间,分布三组圆曲线,半径分别为450米、800米、竖曲线3000米。
依照曲线的圆心角与转弯环产生的偏转角的关系,可以计算出区间线路曲线段的转弯环与标准环的布置方式。
θ―――转弯环的偏转角δ―――转弯环的最大楔形量的一半D―――管片直径将数据代入得出θ=0.3629根据圆心角的计算公式:α=180L/πR式中:L―――一段线路中心线的长度R―――曲线半径,取800m而θ=α,将之代入,得出L=5.067m上式表明,在800m的圆曲线上,每隔5.067m要用一环转弯环,广州地铁的管片长度为1.5m,就是说,在800m的圆曲线上,标准环与转弯环的拼装关系为2环标准环+1环转弯环。
浅谈地铁施工用盾构机的选型方案摘要:针对广东地铁一号线二标的地质特征:密实中砂,级配不良,主要成份为石英、长石、云母及少量暗色矿物,含5%~10%的砾、卵石,提出了相应的盾构选型方案及盾构的设计特点。
关键词:盾构选型;土压平衡;辐条+小面板式刀盘1盾构机概述盾构是集机械、液压、电控等一体的自动化程度较高的地下隧道施工机械。
主要由盾体、刀盘、刀盘驱动、螺旋输送系统、管片拼装等系统组成,配备了机电一体化的液压驱动系统、同步注浆系统、工业空气系统、电控系统、泡沫设备、膨润土注入设备及激光导向等设备。
在主控室内可对盾构的掘进姿态实时监控,还可在地面监控室对盾构实时监控。
由于盾构在城市地铁施工具有安全、快速、高效、对施工周围环境影响小等优点,在城市地铁隧道施工中被广泛采用。
盾构作为城市地铁盾构法施工的专用机械设备,盾构的选型合理与否不仅关系到盾构施工的成本和效益,还关系到盾构施工的质量与技术水平,可见盾构选型的重要性。
2工程概况2.1工程概况广东地铁一号线一期工程(后围寨 -汉城路)TJSG-2共包含:后围寨明挖车站、后围寨站~三桥站、三桥镇站~皂河站两个盾构区间。
后围寨站~三桥镇站区间,起讫里程YDK6+859.163~YDK8+657.787,全长:1 798.624 m。
该区间从后围寨车站出发,沿世纪大道、三桥路下行,先后穿越后围寨立交,三桥机械市场,下穿阿房宫信用社,向东到达三桥车站。
三桥站~皂河站区间,起讫里程YDK8 +851.687~YDK10+662.000,全长:1 810.313 m。
该区间从三桥站出发,下穿三桥供销社砖混 4层楼房、后建章路和三桥路交叉口、枣园路立交、皂河桥及穿越一个箱涵底部到达皂河站。
区间总长度为:3 608.937m。
2.2区间地质水文情况本标段为全断面砂层,盾构基本在地层2-5-中砂层中穿过,2-5-2的地质为:密实中砂,级配不良,主要成份为石英、长石、云母及少量暗色矿物,含5%~10%的砾、卵石。
广州地区地铁隧道施工用盾构机选型
1.1选型依据
本标段的盾构选型主要依据广州地铁三号线【AA站一BB站盾构区间】(以下简称【A— B】区间)盾构工程招标文件和岩土工程勘察报告,参考国内外已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。
1.1.1工程条件
AA站〜BB站区间隧道左右线总长6002.210m,其中盾构隧道左线长3000.010m,右线长3002.200m, 最小转弯半径800m最大坡度29.2%;隧道内径4 5400mm管片外径4 6000mm管片环宽1500mm本标段隧道采用两台盾构机施工,先后由AA站始发,向BB站掘进,施工隧道右、左线,掘进到达BB站后拆除。
右、左线隧道盾构始发时间相差一个月。
1.1.2地质概况
(1)岩性特点
根据岩土工程勘测报告,本区地层由第四系、白垩系下统组成,中间缺失第三系,第四系( Q)厚8〜18米。
上部为第四系人工填土,厚0〜4米,全新统海陆交互相沉积的淤泥或淤泥质土、淤泥质砂,厚0〜7.9米;
下部为上更新统陆相冲洪积形成的砂土层,厚0〜8.2米;底部基岩残积形成的粘性土层,厚0〜17.3米。
白垩系下统白鹤洞组广岗段(K1b2)厚400〜450米,由紫红色钙质粉砂岩,泥质粉砂岩、粉砂质泥岩夹浅灰色泥灰岩、泥岩组成,微层理发育,含方解石,常见钙质斑块及少量斑点状石膏。
洞身穿过的围岩有<3-2>、<4-1>、<4-2>、<5-1>、<5-2>、<6>、<7>、<8>、<9>各岩土层,洞身范围内主要为<7>、<8>、<9>岩土层,稳定性较好。
在隧道靠车站两端的YK13+824.2〜YK15+95CM YK12+25S YK14+344.7段隧道直接穿越淤泥层和砂
层,隧道在该段埋深最浅(约为6.4m),且YK13+87SYK13+95般地表有淋砂涌通过,隧道在该段埋深最浅,与涌河内地表水存在较强的水力联系,在掘进过程中极易坍塌,还可能发生喷砂、喷涌,是盾构机选型时考虑的重点。
隧道洞身范围围岩的天然最大抗压强度为58.7MP&按围岩类别划分,在本标段内,洞身范围内包含了I -IV 类围岩,按单线隧道长度统计计算,左线各类围岩长度比例为:隧底一皿类围岩长696米,占27.6%;用类围岩长175米,占6.9%; W类围岩长1650米,占65.5%;隧顶一I类围岩长696米,占27.6%;皿类围岩长175米,占6.9%;用类围岩长1210米,占48% W类围岩长440米,占17.5%。
右线各类围岩长度比例为:隧底一II类围岩长436米,占17.3%;用类围岩长540米,占21.4%; IV类围
岩长1545米,占61.3%;隧顶一I类围岩长705.5米,占28%皿类围岩长270米,占10.7%; m类围岩长1450米,占57.5%; W类围岩长95米,占3.8%(洞身穿过地段各类围岩长度及分布情况见表7-1、7-2、7-3、7-4)。
(2)水文地质
根据地层的富水程度及储水介质的不同,本区间(AA至BB区间)地下分第四系孔隙水及基岩裂隙水两种类型。
第四系孔隙水主要赋存于淤泥质砂及冲洪积砂层中,地下水埋深0〜3米,为饱水层,根据抽水试
验及渗透系数数值分析,水量丰富。
由大气降水及河、涌、珠江水补给。
基岩裂隙水主要赋存于基岩强风化、中等风化带的裂隙中,地下水埋深随基岩面的起伏而不同,一般为10〜20米,由于岩性及裂隙
发育程度的差异,其富水程度与渗透性也不尽相同。
根据地质剖面,<4-1>、<4-2>、<5-1>、<5-2>、<6>、<9>为不透水〜微透水层,岩体中基本无水,可视为隔水层,渗透系数K=4.6〜5.7m/d ; <3-2>是冲、洪积形成的中、细砂层,为中等透水层,渗透系数K=4.6〜5.7m/d ; <7>、<8腮岩层强风化、中等风化带,岩性为泥质粉砂岩、粉砂质泥岩、泥岩,为弱〜中等透水层,渗透系数K=0.75〜1.45m/d。
1.1.3线路的地面、周边环境
隧道覆土变化大,最大为29.4m,最小为6.6m左右。
该标段区间线路在接近后活涌以南从多栋建筑
物下穿过。
1.1.4地面沉降量控制及掘进方向控制误差
(1) 沉降量控制在+10〜-30mm范围内,能满足穿越密集建筑物地区的需求。
(2) 设有自动导向系统,具有足够的掘进方向控制能力及自动纠偏能力,掘进方向误差不超过土50mm
1.1.5盾构机寿命
主要部件寿命应大于9000m主轴承寿命10000h,主轴承密封寿命大于6000h。
1.1.6施工工期要求
本标段盾构区间的盾构机掘进施工工期安排如下:
2003.5.15第一台盾构机到达广州港
2003.6.15第二台盾构机到达广州港
2003.5.16〜2003.7.4第一台盾构机下井组装调试;
2003.7.5第一台盾构机从AA站右线始发;
2003.11.28〜2003.12.17盾构机过右线矿山法段,再次始发;
2004.6.15第一台盾构机到达右线掘进终点;
2003.6.16〜2003.8.4第二台盾构机下井组装调试;
2003.8.5第二台盾构机从AA站左线始发;。